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Abstract. We consider deterministic distributed algorithms for reaching
agreement in synchronous networks of arbitrary topologies. Links are
bi-directional and prone to failures while nodes stay non-faulty at all
times. A faulty link may omit messages. Agreement among nodes is un-
derstood as holding in each connected component of a network obtained
by removing faulty links — we call it a “disconnected agreement”. We
introduce the concept of stretch, which is the number of connected com-
ponents of a network, obtained by removing faulty links, minus 1 plus
the sum of diameters of connected components. We define the concepts
of “fast” and “early-stopping” algorithms for disconnected agreement by
referring to stretch. We consider trade-offs between the knowledge of
nodes, the size of messages, and the running times of algorithms. A net-
work has n nodes and m links. We give a general disconnected agreement
algorithm operating in n + 1 rounds that uses messages of O(logn) bits.
Let A be an unknown stretch occurring in an execution; we give an al-
gorithm working in time (X + 2)* and using messages of O(nlogn) bits.
We show that disconnected agreement can be solved in the optimal O(\)
time, but at the cost of increasing message size to O(mlogn). We also
design an algorithm that uses only O(n) non-faulty links and works in
time O(nm), while nodes start with their ports mapped to neighbors and
messages carry O(mlogn) bits. We prove lower bounds on the perfor-
mance of disconnected-agreement solutions that refer to the parameters
of evolving network topologies and the knowledge available to nodes.

Keywords: Network - Synchrony - Omission link failures - Agreement -
Time complexity - Message size - Link use

1 Introduction

We introduce a variant of agreement and present deterministic distributed al-
gorithms for this problem in synchronous networks. Nodes represent processing
units and links model bi-directional communication channels between pairs of
nodes. Links are prone to failures but nodes stay operational at all times. A

* This work is partially supported by the NSF grant number 2131538.
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algorithm Htime ‘message size‘# links‘knowledge lower bound
FAST-AGREEMENT ||A 1O (log n) O(m) |A known time A < A
SM-AGREEMENT |n+1 |O(logn) O(m) |minimal time A
LM-AGREEMENT ||(A+2)%|O(nlogn) |O(m) |minimal time A
ES-AGREEMENT |[A+2 T|O(mlogn) |O(m) |minimal time A
OL-AGREEMENT ||O(nm) |O(mlogn) |2n  Tneighbors known|# links £2(n)

Table 1. A summary of the given deterministic distributed algorithms for disconnected
agreement and their respective performance bounds. The dagger symbol t indicates
the asymptotic optimality of the respective upper bound.

faulty link may not convey a message transmitted at a round. A link that has
omitted a message manifested its faultiness and is considered unreliable until the
end of the execution. We model a network with link failures as evolving through
a chain of sub-networks, obtained by removing unreliable links.

We study agreement that allows nodes in different connected components of
the network, obtained by removing unreliable links, to decide on different values
but still requires nodes within a connected component to decide on the same
value.

We use a network’s dynamic attribute, called “stretch”, which is an integer
determined by the number of connected components and their diameters (see
Section 2 for formal definition). The purpose of using stretch is to consider
scalability of disconnected agreement solutions to networks evolving through
link failures.

A summary of the results. We introduce the problem of disconnected agreement
and give deterministic algorithms for this problem in synchronous networks with
links prone to failures. Let n denote the number of nodes and m the number of
links in an initial network. An upper bound on stretch, denoted A, could be
given to all nodes, with an understanding that faults occurring in an execu-
tion are restricted such that the actual stretch never surpasses A. An algorithm
solving disconnected agreement with a known upper bound A on the stretch is
considered “fast” if it runs in time O(A). A fast solution to disconnected agree-
ment is discussed in Section 3. We also show a lower bound which demonstrates
that, for each natural number A\ and an algorithm solving disconnected agree-
ment in networks prone to link failures, there exists a network that has stretch
A and such that each execution of the algorithm on this network takes at least
A rounds. In Section 4, we show how to solve disconnected agreement in n + 1
rounds with short messages of O(logn) bits in networks where nodes have mini-
mal knowledge. We give an algorithm relying on minimal knowledge working in
time (A + 2)% and using linear messages’ of O(nlogn) bits, where A is an un-

