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Abstract

Large stores of digital video pose severe computational challenges to existing video analysis algorithms. In
applying these algorithms, users must often trade-off processing speed for accuracy, as many sophisticated and
effective algorithms require large computational resources that make it impractical to apply them throughout long
videos. One can save considerable effort by applying these expensive algorithms sparingly, directing their application
using the results of more limited processing. We show how to do this for retrospective video analysis by modeling
a video using a chain graphical model and performing inference both to analyze the video and to direct processing.
To accomplish this, we develop a new algorithm to direct processing. This algorithm approximates the optimal
solution efficiently. We apply our algorithm to problems in background subtraction and face detection and show in
experiments that this leads to significant improvements over baseline algorithms.
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Video processing, resource allocation, graphical models, optimization, background subtraction, face detection,
dynamic programming

I. INTRODUCTION

New technology is giving rise to large stores of digital video. Their size has increased much faster than
the computational resources needed to effectively process them. At the same time, as we develop increas-
ingly sophisticated and effective vision algorithms, these also demand greater computational resources.
Consequently, it is important to develop strategies for applying vision algorithms with greater efficiency
to video data.

The scope of the problems we face is evident. Surveillance systems can contain thousands of cameras
and a large amount of video. Real time processing of huge data sets is extremely challenging; retrospective
or forensic analysis creates even greater problems when one must rapidly examine hours or days of video
from thousands of cameras. For example, British police were required to examine 80,000 CCTV tapes
from a network of 25,000 cameras [1] to discover the image of a bomber after the terrorist attack in
London in 2005 [2]. Automatic processing is needed to speed up this analysis, but one cannot hope to
process all available video in such cases; it is essential to direct processing to portions of video most
likely to be informative.

In this paper, we develop a new method for controlling processing, so that available resources are
directed at the most relevant portions of the video. In our proposed approach, we initially perform some
inexpensive processing of a video by applying a cheap but less accurate algorithm combined with sparse
application of a more expensive and accurate algorithm. We then use an inference algorithm to determine
to which frames we should apply further expensive processing.

Our first contribution is to combine information from cheap and expensive features, using a graphical
model for video. This is a second-order Markov model with a node for each frame, and a state variable
that indicates whether this frame is relevant to our current query. For example, the state might indicate
whether the frame contains a visible face. Each state has two potential observations. The first observation
is always given; it is obtained by running a cheap algorithm on all frames. For example, cheap background
subtraction might provide a clue as to whether people are currently visible. The second observations is
only obtained if a more expensive and accurate algorithm is applied to that frame (in this example, a face
detector). As in a Hidden Markov Model (HMM), each observation directly depends on the current state.
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In addition, in our model each observation directly depends on the previous observation. This captures
the phenomenon that errors made by an algorithm are often correlated from one state to the next. This
model allows us to effectively combine information from cheap and expensive algorithms to improve
performance.

Our second and primary contribution is a new algorithm that uses this model to determine where in a
video to apply the expensive algorithm. We build on prior work by Krause and Guestrin [3] that shows
that one can use a dynamic programming algorithm to determine the optimal places at which to make
observations in a first-order Markov chain. While this work is readily extended to our graphical model,
it requires O(B2n3) computation time, where n is the number of nodes in the Markov chain, and B is
the number of places at which we will apply the expensive algorithm. In our setting n is the number of
frames in the video and B is also O(n), so this algorithm is not practical for video analysis.

We solve this problem with a new algorithm that produces an approximately optimal answer efficiently.
More precisely, we make an additional assumption about the convexity of the reward from observations
as the budget increases, a law of diminishing returns that we show is valid in practice. Then, we show
that by applying part of the total budget to make observations at a uniform step size, we can find a batch
allocation of observations that will be at least as good as the optimal allocation, and that requires a modest
amount of computation. This batch allocation makes use of rewards computed by Krause and Guestrin’s
algorithm, applied to small sections of the video.

Our approach is quite general, and can be applied to a wide range of scenarios in which multiple
algorithms are combined into a single system. Our final contribution is to experimentally demonstrate
the value of this algorithm in two very different vision tasks: background subtraction and face detection.
First, to perform background subtraction efficiently we combine a very cheap background subtraction
algorithm that uses frame differencing [4] with a more expensive background subtraction algorithm using
Gaussian mixture models [5]. Second, we use background subtraction to trigger face detection. We show
that our algorithm can be used to significantly improve performance of systems that combine these
algorithms. In particular, our inference algorithm requires the idealized assumption that the expensive
algorithm determines the state perfectly. This is never true in practice, but we show that in real-life
settings this assumption holds sufficiently well that our algorithm produces excellent results. We also
show that a relatively poor cheap algorithm can be effectively combined with an expensive algorithm to
improve system performance.

The organization of our paper is as follows. In Section II we discuss related work. In particular, we
describe a dynamic programming algorithm [3] that determines the optimal place to make observations.
We then describe our new algorithm in the context of Markov Chains in section III. Then, we introduce
our graphical model for video analysis and describe how to apply the new algorithm to this model in
section IV. In section V, we show experiments in video processing.

II. PRIOR WORK

In this section we first review background subtraction and face detection algorithms that are used in our
experiments. Next, we describe work on video processing that deals with issues of resource constraint.
We then discuss work on feature and label acquisition. Finally, we describe the algorithm by Krause and
Guestrin [3] in detail.

A. Background Subtraction
Background subtraction is a technique to detect moving objects in video, usually taken by static cameras.

This typically involves building a background model to classify whether a pixel is in the background or
not. We describe two methods in detail since our experiments use these two techniques.

In frame differencing (FD), the background model of the frame at time t, ft, is the frame in the previous
time step, ft−1 (Jain and Nagel [4]). Given a threshold, Th,

|ft − ft−1| > Th (1)
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gives the foreground region of ft. This technique may not be able to identify the interior pixel of a large
and uniformly-colored moving object. However, it requires very little computation.

