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Abstract

The emergence and steady progress of large
language models (LLMs) has caused credulous
commentators to claim AIs had obtained super-
human ability on natural language processing
(NLP) tasks such as textual understanding and
reasoning. This work investigates this question
and explores the complementarity of skills
between humans and AI in answering complex
entity-seeking questions of diverse topics
and types. This work proposes a framework
that builds on top of multidimensional item
response theory (MIRT), a tool from the
psychological literature. MIRT learns repre-
sentations of both the difficulty of questions
and the skills of agents—both human and
computer—to predict their performance on
each question. Humans can answer questions
with fewer clues and higher accuracy than
most QA systems except GPT-3, where humans
only do better with more abstract clues that
require higher-order multi-hop reasoning. This
highlights both where future QA work can
best focus and how to build collaborative
human-computer QA systems.

1 Introduction

The natural language processing (NLP) community
has long focused on developing systems capable of
emulating human behavior, treating human perfor-
mance as a ceiling for NLP models. The latest wave
of LLMs has turned the discussion to supremacy:
models are purportedly acing tests (OpenAI, 2023;
Liu et al., 2023) that many humans find challeng-
ing.1 And there are indeed areas where computers
seem to have human-level ability.

For NLP, the most notable example of this was
IBM Watson’s tour de force performance Ferrucci
et al. (2010) on Jeopardy!. While Watson defeated

1As should hopefully be clear from the rest of the paper,
we are highly dubious of these claims, particularly on multi-
choice tests with copious study material online. But this is
outside the main scope of this paper.

the two human specimens on the stage, to the best
of our knowledge there has not been a thorough,
quantitative examination of the relative strengths
and weaknesses of human vs. computer on ques-
tion answering, particularly with the new panoply
of LLMs available in 2023. This paper seeks to
close that gap with an examination of human and
computer ability on question answering.

We choose question answering (QA) because it is
a complex natural language processing task requir-
ing contextual question understanding, retrieval of
relevant information, and synthesizing that informa-
tion to answer a question. This is in stark contrast
to problems such as sentiment analysis where both
humans and modern AI systems are independently
capable of saturating performance metrics on com-
mon benchmarks; moreover, answering tricky ques-
tions has captured the human fascination. Like Wat-
son, we use the trivia domain: questions are care-
fully crafted to probe the knowledge and reasoning
ability of human players. Unlike Watson, rather
than comparing one AI against two human/teams on
a couple dozen questions, we compare ~ 30 AI sys-
tems against 20 humans on thousands of questions.

Further elaborated in § 2.1, we use a QA for-
mat (He et al., 2016; Rodriguez et al., 2019) specif-
ically designed to enable effective comparison be-
tween QA agents. Like Watson, these are trivia
questions, but the questions we use are designed to
challenge even the strongest trivia whizzes (in con-
trast, Watson’s virtuoso human opponents could
easily answer the vast majority of the questions on
“normal” Jeopardy!).

To analyze the questions and answers, we build
on item response theory (IRT,§2.2), which was
first introduced in the field of Psychometrics (San-
tor and Ramsay, 1998). A classical IRT model,
which assesses agent skills and question charac-
teristics (difficulty, discriminability) based on bi-
nary response correctness, typically relies on a one-
dimensional representation. This approach lacks



the capacity to effectively represent the multimodal
nature of response distributions. Additionally, its
naïve multidimensional extension suffers from non-
identifiability, where different combinations of dif-
ficulty and skills can yield identical responses. Fur-
thermore, IRT’s reliance on question identifiers for
representation limits its applicability for assessing
difficulty of unseen questions.

To overcome these limitations, we propose a new
framework: Content-aware, Identifiable, and Mul-
tidimensional Item Response Analysis (CAIMIRA,
pronounced as Chimera) in Section 3. We apply
CAIMIRA to responses collected from trivia players
and a wide range of QA models (§ 4) over our ques-
tions, and provide a thorough analysis of question
and agent characteristics (§ 5).