T We call a message "linear’ if it could carry at most O(n) ids (each id has O(log n) bits).
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known stretch occurring in an execution; this algorithm is presented in Section 5.
A disconnected agreement solution is considered “early-stopping” if it operates
in time proportional to the unknown stretch actually occurring in an execution.
In Section 6, we develop an early-stopping solution to disconnected agreement
relying on minimal knowledge that employs messages of O(mlogn) bits. We
propose to count the number of reliable links used by a communication algo-
rithm during its execution as its performance metric. To make this performance
measure meaningful, the nodes need to start knowing their neighbors, in having
a correct mapping of communication ports to neighbors. In Section 7, we give
a solution to disconnected agreement that uses at most an asymptotically opti-
mum number 2n of reliable links and works in O(nm) rounds, without knowing
the size n of the network. We then show a separation result in Section 7: if the
nodes start with their ports not mapped on neighbors, then any disconnected
agreement solution has to use {2(m) links in some networks of ©(m) links, for all
numbers n and m such that n < m < n2. A summary of algorithms with their
performance bounds and optimality is in Table 1. Full paper is available in [8].

The previous work on agreement in networks. Dolev [10] studied Byzantine con-
sensus in networks with faulty nodes and gave connectivity conditions sufficient
and necessary for a solution to exist; see also Fischer et al. [11], and Hadzila-
cos [12]. Khan et al. [13] considered a related problem in the model with restricted
Byzantine faults, in particular, in the model requiring a node to broadcast iden-
tical messages to all neighbors at a round. Tseng and Vaidya [20] presented
necessary and sufficient conditions for the solvability of consensus in directed
graphs under the models of crash and Byzantine failures. For recent advance-
ments, we refer the reader to [4,7,9, 19,21, 22].

Next, we discuss previous work on solving consensus in networks undergoing
topology changes, malfunctioning links and transmission failures.

Kuhn et al. [15] considered A-coordinated binary consensus in undirected
graphs, whose topology could change arbitrarily from round to round, as long
it stayed connected; here A is a parameter that bounds from above the dif-
ference in times of termination for any two nodes. Paper [15] showed how to
solve A-coordinated binary consensus in O( anA + A) rounds using message
of O(m?logn) size without a prior knowledge of the network’s diameter D.
Comparing to our work, the paper [15] assumes that network connectivity is
maintained and the A-coordination property imposes additional constrains on
the algorithms.

Biely et al. [2] considered reaching agreement and k-set agreement in networks
when communication is modeled by directed-graph topologies controlled by ad-
versaries, with the goal to identify constraints on adversaries to make the con-
sidered problems solvable. Paper [2] solved k-set agreement in time O(3D + H)
and using messages of O(nDlogn) size, where D denotes the dynamic source
diameter and H denotes the dynamic graph depth, and the code of algorithm
includes D. Some of our solutions can be faster and use smaller messages in
this setting, since D = E = A > ); for example, in dynamic networks in which
Dn = w(m).
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Kuhn et al. [14] considered dynamic networks in which the network topology
changes from round to round such that in every T' > 1 consecutive rounds there
exists a stable connected spanning subgraph, where T is a parameter. Paper [14]
gave an algorithm that implements any computable function of the initial inputs,
working in O(n+n?/T) time with messages of O(logn+d) size, where d denotes
the size of input values. That solution is similar to our O(n) time algorithm,
but it assumes the existence of a spanning connected subgraph throughout an
execution, and 7' must be {2(n) to result in time O(n), while our algorithm
adjusts to disjoint connected components as they occur.

Other related work includes: agreement in complete networks in the presence
of dynamic transmission failures, cf., [6, 17, 16]; almost-everywhere agreement [1];
approximate consensus [5]; and other models with transient failures [3, 18].

2 Preliminaries

We model distributed systems as collections of nodes that communicate through
a wired communication network. Executions of distributed algorithms are syn-
chronous, in that they are partitioned into global rounds coordinated across the
whole network. There are n nodes in a network. Each node has a unique name
used to determine its identity; a name can be encoded by O(logn) bits.