Stauffer and Grimson [6] use a mixture of Gaussians (MoG) for the background model of each pixel.
Let ~x be the value of the pixels, with the assumption that each dimension of ~x is independent. The
probability distribution of ~x is modeled as

P (~x) =
M∑
k=1

ωkN(~µk, σkI), (2)

where M is the number of Gaussian components, ωk is the weight of the kth component, N(~µk, σkI)
is a Gaussian distribution with mean ~µk and covariance matrix σkI , where I is the identity matrix. This
model is for both foreground and background pixel values. With the assumption that higher and more
compact distribution is more likely to be the background, MoG selects components whose ratio between
its peak value and standard deviation is greater than a certain threshold. Finally, it uses pixel values from a
reasonable period of recent time to update the model parameters. A pixel value is assigned to a component
by an on-line K-means approximation and the parameters, ωk, ~µk, and σk are updated by some online
cumulative average formulas. This method is much more sophisticated than the FD method, and requires
significantly more computational resources. Zivkovic [5] improves this work by using recursive equations
that can also simultaneously select the appropriate number of components in the mixture model for each
pixel. We call this method the improved adaptive Gaussian mixture model (IAGMM), and we use it in
our experiments.

B. Face Detection
Face detection refers to the problem of determining whether an image contains faces, and determining

the location and extent of each faces. Yang et al. [7] provide a comprehensive survey of various face
detection methods. Of these methods, we describe the work by Viola and Jones [8] in detail because our
experiment uses this technique.

Viola and Jones introduce a now widely used object detection scheme, applying it first to face detection.
With integral images for fast computation, they use a set of feature that are similar to the coefficients in
Haar wavelet transforms. They then construct classifiers by selecting a small number of important features
using Adaboost. Finally, the scheme detects faces inside an image region by applying classifiers in a
cascade. At each level of the cascade, one uses a classifier with a very low false negative rate, although
false positives might be high. Subsequent classifiers are run only when previous classifiers indicate a
positive result. One can think of this as a methodology for combining classification algorithms, which is
also our topic. However, while very effective, this approach requires a variety of cheap classifiers with a
range of performance characteristics, and is hard to apply when one wishes to combine the results of a
few specific algorithms. Lienhart and Maydt [9] extend this work by adding an efficient set of 45◦ rotated
features to the original feature set and by using a new post-optimization procedure for a given boosted
classifier. Their work shows significantly lower false alarm rate, and we use this method to detect faces
in our experiment.

C. Computational Performance in Video Processing
There is a vast literature on video processing. Performance is often an issue, as many effective algorithms

are too slow to run in real-time, and even fast algorithms may require enormous amounts of time when
used to perform retrospective analysis of large quantities of previously taken video. One common strategy
is to run cheap, lower level algorithms such as motion detectors to determine when something interesting
might be happening. When these detect motion, higher level algorithms are then deployed. In a variant
of this, Krishna et al. [10] propose an algorithm switching approach to handle background subtraction.
The system starts by processing each frame with a uni-modal background subtraction algorithm. When



4

the system shows poor segmentation quality, it switches to use the MoG model. The system considers
when to apply the expensive algorithm in real time, and it simulates the trigger of algorithm switch from
an external source, such as a motion sensor or a light sensor.

Barotti et al. [11] present a closely related work that uses algorithm switching to handle lighting
changes and solve bootstrapping problems in motion detection. When the system detects sudden global
illumination variation, the motion detection switches from background subtraction using a single Gaussian
to FD. The latter algorithm requires smaller computational resources, adapts quickly to lighting changes,
and does not need any bootstrapping. The system then re-initializes the single Gaussian model to handle
the bootstrapping problem, and returns to the original configuration when initialization completes. This
work uses the advantages of the cheap algorithm to handle the drawbacks of the expensive algorithm in
a particular application.

An alternative approach is to use special-purpose hardware or high performance computing to run
expensive algorithms efficiently. A number of researchers consider using graphics hardware to accelerate
computer vision algorithms. For example, real-time stereo algorithms suitable for implementation on
Graphics Processing Units (GPU) are proposed in [12], [13], and [14]. Yang and Welch [15], and Griesser
et al. [16] introduce algorithms to do background subtraction in real time using a GPU. Heymann et al.
[17] and Sinha et al. [18] use a GPU to detect and track image feature points in real time. Fung et al. [19]
introduce openVIDIA which provides a library and API for using single or multiple GPUs to accelerate
computer vision and image processing. Besides GPUs, there are many other hardware solutions to efficient
computation of expensive algorithms. For instance, implementations of image feature detectors using a
Field-programmable gate array (FPGA) are discussed in [20] and [21]. Seinstra et al. [22] introduce
Parallel-Horus which allows researchers in multimedia content analysis to implement sequential programs
in Grid computing environment.

In general, while these methods are of interest, they are largely orthogonal to our concerns in this paper.
In particular, if we can gain greater efficiency by directing processing of expensive algorithms in a video,
these can be readily combined with hardware solutions that speed up these algorithms.

D. Feature and Label Acquisition
In closely related work, the machine learning community has looked at the problem of determining

which features to acquire in order to correctly classify instances. In this setup, instances are described
by a set of features each of which has an associated acquisition cost, and a total budget limits feature
acquisition. Some example strategies are [23], [24]. The biggest difference between this line of work and
ours is that the feature-value acquisition community treats each instance as independent; the decisions for
one instance are made independent of the decisions made for the other instances. However, in our case,
the information we want to extract in nearby frames of video is highly correlated, and we should be able
to do better if we take these correlations into account.