Our analysis reveals five latent axes that models
characteristics of questions and agents in consider-
ation: Geography, Culture/History, Scientific Rea-
soning, Periphrastic Narrations, and Entity Speci-
ficity. There is a notable difference between human
and ai skill-set. Overall, humans are more con-
sistent across the axes than most QAmodels. All
QA systems, including GPT-4, struggle with the
questions that some humans ace at: one requiring
scientific reasoning and/or character descriptions
with indirect speech, or periphrasis. In contrast,
very-large scaled models make fewer errors than
humans for questions with high entity specificity,
which involves knowing historical or geographical
facts; more so, they also match the retrievers’ recall
scores just using their parametric memory. We also
find that questions strongly associated with static
facts (e.g. Geography), are generally easier, while
questions requiring scientific reasoning or indirect
speech have a higher degree of variance in question
difficulty, suggesting that the benchmarks involv-
ing latter can better discriminate more effective
agents from the worse ones.

2 Background and Preliminaries

This section describes our dataset, the source of
human question answering data, and preliminaries
of our methodology. These data are the input into
our CAIMIRA framework, which we develop in
Section 3.

2.1 QUIZBOWL: Where Trivia Nerds Practice

There are many QA datasets to choose from; Rogers
et al. (2023) enumerates a plethora in their thorough
review, delineating between “information seeking”

and “probing” questions (Min et al., 2020; Yu et al.,
2022). Our overarching goal is to identify similari-
ties and differences between system and human an-
swers; hence, we focus on probing-style questions
as they are more diverse, less prone to ambiguity or
false presuppositions, and are designed to be par-
ticularly challenging (at least for humans). More
importantly, we need questions with many exam-
ples of human answers. While humans do not sit
around answering Google queries (Kwiatkowski
et al., 2019) for fun, they do answer trivia ques-
tions for both for the intrinsic fun and to prepare
for future trivia competitions.

We draw on the dataset from He et al. (2016),
which is popularly known as “Protobowl”. This
dataset is based on the Quizbowl QA setting (Boyd-
Graber et al., 2012, QB). To our knowledge, it
is the only open source QA dataset that contains
records of many human players of varying levels
of expertise answering questions across different
categories.

Quizbowl (Rodriguez et al., 2019), the source
of questions for ProtoBowl, is a trivia game where
players can interrupt questions to answer and an-
swering earlier is better. This can better discrimi-
nate players’ skills because the clues progress from
hard to easy, culminating with a “giveaway” hint
at the end of the question. Often, the sequence
of clues reveals more information or helps disam-
biguate possible references and interpretations at
each step. In contrast to “all or nothing” QA, incre-
mental QB questions—progressively exposing an
agent with a series of clues of increasingly enriched
information—helps pinpoint the clues necessary
for user a to answer question q.

We collect multiplayer logs from questions
played across all categories. The best players
have deep knowledge and excellent lateral thinking
skills (Jennings, 2006). Player logs record question
metadata, including question category (e.g. His-
tory) and target player level (e.g., college novice),
time taken to answer the question, answer string,
and the correctness ruling by the “Protobowl” plat-
form.

2.2 A review of Item Response Theory (IRT)
We compare human users and AI systems in
Quizbowl QA setting by investigating their skills
and complimentarity on varied questions using
Item Response Theory (IRT), a framework typically
used to analyze human responses (ruled as correct
or incorrect) to a set of questions (or, “items”). It



is widely adopted in psychometrics (Morizot et al.,
2009), medical education (Downing, 2003), and
other fields for developing tests for human subjects.

In the context of this work, IRT assumes question-
answer pairs that form an evaluation set, subjects
spanning humans to QA systems, and responses
rulings of these agents. The objective of a simple
IRT system is to jointly model agent skills and ques-
tion characteristics that best predicts the responses
rulings (Baker and Kim, 2004).

We first review the simplest formulation of an
IRT model which uses a scalar to represent agent
skill (si) and question difficulty (dj):

p(Ui,j = 1 | si, dj) = �(si � dj), (1)

where �(z) , 1/1+e�z is the logistic function and
Ui,j 2 {0, 1} is the binary ruling of the ith agent’s
response to the jth question.