Links connecting pairs of nodes serve as bi-directional communication chan-
nels. If at least one message is transmitted by a link in an execution then this
link is used and otherwise it is unused in this execution. A link may fail to deliver
a message transmitted through it at a round; once such omission happens for a
link, it is considered unreliable. The functionality of an unreliable link is unpre-
dictable, in that it may either deliver a transmitted message or fail to do it. A
link that has never failed to deliver a message by a given round is reliable at this
round. A path in the network is reliable at a round if it consists only of links that
are reliable at this round. Nodes and links of a network can be interpreted as
a simple graph, with nodes serving as vertices and links as undirected edges. A
network at the start of an execution is represented by some initial graph G, which
is simple and connected. An edge representing an unreliable link is removed from
the graph G at the first round it fails to deliver a transmitted message. A graph
representing the network evolves through a sequence of its sub-graphs and may
become partitioned into multiple connected components. Once an algorithm’s
execution halts, we stop this evolution of the initial graph G. An evolving net-
work, and its graph representation G, at the first round after all the nodes have
halted in an execution is denoted by Gp.

We precisely define the algorithmic problem of interest as follows. Each node p
starts with an initial value input,. We assume two properties of such input
values. One is that an input value can be represented by O(logn) bits. The other
is that input values can be compared, in the sense of belonging to a domain
with a total order. In particular, finitely many initial input values contain a
maximum one. We say that a node decides when it produces an output by
setting a dedicated variable to a decision value. The operation of deciding is



Disconnected Agreement in Networks Prone to Link Failures 5

irrevocable. An algorithm solves disconnected agreement in networks with links
prone to failures if the following three properties hold in all executions:

Termination: every node eventually decides.

Validity: each decision value is among the input values.

Agreement: when a node p decides then its decision value is the same as these
of the nodes that have already decided and to which p is connected by a
reliable path at the round of deciding.

If a message sent by a node executing a disconnected agreement solution
carries a constant number of node names and a constant number of input values
then the size of such a message is O(logn) bits, due to our assumptions about
encoding names and input values. Messages of O(logn) bits are called short. If
a message carries O(n) node names and O(n) input values then the size of such
a message is O(nlogn) bits. We call messages of O(nlogn) bits linear.

Let H be a simple graph. If H is connected then diam(H) denotes the di-
ameter of H. Suppose H has k connected components C1, ..., Ck, where k > 1,
and let d; = diam(C;) be the diameter of component C;. The stretch of H is
defined as a number k£ — 1 + E?Zl d;. The stretch of a connected graph equals
its diameter, because then & = 1. The stretch of H can be interpreted as the
maximum diameter of a graph obtained from H by adding k£ — 1 edges such
that the obtained graph is connected. The maximum stretch of a graph with n
vertices is n — 1, which occurs when every vertex is isolated or, more generally,
when each connected component is a line of nodes.

We say that an algorithm relies on minimal knowledge if each node knows its
unique name and can identify a port through which a message arrives and can
assign a port for a message to be transmitted through.

A disconnected-agreement algorithm in a synchronous network with links
prone to failures is early stopping if it runs in a number of rounds proportional
to the unknown stretch A actually occurring. Such an algorithm is fast if it runs
in a number of rounds proportional to an upper bound on stretch A, assuming
this bound is known to all the nodes.

3 Fast Agreement

We present a fast algorithm solving disconnected agreement, assuming that
a bound A on stretch is known to all nodes. The algorithm is called FAsT-
AGREEMENT; its pseudocode is given in Figure 1.

Theorem 1. Consider an execution of algorithm FAST-AGREEMENT (A) in a net-
work. If the stretch of the network never gets greater than A then the algorithm
solves disconnected agreement in A rounds using messages of O(logn) bits.

We next focus on lower bounds on the number of rounds of any algorithm.

Lemma 1. For any algorithm A solving disconnected agreement in networks prone
to link failures, and for positive integers D and n > 2D, there exists a network
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algorithm FAST-AGREEMENT (A)

1. initialize candidate < input,
2. repeat /A times
if the current value of candidate has not been sent before then
send candidate to all neighbors
receive messages from all neighbors
if a value greater than candidate has just been received
then set candidate to the maximum value just received
3. decide on candidate

Fig.1. A pseudocode of algorithm FAST-AGREEMENT for a node p. The parameter A
represents an upper bound on stretches, which is known to all nodes.

G with n nodes and with diameter D such that some execution of A on G takes
at least D rounds with no link failures.

Corollary 1. For any algorithm A solving disconnected agreement in networks
prone to link failures, and for any even positive integer n, there exists a network
G with n nodes such that some execution of A on G takes at least 5 rounds with
no link failures.