Another related area of work is label acquisition: instead of obtaining features, we can query an oracle
to determine an instance’s label directly. Given a network of instances, such as a sequence of frames, a
network of friends, etc, acquiring the label for an instance helps in correctly classifying the rest of the
network. The question is then which instances should be queried in order to get the best performance on
the remaining ones. Rattigan et al. [25] queries the instances that are structurally important, e.g. highly
connected instances, central instances, etc. Bilgic and Getoor [26] build a classifier that can predict which
instances might be misclassified and query a central instance only if it is predicted as misclassified. Even
though these methods have been quite successful in practice, they are heuristic approaches and have no
theoretical guarantees (partly because they are applicable to general networks). However, for the class of
chain graphical models such as HMMs, Krause and Guestrin [3] show how to solve the label acquisition
problem optimally. We describe their work next.
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E. Optimal Observation Plans
Krause and Guestrin [3] present an optimal algorithm for selecting observations for the class of chain

graphical models. Since we build on this method, we now describe it in some detail, although we consider
a special case of their work that is suitable to our problem. A set of random variables S = {X1, · · · , Xn}
forms a chain graphical model if whenever i < j < k, Xi is conditionally independent of Xk given Xj .
For example, consider a HMM unrolled for n time slices. Then the n hidden state variables form a chain
graphical model. Suppose that for each of these variables, it is possible to observe its hidden state at a
fixed cost. This corresponds, in our problem, to the supposition that an expensive algorithm is extremely
accurate, and reveals the hidden state. They also suppose that observing variable Xj has a local reward
Rj . In particular, the expected local reward is

Rj(Xj|O) ,
∑
o

P (O = o)Rj(P (Xj|O = o)), (3)

which is an expectation taken over all possible values o for the observed variables O. Many different
functions, such as entropy, are applicable for this local reward. They describe the max-marginal:

Rj(P
max(Xj|O)) =

∑
o

P (o)[Pmax(x∗j |o)− Pmax(x̄j|o)], (4)

where xj is the value of state variable Xj , x∗ = argmaxxj
Pmax(xj|o), and x̄ = argmaxxj 6=x∗P

max(xj|o).
This reward is very useful for classification purposes [3], and we use it in all examples and experiment
in this paper. In our case, since we have a two-class problem, this reward is equivalent to considering the
expected number of correct classifications.

Assume that there is a fixed budget B for selecting observations, the formulation of the optimization
problem is:

Select observations to maximize

J(O) = R(O) =
∑
j

Rj(Xj|O) (5)

Subject to

b ≤ B (6)

where j is the index over the state variables S, b is the number of observed state variables O, and B
is the total budget for the whole chain. Also, observations can include variables at any time step in the
chain since we consider processing a video after it is recorded. Krause and Guestrin refer to this as the
smoothing problem.

In addition, the conditional independence property in the chain graphical model simplifies the local
reward. With this property, the local reward is simply R(Xj|O) = R(Xj|Xj) in the case that Xj ∈ O. In
the case that Xj is not in O, we have R(Xj|O) = R(Xj|Oj), where Oj is the subset of O containing the
closest ancestor and descendant of Xj in O. This is the key insight for efficiently solving this optimization
problem.

Furthermore, they consider both a conditional planning version of this problem, in which the best
observation is made and then the optimal next observation is computed, and this is repeated k times, and
a batch version of the problem, in which one decides on the locations of the best observations with a
total cost of k first, and then makes these observations. We only consider the conditional planning variant
here since it in general produces the best performance.

Krause and Guestrin [3] solve this problem by noting that once an observation is made, it splits the
problem of determining future observations into conditionally independent components before and after
the observations. This allows for a dynamic programming solution. They define a value, Ja:b(xa, xb; k)
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which denotes the reward produced by the optimal plan with a budget of k over the interval from variables
Xa to Xb, given that these variables have been observed to have states xa and xb. Then they note that
Ja:b(xa, xb; k) can be recursively computed given the value of Jc:d(xc, xd; l) for all a ≤ c ≤ d ≤ b and
l < k. For the case of smoothing and conditional planning, the recursive formula is

Ja:b(xa, xb; k) = max{Ja:b(xa, xb; 0), max
a<j<b

{
∑
xj

P (Xj = xj|Xa = xa, Xb = xb){

Rj(Xj|Xj = xj) + max
0≤l≤k−1

[Ja:j(xa, xj; l) + Jj:b(xj, xb; k − l − 1)]}}}, (7)

where the base case is

Ja:b(xa, xb; 0) =
b−1∑

j=a+1

Rj(Xj|Xa = xa, Xb = xb). (8)

To handle the case that Xa and Xb are not always observed in advance, the algorithm adds two independent
dummy variables, Xa−1 and Xb+1, which have no reward and observation cost but have default states, to
the head and tail positions of the chain. Thus the optimal reward for a chain of n variables with a budget
of B is computed as J0:n+1(x0, xn+1;B). Assuming that the probabilities to evaluate local rewards have
been computed and computing local rewards takes constant time, we conclude from Theorem 2 in [3]
that the complexity of this algorithm is

O(B2n3). (9)

III. EFFICIENT OBSERVATION PLANS FOR CHAIN GRAPHICAL MODELS

We now present a novel algorithm to find observation plans that is efficient enough to apply to problems
with very large values of n. While the new algorithm only approximates the optimal one, it is much faster
for domains such as ours. In the next sections, we will show how this algorithm can be applied to video
processing. Our algorithm first uses part of the total budget to make uniform observations with a certain
step size. This splits the Markov chain into M consecutive intervals where the first and last variables of
each interval are observed. Because of the Markov assumption of the chain model, this breaks our problem
up into a series of smaller problems of the same size. These problems are not independent, however, since
the remaining budget must be parceled out between all these intervals. We show that, with an additional,
reasonable assumption, this can be done optimally. Once the budget is allocated to intervals, observations
can be allocated within intervals using the optimal algorithm of Krause and Guestrin. The main novel
insight of this approach is that rather than just allocating observations to optimize reward, in practice it
may make sense to allocate some observations in a way that makes the inference algorithm more tractable.