Existing work in NLP using IRT mainly relies
on simple uni-dimensional models (Lalor et al.,
2019) to represent question characteristics, which
is adequate in certain contexts. The model implic-
itly assumes a monotonicity of the parameters: a
History question qh with a higher difficulty than
a Science question qs (dh > ds) would entail that
agents who get qs right must also get qh right, no
matter their expertise. While this simplified as-
sumption is useful in some cases, it cannot capture
the diversity of questions and agent capabilities and
their matching.

Multidimensional Latent IRT (MIRT). To
relax the monotonicity assumption, and model
multi-factor characteristics, contemporary
work (Chalmers, 2012) proposes a multidimen-
sional discriminability vector ↵j of item-j to
interact with a multidimensional agent skill si.
The resulting MIRT model has two question
characteristics, i.e., a scalar difficulty dj and
an m-dimensional ↵j . The objective is then
computed as:

p(Ui,j = 1 | si, dj ,↵j) = �(si
|↵j � dj). (2)

The discriminability ↵j aims to capture how sen-
sitively the correctness probability changes with
each dimension of the agent skill si. Although ↵j

can be used to match the agent expertise on dif-
ferent dimensions, the difficulty dj is dimension
agnostic. Moreover, there are limited constraints on
the values in ↵j , allowing multiple or even infinite
different but observationally equivalent choices of

si, dj , ↵j , making them non-identifiable. Lastly,
the model’s reliance solely on unique identifiers,
instead of textual content, hampers its ability to
estimate latent characteristics of new questions, ne-
cessitating frequent model retraining—an unscal-
able approach. This limitation also disallows the
model to capture the effect of linguistic nuances of
the questions on its characteristics.

We address these shortcomings in our proposed
framework, CAIMIRA (§ 3), by extending both the
skill si and difficulty dj to be multidimensional
and incorporating enhancements to improve model
generalizability, interpretability and address the
non-identifiability.

3 Bootstrapping Item Response Theory
with CAIMIRA

This section describes our proposed approach—
Content-aware, Identifiable, and Multidimensional
Item Response Analysis (CAIMIRA)—that ad-
dresses the limitations of MIRT (§ 2.2) by making
three primary changes. In particular, we (i) replace
discriminability ↵j with a normalized weight-
vector relevance rj that aggregates the differences
between skill and difficulty (si � dj) over the di-
mensions that are most relevant to the question,
to a scalar ((si � dj)

|rj), (ii) mean-shift difficulty
to zero, which resolves the identifiability issue be-
tween difficulty and skills, and (iii) learn a transfor-
mation from the question’s dense representations
to its relevance and difficulty vectors, achieving
content-awareness. We decompose the information
captured jointly in MIRT’s item characteristics dis-
criminability ↵j and a scalar difficulty dj (which
performs as an intercept in Eq. (2)) into more con-
trolled multidimensional characteristics relevance
rj and difficulty dj in CAIMIRA. The CAIMIRA
objective is:

p(Ui,j = 1 | si, rj,dj) = � [(si � dj)
|rj] (3)

where si, rj,dj 2 Rm are agent skills, and question
characteristics respectively.

3.1 Introducing question relevance rj

relevance rj is a measure of each latent-factor’s
contribution to the overall answerability of the
jth question. It aggregates the m-dimensional la-
tent scores—differences between si and dj to a
scalar value (si � dj)

|rj, that is used to compute
p(Ui,j = 1). As part of regularization, it is struc-
tured as a probability distribution across m latent



Figure 1: A pipeline of CAIMIRA. It predicts the probability of agent-i correctly answering question-j using a
model in Eq. (3), where the question’s relevance rj and difficulty dj are multidimensional and computed by linear
transformations of the question embedding Eq

j (§ 3.3), and the agent skill si is extracted from a learnable agent
embedding matrix Ea. Unlike MIRT, rj is a probability distribution computed from the raw reference r0j and
improves the interpretability of the multidimensional model (§ 3.1); dj is achieved by zero centering of the raw
difficulty dj, which addresses the identifiability issue of si and dj in si � dj (§ 3.2).

factors, ensuring that the sum of the values equals
(
Pm

k=1 rjk = 1), and each value is nonnegative.
This is achieved by applying softmax function to
the raw relevance r0j (Figure 1).