Theorem 2. For any natural number A < A and an algorithm A solving discon-
nected agreement in networks prone to link failures, there exists a network G that
has stretch at most A and such that each execution of A on G takes at least X rounds.

4 General Agreement with Short Messages

We present a general disconnected-agreement algorithm using short messages of
O(log n) bits. Algorithm FAST-AGREEMENT presented in Section 3, which also
employs messages of O(logn) bits, relies on an upper bound on stretch A that
is a part of code, and if the actual stretch in an execution goes beyond A then
an execution of algorithm FAST-AGREEMENT may not be correct. We assume in
this section that nodes rely on minimal knowledge only and the given algorithm
is correct for arbitrary patterns of link failures and the resulting stretches. The
algorithm terminates in at most n+ 1 rounds, while the number of nodes n is not
known. The running time is asymptotically optimal in case there are no failures,
by Corollary 1 in Section 3.
The algorithm is called SM-AGREEMENT, its pseudocode is in Figure 2.

Theorem 3. Algorithm SM-AGREEMENT solves disconnected agreement in n+ 1
rounds relying on minimal knowledge and using short messages of O(logn) bits.

5 Agreement with Linear Messages

The goal of this section is to develop an algorithm whose running time scales
well to the stretch actually occurring in an execution. We are ready to use mes-
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algorithm SM-AGREEMENT

—_

. initialize: Inputs to empty list, round < 1 ; append (name,, input ) to Inputs
for each port « do
initialize set Channel[a] to empty ; send (namep, input,) through o
3. for each port o do
if a pair (nameq, input,) received through o then
add (nameg, input,) to Channella] ; append (nameg, input,) to Inputs

N

4. repeat
(a) for each port « do
if some item in Inputs is not in Channel[a] then
let x be the first such an item ; send z through « ; add x to Channel[q]
(b) for each port a do
if a pair (namey, input,) was just received through a then
add (name,, input,) to Channella] ; append (namey, input ) to Inputs
(¢) round < round + 1
until round > |Inputs|
5. decide on the maximum input value in Inputs

Fig.2. A pseudocode for a node p. The operation of adding an item to a set is void if
the item is already in the set. The operation of appending an item to a list is void if
the item is already in the list. The notation |Inputs| means the number of items in
the list Inputs. For a port «, the set Channel[a] contains pairs of the format (node’s
name, node’s input) that the node p has either received or sent through the port a.

sages longer than short ones used in the previous sections, and will use linear
messages of O(nlogn) bits. Nodes are to rely on the minimal knowledge only:
each node knows its own name and can distinguish ports by their communica-
tion functionality. The size of linear messages imposes constrains on the design
of algorithms, and the obtained algorithm is not early stopping, but its running
time is polynomial in A.

Every node maintains a counter of round numbers, incremented when a round
begins. In each round, a node p generates a new timestamp r equal to the current
value of the round counter, and forms a pair (name,, r), which we call a timestamp
pair of node p. Such timestamp pairs are sent to the neighbors, to be forwarded
through the network. Each node node p stores a timestamp pair with the latest
timestamp for a node it has ever received a timestamp pair from, and sends
all such pairs to the neighbors in every round. An execution of the algorithm
at a node is partitioned into epochs, each epoch being a contiguous interval of
rounds. Epochs are not coordinated among nodes, and each node governs its own
epochs. The first epoch begins at round zero, and for the following epochs, the
last round of an epoch is remembered in order to discern timestamp pairs sent
in the following epochs. For the purpose of monitoring progress of discovering
the nodes in the connected component during an epoch, each node maintains
a separate collection of timestamp pairs, which we call pairs serving the epoch.
This collection stores only timestamp pairs sent in the current epoch, a pair with
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algorithm LM-AGREEMENT

1. initialize: candidate, < input, , round <— 0, Timestamps < (), Nodes +L
2. repeat
(a) epoch « round, PreviousNodes < Nodes, EpochTimestamps + ()
(b) repeat
i. round < round + 1
ii. add pair (name,,round) to sets Timestamps and EpochTimestamps
iii. for each port do
A. send Timestamps and (this-is-candidate, candidate,) through the port
B. receive messages coming through the port
iv. for each received pair (this-is-candidate, z) do
if x > candidate;, then assign candidate, < x
v. for each received timestamp pair (nameg,y) do
A. add (nameg,y) to Timestamps if this is a good update
B. if y > epoch then add (namegy, y) to EpochTimestamps if this is a good
update
(¢) until epoch stabilized at the round
(d) set Nodes to the set of first coordinates of timestamp pairs in EpochTimestamps
3. until PreviousNodes = Nodes
send (this-is-decision, candidate,) through each port
5. decide on candidate,