This leads to Algorithm 1, Dynamic Processing Allocation (DPA), which is something of a hybrid
between conditional and batch allocation. Such a strategy uses a budget of size B′+B′′ and is guaranteed

Algorithm 1 Dynamic Processing Allocation (DPA)
1) We use B′ observations to make uniform observations to break the chain model into consecutive

disjoint intervals separated by the observed variables;
2) We allocate the remaining budget B′′ to these intervals in a batch mode;
3) We use the optimal observation algorithm in section II-E to determine the observation locations

within each interval in a conditional mode.

to perform at least as well as an optimal batch algorithm that uses a budget of size B′′. In practice, we
expect to do much better than this optimal batch algorithm, since the observations we use to break the
problem into intervals also provide very useful information, and because we can use an optimal conditional
plan within each interval, which can be much better than the optimal batch plan.

In step 2 of the algorithm, which allocates the budget between intervals, we consider maximizing the
sum of optimal reward across all intervals. That is, let ki be the budget allocated to interval i and Ji(ki)
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be the reward of the optimal plan for interval i with a budget of ki. We want to find k1, k2, · · · , and kM
such that they maximize

M∑
i=1

Ji(ki), (10)

subject to
M∑
i=1

ki = B′′. (11)

To do this optimization, we observe that for each interval, the optimal reward typically forms a convex
curve as the budget increases. That is, for internal i, the plot of Ji(ki) against ki as ki increases is convex
in general. This means that we suppose function Ji(ki) exhibits submodularity, which is a kind of law of
diminishing returns property: Adding additional observations helps less if many observations have already
been made and helps more if only a few observations have been made [27]. We denote these kinds of
curves as Reward-Budget (RB) curves, and the assumption that these curves are convex will allow us to
optimally allocate our budget. We will experimentally verify that this assumption is reasonable.

We now introduce an algorithm to maximize the sum of reward increments for each interval. Let Ni

be the maximum budget allowed for interval i, typically the number of unobserved state variables in the
interval. We define the reward increment with budget k as

∆Ji(k) ≡ Ji(k)− Ji(k − 1), (12)

where k = 1, · · · , Ni. Given the convexity assumption, we have

∆Ji(k) ≤ ∆Ji(k − 1) (13)

for all possible ks, and we denote this as the convexity property. With this notation, we describe Algorithm
2, batch budget allocation. In practice, most intervals are allocated small budgets, so it is wasteful to

Algorithm 2 Batch budget allocation
1) Compute the reward increment ∆Ji(k) for i = 1, 2, · · · ,M with all possible ks;
2) Sort all these reward increments in descending order. Then the budget for each interval is determined

by the number of increments it has in the top B positions of the sorted list.

compute the entire RB curve for all these intervals. We therefore can use Algorithm 3, incremental budget
allocation, to do the optimization and save running time.

Algorithm 3 Incremental budget allocation
1) Initialize the budget of each interval to be zero;
2) Compute the reward increment ∆Ji(1) for i = 1, 2, · · · ,M ;
3) Select the highest increment, and add one to the budget of the corresponding interval I;
4) If the total budget for the whole chain has been used up, terminate and use the current budget

allocation for each interval as the final budget allocation;
5) If not, compute the next reward increment for interval I, and use it to replace the current reward

increment for this interval. Go back to step 4.
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Fig. 1. The example chain graphical model. Because we assume that X1 and X9 are observed in advance, we use gray nodes with
double-line boundaries to highlight this. The state of a node can be 1 or 2, and we show the actual state on the top of each node.

A. An Example
We use an example to illustrate how DPA works and how the optimal algorithm is different from ours.

Consider a chain graphical model with nine state variables whose value can be either 1 or 2. The prior
probability of being in each state is 0.5. The transition probability of switching from one state to the other
is 0.2. Figure 1 shows this model and it displays the states on the top of each variable. For simplicity, we
assume the first and last states are known in advance. Fig. 2 shows how DPA with batch budget allocation
and how the optimal algorithm determine the observation locations with a budget of 4.

First, we note that for this example, it is most likely that the initial states have a value of 1, and
that at some point in the chain there is a single transition from 1 to 2. To correctly determine the state
values, the main goal is to find the location of this transition. It is also possible that there are really three
transitions from 1 to 2 to 1 to 2, and a secondary goal will be to check on that. Next, we note that the
optimal conditional plan is able to perform a binary search to find such transitions. The optimal strategy
for this situation involves first determining the value of X3. If this state is 1, then the remaining budget
is sufficient to allow a binary search to be performed on states X4-X8, to find the transition from 1 to
2. This strategy therefore guarantees that the transition from 1 to 2 will be found, and maximizes the
chances that any additional transitions will be found.

Suppose instead we run DPA, with a budget of 4. In this case, the algorithm must begin by determining
the state of X5, to break the problem into two equal parts. When this state is found to be 1, the algorithm
then allocates its budget between these two subsequences. To allocate the remaining budget to each
interval, it computes the RB curves up to its maximum budget for both intervals, as shown in Fig. 2(c)
and 2(d). Notice that both curves satisfy the convexity property. In addition, the reward increment under
a small budget for the right interval is higher than those for the left interval. This is because the state of
the first and last nodes for the right interval indicate a state transition in between. As a result, the right
interval obtains a higher budget. In fact, DPA allocates two observations to the right side of the chain,
which is enough to perform a binary search for the state transition, and one observation to the left side.
This final observation on the left side is more likely to find something interesting than if allocated to the
right side, once the binary search has occurred.

Notice that DPA is not optimal in two ways. First, an optimal set of observations may not include X5.
Second, allocating one observation to the left subsequence and two to the right subsequence may not
be optimal; future observations could determine that a different allocation would be better. On the other
hand, in the optimal algorithm shown in Fig. 2(b), notice that the initial observation X3 is determined
after computation and comparison of expect reward of observing X1, · · · , X9 with all possible budget
distribution. This is a considerable amount of computation. In DPA, this interval is split into two shorter
intervals, and reward can be more cheaply computed for each subchain separately.