The probability-simplex constraint to rj im-
proves the interpretability of the latent scores
(si � dj), and prevents confounding when com-
paring agent-skills and question-difficulties. For in-
stance, in a two-dimensional latent space, consider
a moderately difficult history question. Two agents
with identical history skills but differing scientific
reasoning skills should have an equal likelihood of
answering correctly if the question predominantly
tests history knowledge. This is realized by assign-
ing a high relevance to the history dimension (near
1) and a low relevance to the scientific reasoning
dimension (near 0).

3.2 Zero Centering of difficulty dj

The difference between the agent skill and the ques-
tion difficulty (si � dj) determines the correctness
probability, not just their numerical values, allow-
ing different optimal choices of skill si and diffi-
culty dj that produce the same probability, i.e., si
and dj are non-identifiable. To alleviate this issue,
we regulate the raw difficulty d0

j of each ques-
tion qj to have a zero mean over each dimension
without affecting the correctness probability, i.e.,
dj = d0

j�1/nq

Pnq

j=1 d
0
j , where nq is the total num-

ber of questions. This limits the range of skills and
difficulty, and also allows us to compare the agent
skills and question difficulties across the latent di-
mensions, which was harder in MIRT and required

additional post-processing steps.

3.3 From MIRT to Content-Aware CAIMIRA

The CAIMIRA framework extends MIRT by making
use of the actual question texts (content-aware)
to compute their characteristics and handle new
questions at inference (cold-start friendly). It learns
linear transforms from the its embedding vector Eq

j
to its raw characteristics r0j and d0

j, which are then
normalized to obtain the final characteristics rj and
dj. Mathematically,

r0j = WR Eq
j + bR, d0

j = WD Eq
j , (4)

rj = softmax(r0j), dj = d0
j �

1

nq

nqX

j=1

d0
j, (5)

where WR,WD 2 Rm⇥n and bR 2 Rm. They
and the embedding matrix Ea of agent skills (si =
Ea

i ) are the parameters we train for CAIMIRA.
The embedding Eq

j is a high-dimensional repre-
sentation of the question, which can be obtained
on-fly using a pre-trained transformer encoder like
BERT, or a sparse tf-idf representation.

4 Experimental Setup

In this section, we describe the process for gath-
ering the responses from human agents and QB
systems for our questions, and determining their
rulings. We also describe our process to analyze the
latent characteristics learnt by CAIMIRA through
these responses.



Interpretation of CAIMIRA’s Latent Factors thourgh Linguistic Features and Topic Clusters

Figure 2: To understand what interpretable features that contribute to latent factors, we turn to Logistic Regression.
We construct a one-vs-all binary classification task for each latent factor. A question is labelled positive for kth
latent factor if the corresponding rjk > 0.6. We report the model fit and the statistically significant features that
contribute to it. This shows that predicting the relevance just from the SBERT embeddings is effective.

Data Source. Questions in protobowl are multi-
sentence clues about a certain entity or a concept
(the answer) that the player need to respond with.
Protobowl logs maintains this clue-level informa-
tion for each question. We consider these as differ-
ent entries in our datasets to learn if providing more
clues has a similar effect on machine responses as
that of trivia experts. Typically, a question on av-
erage has 4 clues. Consider a question q31 with
3 clues. We maintain three entries in our dataset
for this question, one corresponding to the ques-
tion text till the end of each clue: [q31_1, q31_2,
q31_3]. Player responses to q31 after the second
clue are recorded under q31_2. To align with mod-
els prompted with all clues, we backfill q31_1 re-
sponses with the q31_2 response if q31_2 is incor-
rect, and subsequent unseen clues are backfilled
with q31_1 responses if q31_1 is correct. In total,
we gather 3042 entries in our dataset.