=~

Fig.3. A pseudocode for a node p. Each iteration of the main repeat-loop (2) makes
an epoch. Symbol L denotes a value different from any actual set of nodes, so the
initialization of Nodes to L in line (1) guarantees execution of at least two epochs.
A good update of a timestamp pair for a node ¢ either adds a first such a pair for ¢
or replaces a present pair for ¢ with one with a greater timestamp. At each round, p
checks to see if a message of the form (this-is-decision, z) has been received, and if so
then p forwards this message through each port, then decides on z, and halts.

the greatest timestamp per node which originally generated the pair. The status
of a node q at a node p during an epoch can be either absent, updated, or stale.
If the node p does not have a timestamp pair for ¢ serving the epoch then ¢ is
absent at p. If at a round of an epoch the node p either adds a timestamp pair
serving the epoch for an absent node q or replaces a timestamp pair of a node ¢
by a new timestamp pair with a greater timestamp than the previously held one,
then ¢ is updated at this round. If the node p has a timestamp pair for a node ¢
serving the epoch but does not replace it at a round with a different timestamp
pair to make it updated, then g is stale at this round.

We say that an epoch of a node p stabilizes at a round if either no new node
has its status changed from absent to updated at p or no node gets its range
changed at p. If an epoch stabilizes at a round, then the epoch ends. During
an epoch, a node p builds a set of names of nodes from which it has received
timestamp pairs serving this epoch. A similar set produced in the previous epoch
is also stored. As an epoch ends, p compares the two sets. If they are equal then p
stops executing epochs, decides on the maximum input value ever learned about,
notifies the neighbors of the decision, and halts.
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Each node p uses a variable candidate,, which it initializes to input,,. Node p
creates a pair (this-is-candidate, candidate, ), which we call a candidate pair of p.
Nodes keep forwarding their candidate pairs to the neighbors continually. If a
node p receives a candidate pair of some other node with a value x such that
x > candidate, then p sets its candidate, to x. An execution concludes with
deciding by performing instruction (5). Just before deciding, a node notifies the
neighbors of the decision. Once a notification of a decision is received, the recip-
ient forwards the decision to its neighbors, decides on the same value, and halts.

The variable round is an integer counter of rounds, which is incremented
in each iteration of the inner repeat loop by executing instruction (2(b)i). The
round counter is used to generate timestamps. The variable Timestamps stores
timestamp pairs that p has received and forwards to its neighbors. The variable
EpochTimestamps stores timestamp pairs serving the current epoch, which have
been generated after the beginning of the current epoch. Each set Timestamps
and EpochTimestamps stores at most one timestamp pair per node, the one with
the greatest received timestamp. Each iteration of the inner repeat loop (2b)
implements one round of sending and collecting messages through all the ports
by executing instruction (2(b)iii). The inner repeat loop (2b) ends as soon as
the epoch stays stable at a round, which is represented by condition (2¢). The
variable Nodes stores the names of nodes from which timestamp pairs serving
the epoch have been received. The variable Nodes is calculated at the end of an
epoch by instruction (2d). The set of nodes in Nodes at the end of an epoch
is stored as PreviousNodes at the start of the next epoch. The main repeat
loop (2) stops to be iterated as soon as the set of names of nodes stored in
Nodes stays the same as the set stored in PreviousNodes, which is checked by
condition (3).

Theorem 4. Algorithm LM-AGREEMENT solves disconnected agreement in (A +
2)3 rounds, relying on minimal knowledge and using O(nlogn) bit messages.

6 Early Stopping Agreement

We give an early-stopping disconnected agreement algorithm whose running time
performance O(\) scales optimally to the stretch A occurring in an execution by
the time of halting. Nodes rely only on the minimal knowledge, similarly as in
algorithms SM-AGREEMENT (in Section 4) and LM-AGREEMENT (in Section 5),
but messages carry O(mlogn) bits. This size is greater than that of short mes-
sages with O(logn) bits in algorithm SM-AGREEMENT and linear messages with
O(nlogn) bits in algorithm LM-AGREEMENT.