Finally, we consider how incremental budget allocation works in this example in detail. After the
observation of X5, the chain is split into two intervals as shown in Fig. 2(a) and the remaining budget
becomes 3. The incremental algorithm then initializes the budget for both intervals to be 0 and computes
J1(0), J1(1), J2(0), and J2(1) for ∆J1(1) and ∆J2(1). Since ∆J1(1) = 0.3626 < ∆J2(1) = 1.0000,
it increases the budget for the right interval by 1. The remaining budget becomes 2 and it computes
J2(2) for ∆J2(2). After this, it again increases the budget for the right interval by 1 because ∆J1(1) <
∆J2(2) = 1.0000. The remaining budget becomes 1 and it computes J2(3) for ∆J2(3). After this, because
∆J1(1) > ∆J2(3) = 0.1176, it increases the budget for the left interval by 1. The remaining budget
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(a) DPA with batch budget allocation (b) Optimal algorithm

(c) RB curve - interval 1 (left interval) (d) RB curve - interval 2 (right interval)

Fig. 2. (a) shows how DPA with batch budget allocation determines the observation locations. We use gray color to highlight observed nodes.
The interval size is 5, so the initial observation is X5, which is highlighted by a double-line boundary with a thick inner line. (c) and (d) show
the RB curves for left and right intervals respectively. The observation locations for each of these two intervals are determined by the optimal
algorithm, and are highlighted by a single-line thick boundary. (b) shows how the optimal algorithm determines observations locations, which
are also highlighted by a single-line thick boundary. It shows how the chain is split into sub-chains by sequential observations.
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becomes 0 and the algorithm terminates with budget of 1 for left interval and 2 for the right interval.
Notice that compared with batch allocation, incremental allocation saves computation by not computing
J1(2) and J1(3).

B. Proof of Correctness
We now provide a proof that batch budget allocation is correct; it follows directly that incremental

budget allocation must also be correct.
We use the following new notations, definitions, and facts. With a budget of B, we let k̂B1 , k̂

B
2 , · · · , k̂BM

be an optimal budget allocation, where M indicates the number of subsequences among which we must
divide the budget. Let k̄B1 , k̄

B
2 , · · · , k̄BM be the budget allocation by the algorithm. Denote the sorted list

rewards gained by an additional observation as Z and the sum of the top B reward increments in Z as
∆L. In addition, we define ∆Ji(0) ≡ 0 to handle the case that some interval has a budget of 0. Then we
define ∆ĴBi ≡

∑k̂B
i
j=0 ∆Ji(j), which means ∆ĴBi is the sum of all reward increments for interval i with a

budget of k̂Bi . Similarly, we define ∆J̄Bi ≡
∑k̄B

i
j=0 ∆Ji(j). Furthermore, since the algorithm pick only top

B reward increments from Z to distribute budget, it is clear that
∑M

i=1 k̄
B
i = B. Therefore, to prove the

correctness, we only need to show that
∑M

i=1 Ji(k̄
B
i ) =

∑M
i=1 Ji(k̂

B
i ). We now use Lemma 1, Lemma 2,

and Theorem 1 to prove this.
Lemma 1:

M∑
i=1

∆J̄Bi = ∆L. (14)

Proof: For an interval i, by the procedure of the algorithm, there must be k̄Bi reward increments
from interval i in ∆L. Let the sum of these increments be ∆Li. In case that no such increment exists, we
let ∆Li ≡ 0. Suppose ∆J̄Bi 6= ∆Li. By convexity property, we know that ∆Li must include some reward
increment ∆Ji(x) such that x > k̄Bi and ∆Ji(x) < ∆Ji(k̄

B
i ) ≤ ∆Ji(k̄

B
i − 1) ≤ · · · ≤ ∆Ji(1). Thus, there

must be at least k̄Bi + 1 reward increments in top B positions from interval i. But this conflicts with the
fact that the top B positions only contain k̄Bi such increments. Thus, it can only be that ∆J̄Bi = ∆Li.
Finally, because

∑M
i=1 k̄

B
i = B, we have

∑M
i=1 ∆Li = ∆L. Therefore,

∑M
i=1 ∆J̄Bi =

∑M
i=1 ∆Li = ∆L.

Lemma 2:
M∑
i=1

∆J̄Bi ≥
M∑
i=1

∆ĴBi . (15)

Proof: For any reward increment which is outside the top B positions of Z, we know it must be
less than or equal to any reward increment within the top B positions because Z is sorted in descending
order. Therefore, by Lemma 1,

∑M
i=1 ∆J̄Bi = ∆L must be greater than or equal to the sum of any B

reward increments from Z. Because
∑M

i=1 k̂
B
i = B and list Z contains the all possible reward increments

from all intervals, we know that
∑M

i=1 ∆ĴBi is also the sum of B reward increments from Z. Therefore,∑M
i=1 ∆J̄Bi ≥

∑M
i=1 ∆ĴBi .

By the definition of ∆Ji(k), we know that Ji(k) = ∆Ji(k) + Ji(k− 1). Using induction, it is trivial to
show that Ji(k) =

∑k
j=1 ∆Ji(j) + Ji(0). Because we define ∆Ji(0) ≡ 0, then

Ji(k) =
k∑
j=0

∆Ji(j) + Ji(0). (16)

With this formula, we can finally prove the correctness in following theorem.
Theorem 1:

M∑
i=1

Ji(k̄
B
i ) =

M∑
i=1

Ji(k̂
B
i ). (17)
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Proof: By equation (16), we have

M∑
i=1

Ji(k̄
B
i ) =

M∑
i=1

[

k̄B
i∑

j=0

∆Ji(j) + Ji(0)] =
M∑
i=1

[∆J̄Bi + Ji(0)] =
M∑
i=1

∆J̄Bi +
M∑
i=1

Ji(0). (18)

Similarly,
M∑
i=1

Ji(k̂
B
i ) =

M∑
i=1

∆ĴBi +
M∑
i=1

Ji(0). (19)

Then by lemma 2, it follows that
∑M

i=1 Ji(k̄
B
i ) ≥

∑M
i=1 Ji(k̂

B
i ). Finally, because the budget allocation,

k̂B1 , k̂
B
2 , · · · , k̂BM , is optimal, we have

∑M
i=1 Ji(k̄

B
i ) =

∑M
i=1 Ji(k̂

B
i ).