Human players. Raw human responses are
sparse: many players only answer a few dozen
questions, not having a strong overlap, making it
hard to contrast human–AI complementarity. We
prune the logs and retaining questions that have at
least 100 human responses and backfill the entries.
We consider 5 certain anonymized human players
who have answered at least 1500 questions each.
We also consider groups of multiple human players
as agents. A grouped human agent behaves like a
single agent, but is composed of multiple human

players. The final response of a grouped human
agent is determined by the majority response of
the players in the group if more than one player at-
tempts that question. If multiple players attempt the
question and there is no majority, we randomly se-
lect one of the responses.2 The grouping also helps
reduces the sparsity of human responses keeping
higher amount of overlap in the set of attempted
questions among human agents. This also enables
us to measure the effect of group size on “agent”
skill. To determine the ruling of a grouped-human
agent, we take the majority response as their final
guess and evaluate it against the answer. In this
study we consider group sizes of 1, 5, 10 and 15,
and sample 5 of each, making a total of 20 human
agents.

4.1 AI agents

We choose a diverse set of QA systems that span
a range of complexity and training sets to capture
skill differentials between models. Choosing var-
ied systems not only mimics the novice-expert di-
vergence in humans but also gives us insight into
the individual strengths of particular training and
modeling paradigms. We briefly introduce the
model-based agents below that we use to gener-
ate responses for our dataset.

2This is a naive group setting. We leave the exploration of
more sophisticated real-like group settings to future work.



Retrievers as QA agents. Our retrievers, which
index Wikipedia documents, respond with the top
k documents (where k = 1, 3, 5, 10) most relevant
to the question. We employ two types: dense and
sparse. The dense retriever, CONTRIEVER (Izac-
ard et al., 2021), is pretrained via unsupervised
contrastive learning on a mix of Wikipedia and CC-
Net data, then fine-tuned on MS-MARCO (Cam-
pos et al., 2016). The sparse retriever utilizes the
BM25 algorithm (Robertson and Zaragoza, 2009)
and Anserini’s implementation and index (Lin et al.,
2021). We also test a title-retriever, assuming the
document title as the query answer. Retrievers are
evaluated on recall-based accuracy, with a point
scored if the answer appears within the top k doc-
uments for context-retrievers, or in the title of the
top k documents for the title-retriever.

Large Language Models (LLMs). We evaluate
an array of LLMs, grouped below by their training
/ scale. All models are evaluated in a zero-shot
manner (no finetuning over QB questions).
Base Models: The models are exclusively
trained on an unsupervised CausalLM objective:
OPT (Zhang et al., 2022), GPT-Neo (Black et al.,
2021) and Pythia (Biderman et al., 2023)
Benchmark Instruction Tuned (IT) Models: LLMs
fine-tuned on tasks with natural instructions over
each benchmark; OPT-IML (Iyer et al., 2022), T0,
T0pp (Sanh et al., 2021), Flan-T5 (Chung et al.,
2022) and Flan-UL2 (Tay et al., 2022).
Very Large-Scaled Models: Llama-2 (70 billion
parameters) (Touvron et al., 2023) and Falcon (40
billion parameters) (Almazrouei et al., 2023) and
its instruction tuned variant. Due to limited in-
formation on their training data mixtures, direct
comparisons with other models are challenging.
Nevertheless, we include these large-scale models
to gauge their performance relative to humans.
Closed-Sourced Model-Based APIs: OpenAI’s
ChatGPT (Ouyang et al., 2022) and GPT-4
Turbo (OpenAI, 2023)

None of the Transformer-based models, includ-
ing those pretrained on QA datasets like TriviaQA,
are specifically finetuned on QB; we adhere to the
standard in-context learning practice (Brown et al.,
2020),providing a task instruction followed by con-
catenated QA pair demonstrations.