The algorithm is called ES- AGREEMENT, its pseudocode is given in Figure 4.
The pseudocode refers to a number of variables that we introduce next. A set
variable Nodes at a node p stores the names of all the nodes that the node p
has ever learned about, and a set variable Links stores the links known by p
to have transmitted messages successfully at least once, a link is represented
as a set of two names of nodes at the endpoints of the link. A set variable
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Algorithm ES-AGREEMENT

L. initialize: Nodes <- {name,}, Inputs < {(name,,input )}, Links < 0,
Unreliable < ()
2. for each port do
(a) send name, through this port
(b) if nameq received through this port then
i. assign name, to the port as a name of the neighbor
ii. add name, to Nodes; add edge {name,,name,} to Links
3. while there is an unsettled node in p’s connected component in the snapshot do
for each neighbor g do
i. send sets Nodes, Links, Unreliable, Inputs to ¢
ii. if a message from g was just received then
update the sets Nodes, Links, Unreliable, Inputs
by adding new elements included in this message from ¢
else add edge {namep,name,} to Unreliable
4. for each neighbor g do send sets Nodes, Links, Unreliable, Inputs to ¢
5. decide on the maximum input value at the second coordinate of a pair in Inputs

Fig.4. A pseudocode for a node p. A node q is considered unsettled by p if it is in the
same connected component as p, according to the snapshot at p, and there is no pair
of the form (nameq, ?) in Inputs,.

Unreliable stores the edges representing links known to have failed. Knowledge
about failures can be acquired in two ways: either directly, when a neighbor
is expected to send a message at a round and no message arrives through the
link, or indirectly, contained in a snapshot received from a neighbor. A node
stores all known initial input values of nodes ¢ as pairs (name,, input q) in a set
variable Inputs. The nodes keep notifying their neighbors of the values of some
of their private variables during iterations of the while loop in instruction (3) in
Figure 4. A node iterates this loop until all vertices in the connected component
of the node are settled, which is sufficient to decide. Once a node is ready to
decide, it forwards its snapshot to all the neighbors for the last time, decides on
the maximum input value in some pair in Inputs, and halts. An execution of
the algorithm starts with each node announcing its name to all its neighbors,
by executing the instruction (2) in Figure 4. This allows every node to discover
its neighbors and map its ports to the neighbors’ names. A node does not send
its input in the first round of communication. A node sends its snapshot to
the neighbors for the first time at the second round, by instruction (3) in the
pseudocode in Figure 4. A node p has heard of a node ¢ if name, is in the
set Nodes,. A node p has settled node ¢ once the pair (name,, inputq) is in
Inputs, and the node ¢ belongs to the connected component of p according to
its snapshot.

Theorem 5. Algorithm ES-AGREEMENT is an early stopping solution of dis-
connected agreement that relies on minimal knowledge, terminates within \ + 2
rounds and uses messages carrying O(mlogn) bits.
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7 Optimizing Link Use

We present an algorithm solving disconnected agreement that uses the optimal
number O(n) of links and messages of O(m logn) bits. We depart from the model
of minimal knowledge of the previous sections and assume that nodes know
their neighbors at the outset, in having names of the corresponding neighbors
associated with all their ports. We complement the algorithm by showing that
using O(n) links is only possible when each node starts with a mapping of ports
on its neighbors, because otherwise £2(m) is a lower bound on the link use.

The general idea of the algorithm is to have nodes build their maps of the
network that include the connected component of each node. An approximation
of the map at a node evolves through a sequence of snapshots of the vicinity of the
node. Such a snapshot helps to coordinate choosing links through which messages
are sent to extend the current snapshot to a bigger one. Input values could be
a part of node attributes of the vertices on such a map. A node categorizes its
incident links as either passive, active or unreliable; these are exclusive categories
that evolve in time. An active link is used to send messages through it, so a
node categorizes an incident link as active once it receives a message through it.
Initially, one link incident to a node is considered as active by the node, and all
the remaining incident links are considered passive. A link is passive at a round if
none of its endpoint nodes has ever attempted a transmission through this link.
A node transmits through an active port at every round, unless the node decides
and halts. It follows that if a node p considers a link active, which connects it
to a neighbor ¢, then ¢ considers the link active as well, possibly with a delay
of one round. Similarly, if a node p considers a link passive, which connects it
to a neighbor ¢, then ¢ considers the link passive as well, possibly for one round
longer than p. A node p detects a failure of an active link and begins to consider
it unreliable after the link fails to deliver a message to p as it should. For an
active link connecting a node p with ¢, once p considers the link unreliable then
q considers the link unreliable as well, possibly with a delay of one round. The
state of a node p at a round consists of its name, the input value, and a set
of its neighbors, with each incident link categorized as either passive, active, or
unreliable, representing this categorization of links by the node p at the round.
Links start as passive, except for one incident link per node initialized as active,
then they may become active, and finally they may become unreliable.