C. Complexity Analysis
We can now determine the complexity of DPA. Here we consider the cost of determining where to

make additional observations, where the cost of making each observation is always the cost of running
the expensive algorithm. We introduce the following notation. Let the total budget be B = B′ + B′′ and
let ε be a number less than 1 such that

n

M
=

1

ε
. (20)

Since each interval has the same length, this is 1
ε
. In addition, because the first step of the algorithm uses

B′ budget to make observations at a uniform step size, we have B′ = M = εn (we choose ε so that εn
is an integer).

The first step of DPA takes O(B′) = O(εn) running time, since these observations are at fixed locations
with uniform step size. For the second step, using batch budget allocation, we need to compute the RB
curve for each interval up to its maximum budget, which is in O(1

ε
). Following the asymptotic result of

(9), the running time to compute these curves is

O(M · (1

ε
)2(

1

ε
)3) = O(εn · (1

ε
)5) = O(

1

ε4
n). (21)

Since producing the sorted list and picking the reward in the top positions takes O(nlog(n)) time, the
total running time is

O(
1

ε4
n+ nlog(n)). (22)

Using incremental budget allocation, we only need to compute the RB curve for each interval up to its
allocated budget. Thus, the complexity is

O(
M∑
j=1

(k̃2
j (

1

ε
)3)) = O(

1

ε3

M∑
j=1

k̃2
j ), (23)

where k̃j is the allocated budget for interval j. Because
∑M

j=1 k̃j = B′′ and k̃j ≤ 1
ε

for all j,
∑M

j=1 k̃
2
j

reaches its maximum by letting as many intervals have budget 1
ε

as possible. For each of the other intervals,
it either has 0 budget or has the remaining of the total budget. As a result, the number of intervals that
have nonzero budget is dB′′/1

ε
e = O(B′′/1

ε
) = O(εB′′). Thus, we further conclude that

O(
1

ε3

M∑
j=1

k̃2
j ) = O(

1

ε3
· εB′′ · (1

ε
)2) = O(

1

ε4
B′′) (24)

In addition, we must also maintain a sorted list of the incremental rewards from computing RB curves
for each interval as budget increases. Using data structures such as a binary heap [28], we can build an
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(a) (b)

Fig. 3. Markov models for video frame sequences. (a) The model we use when expensive feature is not available at every frame; (b) The
model we use when all frames have expensive features.

initial sorted list in O(Mlog(M)) = O(B′log(B′)) time, and then add and remove B′′ increments to that
list in O(B′′log(B′)) time. This gives a total running time of:

O(
1

ε4
B′′ + (B′ +B′′)log(B′) = O(

1

ε4
B +Blog(B)). (25)

Finally, the last step involves using the optimal algorithm for each interval to determine the additional
sampling locations. This takes O(B′′) running time given dynamic programming memory tables for each
interval in the budget allocation stage. However, storing all the tables for each interval require a large
amount of memory space. Alternatively, we can rerun the optimal algorithm for each interval using the
allocated budget, which gives an additional run time of O( 1

ε4
n) for batch allocation, and O( 1

ε4
B′′) for

incremental allocation. Finally, the total running time is

O(εn+
1

ε4
n+ nlog(n) +

1

ε4
n) = O(εn+

2

ε4
n+ nlog(n)) = O(

1

ε4
n+ nlog(n)) (26)

for batch budget allocation, and is

O(B′ +
1

ε4
B +Blog(B) +

1

ε4
B) = O(B +

2

ε4
B +Blog(B)) = O(

1

ε4
B +Blog(B)) (27)

for incremental budget allocation. This is a vast improvement over O(B2n3) for the optimal algorithm.
In our experiments, we show that this computation is quite practical.

IV. DATA FUSION FOR FRAME SEQUENCES

In this section, we first describe how we model the frame sequence from a video as a graphical model
for data fusion in section IV-A. This model is a Markov chain which emits cheap and expensive features.
Therefore, we can apply DPA to this model and section IV-B describes this. Finally, we discuss on how
to run the forward-backward algorithm for this model in section IV-C.

A. A Graphical Model for Frame Sequences
The graphical model is a Markov model, where each frame of video corresponds to a node. Each node

contains a state variable that represents the property we wish to infer, such as whether a face, or a moving
object, is present. Each node can emit two observable quantities, corresponding to cheap and expensive
features extracted from the frame. This is similar to a hidden Markov model (HMM), but here we also
model dependencies between observations. In our model, the value of a cheap feature at time t is not
conditionally independent of the rest of the model given the state at time t, but is also dependent on the
cheap feature at times t−1 and t+1. We do this to capture the fact that when a feature makes an error in
one frame, it is quite likely to make a similar error at an adjacent frame. (Note if we assume conditional
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independence among features at different time steps, it results in less accurate inference performance).
This model can be considered a type of autoregressive hidden Markov model [29], or conditional random
field [30].

However, we typically have expensive features for a small fraction of frames, so it is not trivial to
model the dependency between them. In addition, we assume the expensive feature is accurate when
predicting the state. Therefore, we do not model the dependency between expensive features, and make
it only depend on the state. However, in the case that we have an expensive feature at every frame, we
model the dependency the same as with cheap features. We illustrate these two cases in Figure 3. State
variables are labeled “X”, cheap observations are labeled “c”, and expensive observations are labeled “e”.
They all have numbered subscripts indicating their time steps.