Retriever-augmented Generative Models. Fol-
lowing the RAG paradigm from (Lewis et al., 2020)
for open-domain QA, we first retrieve Wikipedia
documents relevant to the questions, then employ a

generator model for short answer generation. Our
retrievers include dense CONTRIEVER and a sparse
passage retriever (BM25). For the retriever, we use
both a dense retriever (CONTRIEVER) as well as
a sparse passage retriever that uses BM25 to en-
code documents. The generator models used are
FlanT5-XL (Chung et al., 2022), constrained by
a 512-token context limit and utilizing the top 3
documents, and Flan-UL2 (Tay et al., 2022), an
instruction-tuned UL2 with a 2048-token receptive
field, capable of handling all 10 documents.

Answer Equivalence. Traditional exact match
metric often misses alternative answer forms that
are actually correct (Bulian et al., 2022). To better
handle this, we adopt a fuzzy match evaluation us-
ing multiple answer aliases (Si et al., 2021) where
we set a threshold on the character-level match rate
between the predicted answer and gold answer and
judge all predictions above the threshold as correct.
The threshold is tuned against human judgments
on a small development set.

4.2 CAIMIRA Setup

We train a 5-dimensional CAIMIRA model to
learn the latent characteristics of questions and
agents. To get question embeddings Eq

j , we use
SBERT (Reimers and Gurevych, 2019) fine-tuned
from MPNET (Song et al., 2020). We also include
the answer and the first paragraph of its related
Wikipedia page in the text input to SBERT. This
approach helps in capturing a more comprehensive
context of the question. The trainable parameters
are fit using mini-batch stochastic gradient descent
to minimize the cross entropy loss between the
predicted likelihood p(Ui,j) and the true ruling of
the response Ui,j as in Equation 3. We use Adam
optimizer (Kingma and Ba, 2014) without weight
decay, and with a learning rate of 0.005.

Interpretation of Latent Factors We employ
Logistic Regression to establish an interpretable
link between question text and its characteristics
learnt by CAIMIRA, using categorical topic cluster
labels, clue counts, and extensive linguistic features
(as per (Lee et al., 2021)) as inputs. This approach
outputs a probabilistic relevance measure, effec-
tively connecting complex linguistic aspects with
practical question relevance assessment. To inter-
pret the relevance rj, we adopt the approach from
(Gor et al., 2021), performing logistic regression
analysis for each latent factor separately, resulting



Figure 3: Relevance radar plot for questions clustered in the BERT-embedding space. The color of the plot represents
effective difficulty rj|dj of each cluster.

in binary labels for every question for each dimen-
sion.

Our features, derived from a KMeans cluster-
ing 768-dimensional SBERT embeddings, result
in 13 distinct clusters (Figure 2) for nuanced ques-
tion categorization. Labeled LDA (Ramage et al.,
2009) generates topic-specific words for each clus-
ter, enriching interpretability. The array of lin-
guistic features span advanced semantic, discourse-
based, and syntactic elements, providing a rich
and multi-faceted representation of the questions.
While inspecting dimension k, the output label is
1 if rjk > 0.6 and 0 otherwise. Figure 2 lists the
most contributing features for each dimension that
is statistically significant.

5 Question and Agent Analysis

In this section, we lay out interpretations of the la-
tent dimensions of CAIMIRA using relevance in sub-
section 5.1, and analyze patterns in question diffi-
culties and agent skills in subsection 5.2.

5.1 What are the latent factors?

Figure 2 highlights key attributes of latent factors
in our analysis. The first dimension is chiefly char-
acterized by topics in Geography (Political or Ge-
ological), with a positive correlation to the Smog
Index, indicating complexity in text readability due
to sentence length and polysyllabic words. Com-
mon Geography terms like “attempted”, “civilians”,
and “foreigners” are significant contributors.

The second dimension, History and Culture,
predominantly involves questions about Authors,
Composers, Artists, and Leaders. Notably, there’s
a higher presence of Entity mentions, reflecting the
focus on individuals and their works.

The third axis, Scientific Reasoning, centered
around scientific phenomena and concepts (e.g.,

“slope” in mathematics), differs in question style as
well. Despite a higher count of noun phrases, the
lower number of entity mentions and increased use
of multi-sense words poses a challenge to retrieval
systems and smaller LLMs. For instance, The ques-
tion expecting “Matter” as the answer is phrased as

“The density parameter for the non-relativistic form
of this falls off with the cube of the scale factor.”