A snapshot of the network at a node represents the node’s knowledge of its
connected component in the network restricted to the active edges and the states
of its nodes. Formally, a snapshot of network at a node p at a round is a collection
of states of some nodes that p has received and stores. A snapshot allows to create
a map of a portion of the network, which is a graph with the names of nodes as
vertices and the edges representing links. This map can include the input values
of some nodes, should they become known. A connected component of a node
with other nodes reachable by active links is a part of such a map. Formally, the
active connected component of a node p at a round is a connected component,
of the vertex representing p, in a graph that is a map of the network according
to the snapshot of p at the round with only active links represented by edges.



12 B. S. Chlebus et al.

algorithm OL-AGREEMENT

1. initialize: Unreliable + 0, Active + {{p, ¢}} where ¢ is some neighbor,
Passive < set of links to p’s neighbors, except for the neighbor ¢ used in Active,
state < (name, input , Active,Passive, Unreliable),
round < 0, timestamp < (state,round)

2. repeat

(a) epoch  round, Snapshot + {state}

(b) repeat

i. round < round + 1, add timestamp to set Timestamps
ii. for each incident link a do
A. if o is in Active then send Timestamps through o
B. if « is mature in Active and no message received through «
then move « to Unreliable
C. if a message received through a then place o in Active
iii. for each received timestamp pair (state,y) do
A. add (state,y) to Timestamps
B. if y > epoch then add state to Snapshot
(c) until the active connected component is settled
(d) if the active connected component is extendible then
i. identify an outgoing edge as a connector
ii. if the connector is incident to p then place it in Active

until the active connected component is enclosed

set candidate, to the maximum input value in Snapshot

send pair (this-is-decision, candidate,) through each active incident link

decide on candidate),

S ot W

Fig.5. A pseudocode for a node p. In each round, node p checks to see if a pair of the
form (decision, z) has been received, and if so then p forwards this pair through each
active port, decides on z, and halts.

A node p sends a summary of its knowledge of the states of nodes in the
network to the neighbors through all its active links at each round. If p receives a
message with such knowledge from a neighbor, then p updates its knowledge and
the snapshot by incorporating the newly learned information. At each round, a
node p determines its active connected component based on the current snapshot.
We say that a node p has heard of a node q if the name, occurs in the snapshot
at p; the node p may either store some ¢’s state or ¢’s name may belong to a state
of some other node that p stores. A node p considers another node ¢ settled if p
has ¢’s state in its snapshot. A node p considers its active connected component
settled if p has settled all the nodes in its active connected component. If a node p
has heard about another node ¢ such that ¢ does not belong to the node p’s active
connected component, but it is connected to a node r in the active connected
component by a passive link, then the node p considers the link connecting q to r
as outgoing. If there is an outgoing link in p’s active connected component then
p considers its active connected component extendible, otherwise p considers its
active connected component enclosed.
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The algorithm is called OL-AGREEMENT, its pseudocode is in Figure 5. Each
node stores links it knows as unreliable in a set Unreliable, initialized to the
empty set. Each node stores links it considers active in a set Active, initialized to
some incident link. Each node stores passive links in a set Passive, which a node
initializes to the set of all incident links except for the one initially activated link.
All nodes maintain a variable round as a counter of rounds. In each round, a
node creates a timestamp pair, which consists of its current state and the value
of the round counter used as a timestamp. A node p stores timestamp pairs in a
set Timestamps. For each node ¢ different from p, a node p stores a timestamp
pair for ¢ if such a pair arrived in messages and only one pair with the largest
timestamp. These variables are initialized by instruction (1) in Figure 5.