B. Applying DPA
We have described DPA for the case of simple, chain graphical models. However, it is straightforward

to apply it to the model in previous section, since it has a chain structure and the same conditional
independence property. Specifically, to apply DPA to our model we first treat the chain formed by the
state variables in our model as the chain graphical model. Second, assuming that the expensive feature
is accurate in predicting the state, we consider the places to reveal states in the chain as the locations
to sample expensive feature. And we use the predicted states to compute the optimal reward described
in section. Finally, cheap feature also provides useful information. Thus, we make the recursive formulas
for computing the optimal reward be conditioned on applicable cheap features. Denoting ca:b as the cheap
feature over the interval from variable Xa and Xb, the formula (7) and (8) for computing the optimal
reward become

Ja:b(xa, xb; k) = max{Ja:b(xa, xb; 0), max
a<j<b

{
∑
xj

P (Xj = xj|Xa = xa, Xb = xb, ca:b){

Rj(Xj|Xj = xj, ca:b) + max
0≤l≤k−1

[Ja:j(xa, xj; l) + Jj:b(xj, xb; k − l − 1)]}}}, (28)

where the base case is

Ja:b(xa, xb; 0) =
b−1∑

j=a+1

Rj(Xj|Xa = xa, Xb = xb, ca:b). (29)

C. Forward-backward Algorithm
When using formula (28) and (29) to determine where to sample expensive features, and using our

model to do inference to predict the state of each frame, we need to determine the probability distribution
of each state based on observations. We can use the Forward-Backward algorithm [31] to do this. Using
our model, this algorithm works a little differently from the standard version, due to dependencies in the
observations, and we describe it below. The derivation uses the ideas in [29] and [32].

Let N be the number of states, and denote individual states as S = {s1, s2, · · · , sN}. Let the sequence
have T time slices. Also let cheap feature observations from time 1 to T be c1, c2, · · · , cT respectively,
and expensive feature observations from time 1 to T be e1, e2, · · · , eT . Let fi be {ci, ei} at time i and O
be all the observations. Similarly, we use Xt to denote the state variable at time t. Then,

P (Xt = si|O) =
P (O,Xt = si)

P (O)
=
P (f1···T , Xt = si)

P (O)

=
P (ft+1···T |Xt = si, f1···t)P (Xt = si, f1···t)

P (O)

∝ P (ft+1···T |Xt = si, ft)P (Xt = si, f1···t). (30)
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Given the forward variable defined as αt(i) = P (Xt = si, f1···t) and the backward variable as βt(i) =
P (ft+1···T |Xt = si, ft), we have

P (Xt = si|O) ∝ αt(i) · βt(i). (31)

To compute αt(i), we have

αt(i) = P (Xt = si, f1···t) = P (Xt = si, ft, f1···t−1)

= P (Xt = si, ft|f1···t−1)P (f1···t−1)

=
N∑
j=1

P (Xt = si, ft|Xt−1 = sj, f1···t−1)P (Xt−1 = sj|f1···t−1)P (f1···t−1)

=
N∑
j=1

P (ft|Xt−1 = sj, f1···t−1, Xt = si)P (Xt = si|Xt−1 = sj, f1···t−1)P (Xt−1 = sj, f1···t−1)

=
N∑
j=1

P (ft|f1···t−1, Xt = si)P (Xt = si|Xt−1 = sj)P (Xt−1 = sj, f1···t−1)

=
N∑
j=1

P (ft|f1···t−1, Xt = si)P (Xt = si|Xt−1 = sj)αt−1(j), (32)

where P (ft|f1···t−1, Xt = si) = P (ct|ct−1, Xt = si)P (et|Xt = si) for the left model and P (ft|f1···t−1, Xt =
si) = P (ct|ct−1, Xt = si)P (et|et−1, Xt = si) for the right model in Fig. 3. This gives the recursive formula
to compute the forward variable, where the base condition is the same as that in [31]. The only difference
from the standard forward algorithm is that the probability of the observation needs to be conditioned on
the observation in the previous time step.

To compute βt(i), we have

βt(i) = P (ft+1···T |Xt = si, ft) =
N∑
j=1

P (ft+2···T , Xt+1 = sj, ft+1|Xt = si, ft)

=
N∑
j=1

P (ft+2···T |Xt+1 = sj, ft+1, Xt = i, ft)P (Xt+1 = sj, ft+1|Xt = si, ft)

=
N∑
j=1

P (ft+2···T |Xt+1 = sj, ft+1)P (ft+1|Xt+1 = sj, ft)P (Xt+1 = sj|Xt = si)

=
N∑
j=1

βt+1(j)P (Xt+1 = sj|Xt = si)P (ft+1|Xt+1 = sj, ft), (33)

where P (ft+1|Xt+1 = sj, ft) = P (ct+1|Xt+1 = sj, ct)P (et+1|Xt+1 = sj) for the left model and P (ft+1|Xt+1 =
sj, ft) = P (ct+1|Xt+1 = sj, ct)P (et+1|Xt+1 = sj, et) for the right model in Fig. 3. Again, the only
difference from the standard backward algorithm is that probability of the observation is conditioned on
the observation in the previous time step.

V. EXPERIMENTS

We now apply DPA to two vision tasks involving motion detection and face detection. Our main goal is
to show that inference can be used to efficiently allocate processing in two very different tasks. We begin
by first describing some common characteristics of our experiments in the next section. We then present
the results for the two tasks in section V-B and V-C. Section V-D and V-E discuss how the expensive and
cheap features can affect DPA. Finally, section V-F discusses the running time.
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A. General Experiment Setup
For DPA, given a video with n frames and a budget of B = B′ + B′′, we first use B′ budget to run

the expensive algorithm uniformly with a step size of 20, while also running the cheap algorithm on all
frames. Then we use the batch budget allocation to distribute the remaining budget B′′ among intervals,
which are separated by frames whose state is predicted by the expensive feature. This step gives us a
budget for each interval, and we use the optimal algorithm to determine where to observe expensive
features within each interval. For convenience of description, we describe budget in term of its percentage
of the total number of frames.

One assumption in this budget allocation method is that the reward curve as the budget increases is
convex for the subsections. To evaluate this assumption, we compute the RB curve for each interval
up to its maximum budget. For those curves which are not strictly convex, the difference between two
consecutive reward increments must be positive at some points. We pick the highest such value as the
nonconvexity measure of a RB curve, and find that this measure is typically very small. So we approximate
each nonconvex RB curve with a convex curve, which yields a good approximation. Section V-B and V-C
give more details on the nonconvexity measure.