The fourth latent axis, though related to liter-
ary works on surface form, is majorly governed by
periphrasis, or indirect speech, often describing a
narrative without direct references to named enti-
ties or key phrases. Questions associated with this
axis predominantly involve some form of narra-
tion, typically in a fictional realm: plot of a literary
work, events of a music video. This style, involving
higher verb variation and contextual diversity but
lower Smog Index, is a common source of difficulty
in Quizbowl, for both humans and machines. (Ro-
driguez et al., 2019).

The final dimension, Entity Specificity, pertains
to questions specifically targeting a particular en-
tity, and also involving well represented and search-
able key phrases. Few QB questions score highly
on this axis. Retrievers and systems based on them
exhibit greater proficiency in this area Figure 4.

5.2 Interpretation of Agent skills
To analyze human and QA model skills across latent
dimensions and correlate them with accuracy, we
cluster question difficulty vectors using Kmeans
and calculate average agent accuracy per cluster.
Clusters’ relevance to the latent dimensions and
agent accuracy are depicted in Figure 3 and ??,
respectively.

Out of 10 difficulty clusters, some like Science
and periphrasis contain both challenging (Clus-
ters 8 and 4) and easier (Clusters 9 and 5) subsets,
with AI systems, including GPT-4, struggling in the





human-AI complementarity where we aim to com-
bine the strengths of both humans and AI systems.
One common application for such collaboration
is creative writing. Lee et al. (2022) recruited hu-
man writers to interact with GPT-3 for collabo-
rative writing, where humans can get suggestions
from GPT-3 and make further edits. Padmaku-
mar and He (2021) deploy a language model in the
loop for modifying user-selected spans to make the
draft more descriptive and figurative. Apart from
leveraging the “writing” capabilities of language
models, in a question-answering context, Feng and
Boyd-Graber (2018) recruit experts and novices
to play trivia games with AI systems as team-
mates. Given model predictions, humans needed
to decide when to trust the model outputs. He
et al. (2022) studied the information retrieval task
with human-AI collaboration, where humans are
given model-generated queries to help them search
through Wikipedia for answers. Our work differs
from these papers in two important aspects: firstly,
we study how to best combine both human and
model predictions by leveraging their complemen-
tary skill set rather than letting humans act on the
model predictions; secondly, we attempt to model
and understand human skills as compared to mod-
els, which is largely ignored in previous work, but
is crucial for gaining insights into human-AI com-
plementarity.

7 Discussions and Conclusions

Our study, utilizing the proposed CAIMIRA frame-
work, provides insights into how humans and AI
systems, complement each other in QA tasks. GPT-4
exhibits impressive proficiency in tackling straight-
forward questions or complex inquiries that benefit
from ample contextual information, closely mir-
roring human performance. However, when con-
fronted with intricate questions marked by indirect
speech and a scarcity of clues, GPT-4 encounters
challenges. Similarly, retriever-based systems ex-
cel when presented with a wealth of clues but falter
in scenarios where indirect speech lacks sufficient
contextual detail.

In stark contrast, human participants demon-
strate remarkable prowess in deciphering single-
clue questions laden with indirect speech, surpass-
ing the capabilities of GPT-4. It highlights the need
for datasets that evaluate a model’s ability to grasp
implicit context, especially as NLP evolves to-
ward conversational agents and real-world problem-

solving.
Furthermore, a compelling argument emerges for

instructed-tuned and RLHF-based models, which
purportedly exhibit human-like behavior. However,
they still fall short in invoking the intuitive reason-
ing that humans possess. Humans have the ability
to seek additional context, without being instructed,
when their initial hypotheses fail, a skill not yet
present in AI systems yet. This gap emphasizes the
importance of further research in this area.

Overall, these findings underscore the intricate
interplay between human intuition and AI’s analyt-
ical capabilities when it comes to comprehending
and responding to complex language, highlighting
the progress made in AI while acknowledging the
unique strengths of human cognition.
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