The initialization is followed by iterating a loop performed by instruction (2)
in the pseudocode in Figure 5. The purpose of an iteration is to identify a new
settled active connected component; we call an iteration epoch. An epoch is
determined by the round in which it started, remembered in the variable epoch
by instruction (2a). The knowledge of an active connected component of a node p
identified in an epoch is stored in a set Snapshot, which is initialized at the outset
of an epoch to the p’s state by instruction (2a). This knowledge is represented
as a collection of states of nodes that arrived to p in timestamp pairs, with
timestamps indicating that they were created after the start of the current epoch,
as verified by instruction (2(b)iiiB). The main part of an epoch is implemented
as an inner repeat loop (2b). An iteration of this loop implements a round of
communication with neighbors through active links and updating the state by
instruction (2(b)ii).

An incident link in Active is mature if either it became active because a
message arrived through it or p made it active spontaneously at some round %
and the current round is at least ¢ 4+ 2. If a mature active link fails to deliver
a message then p moves it to Unreliable. A set variable Timestamps stores
timestamp pairs that a node sends in each message and updates after receiving
messages at a round. A set variable Snapshot is used to construct an active
connected component. Snapshot is rebuilt in each epoch, starting only with the
current p’s state. We separate storing timestamp pairs in a set Timestamps used
for communication from storing states in Snapshot to build an active connected
component, to facilitate a proper advancement of epochs in other nodes. We say
that node p completes the survey of the network by a round if p has settled
all the nodes in its active connected component according to the snapshot of
this round. If the active connected component is extendible, then p identifies
a connector which is an outgoing edge to be made active. We may identify an
outgoing edge that is minimal with respect to the lexicographic order among all
the outgoing links for a settled active connected component to be designated
as a connector. If a connector is a link incident to p then p moves it to the set
Active, by instruction (2d).

Theorem 6. Algorithm OL-AGREEMENT solves disconnected agreement in O(nm)
rounds with fewer than 2n links used at any round and sending messages of
O(mlogn) bits.
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Lower bounds for link usage. We now consider a setting in which the destinations
of ports are not initially known to nodes. For any positive integers n and m such
that m = O(n?), we design a graph G(n, m) with ©(n) vertices and ©(m) edges,
which makes any disconnected agreement solution to use @(m) links even if the
nodes know the parameters n and m. We drop the parameters n and m from
the notation G(n, m), whenever they are fixed and understood from context, and
simply use G. Consider any positive integers n and m such that m = O(n?). Let
graph G consist of two identical parts G; and G5 as its subgraphs. The parts
are [%]—regular graphs of (%1 vertices each. Without loss of generality, we can
assume that the number f%] is even, to guarantee that such regular graphs exist.
Graph G is obtained by connecting G; and G2 with (%1 edges such that each
vertex from G has exactly one neighbor in Gs. By the construction, graph G
has 2 [%] = O(n) vertices and ([2] +1) [2] = ©(m) edges. Let us assume now
that the destinations of outgoing links are not initially known to the nodes. This
means that ports can be associated with neighbors’s names only after receiving
messages through them. The following holds even if n, m can be a part of code.

Theorem 7. For any disconnected agreement algorithm A relying on minimal
knowledge and positive integer numbers n and m such that n < m and m < n?,
there exists a network G(n, m) with ©(n) nodes and O(m) links and an execution
of algorithm A on G(n,m) that uses ©(m) links.

Theorem 8. Let A be a disconnected agreement algorithm that uses O(n) reli-
able links concurrently when executed in networks with n nodes. For all natural
numbers n and A < n, there exists a network G with the stretch \ on which some
execution of algorithm A takes £2(n) rounds.

Corollary 2. If a disconnected agreement algorithm uses O(n) reliable links con-
currently at any time, when executed in networks of n nodes, then this algorithm
cannot be early stopping.

8 Conclusion

We introduced the problem of disconnected agreement in the model of networks
with links prone to failures such that faulty links may omit messages. This prob-
lem is of different nature than consensus or k-set agreement problems, which are
typically considered in connected communication network, see the full version of
the paper [8] for a related discussion. We measure the communication efficiency
of algorithms by the size of individual messages or the number of non-faulty
links used. This approach allows to demonstrate apparent trade-offs between
running time and communication. One could study dependencies of the running
time and the total number of messages exchanged or the total number of bits in
messages sent by nodes executing disconnected-agreement algorithms. Another
possible future direction of work concerns more severe link faults, for example
such that result in delivering forged messages. Studying stretch of specific fami-
lies of evolving networks is an open problem of independent interest.
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