When running DPA, we also assume that the expensive algorithm always correctly reveals the state of
a frame. This is not really true, so we expect that occasional errors made by an expensive algorithm will
cause us to allocate resources suboptimally. However, since our inferences will in general be correct, we
still expect DPA to produce decisions that are effective overall.

Finally, when all observations have been made, we predict the state of each frame using the inference
model in Fig. 3(a) since expensive features are not available in every frame. We compared our results to
several baseline algorithms. Competing algorithms are always provided the same total budget for a fair
comparison.
• The first baseline method is uniform sampling, which runs the expensive algorithm at a uniform step

size. This method is in essence equivalent to running the expensive algorithm at a lower frame rate.
• The second baseline method is most-relevant sampling. In this sampling method, we first run the

cheap algorithm at each frame and perform inference using the model in Fig. 3(a) to obtain the
conditional probabilities of the state variables at each frame. We then run the expensive algorithm on
the frames that are most likely to satisfy our query. This is equivalent to using the cheap algorithm
to prune the least interesting frames.

• The third and last baseline method is most-uncertain sampling. Similar to the most-relevant sampling
method, we again run the cheap algorithm at each frame and then perform inference to obtain
conditional probabilities. Then, we run the expensive algorithm on frames that have the greatest
uncertainty. Uncertainty can be measured in many ways. For example, we can use entropy of the
conditional probability, or we can use 1 - maximum conditional probability. For binary classification
tasks such as ours here, both choices produce an identical ranking. The motivation behind this
sampling strategy is that we want to invest resources at locations we are most uncertain about.

• Finally, to calibrate the performance of algorithms on different tasks, we compared to an idealized
method, ceiling sampling, in which we run the cheap and expensive algorithms at all the frames, i.e,
the budget is equal to 100%. We use Fig. 3(b) to model the frame sequence because the expensive
feature is available everywhere. This method should provide an upper bound on the performance of
any method given that the model fits the data well enough.

To compare these methods, we used 4-fold cross validation on each video, using three-quarters of the
data to train the model and one quarter to evaluate the model. We recorded each video in 30 frame per
second. We then uniformly sampled 3 frames per second to generate the training and testing sequences,
and this is a reasonable frame rate to experiment on for real world surveillance videos. By beginning
sampling at different locations, we produced 10 different sequences for training and also for testing. All
ten sequences are used as training data. We also use all ten for testing, helping to smooth the results a bit.
The performance measure we used was the 11-point average precision of the precision recall (PR) curves
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[33]. That is, we take the average precision for 11 uniformly spaced levels of recall. This is averaged
over all 40 testing sequences from the 4 folds.

For the first three sampling methods, we ran the cheap algorithm at each frame and ran the expensive
algorithm only at the sampled locations. For ceiling sampling, we ran the expensive algorithm on all frames.
We combined the cheap and expensive features and performed inference using the models illustrated in
Fig. 3. We used the conditional probabilities for each frame’s state variable to generate PR curves. The
methods differed only in their choice of where to apply the expensive algorithm, and use the same
algorithm to do inference. To compare the sampling methods under varying conditions, we varied the
total budget from 5% to 25% of n. We next provide more details about the experiments for both tasks.

B. Motion Detection
We first evaluated these algorithms in a simple background subtraction task. We collected three half

hour videos at thirty frames per second, for a total of n ≈ 55, 000 per video, with each frame at 240×320
resolution. We hand-labeled each frame as “interesting” if it contained a moving object, such as a person
or car, “uninteresting” otherwise.

As a cheap algorithm, we used FD [4] and we used IAGMM [5] as the expensive algorithm. Using
the first algorithm, the feature was the number of foreground pixels in a frame after applying a threshold
of 10. This avoided postprocessing, saving a significant amount of computational resources. It is an
interesting question for future work to determine how best to build a background model suitable for the
expensive algorithm based on sparsely sampled frames. However, in this experiment we wish to focus on
the effectiveness of our algorithm in directing application of IAGMM. Therefore, we build a background
model using all recent frames and then apply IAGMM only at sampled locations. After applying the
IAGMM, we performed an opening and a closing morphological operation. We then extracted the largest
connected component to generate features, which were discretized to run the experiment. We had used
8 different features, which included the area of the component, the width of its Bounding Box, and the
diameter of a circle with the same area as the component. They all produced similar performance, and
we chose the area of the component to show results. Figure 4 shows some frame examples and the
corresponding output by FD and IAGMM algorithms.

Next, we tested our convexity assumption on these videos, since DPA assumes that the reward curves
were convex. Table I shows the results. We can see that over a half of all intervals produce convex reward
curves, while most of the non-convex ones have very small concavities.

TABLE I

CONVEXITY OF RB CURVES FOR THE MOTION DETECTION TASKS

Video Video 1 Video 2 Video 3
Number of intervalsb 2720 2720 2720
Convex (%) 56.21 67.39 59.93
Convex or ≈ convexb(%) 94.34 97.28 94.45
Median of the restc 0.0468 0.0181 0.0834
a The total number of intervals over the 40 testing sequences.
b RB curves which are not convex but with nonconvexity

measure not greater than 0.01.
c The median of nonconvexity measure for those intervals

which are neither convex or ≈ convex.

We show 11-point average precision results on the three videos in Fig. 5. In all three videos, our method
outperforms the baseline methods. We also observe from the plots that uniform sampling outperforms both
most-relevant sampling and most-uncertain sampling. We postulate that the reason may be that the cheap
algorithm does not produce high quality features and so decisions based purely on the cheap algorithm
are unreliable. In these videos, FD faces difficulties because leaves often move in the background.
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Video 1

Video 2

Video 3

Fig. 4. Frame examples from video 1, 2, and 3 for the motion detection task and their corresponding output from the cheap and expensive
algorithms. Within each video, the first row shows the original frame, the second and the third rows show the corresponding output from FD
and IAGMM respectively. FD tends to produce more noise for foreground pixels which affects accuracy of features. IAGMM gives much
fewer false positives, and in general produce better feature for detection.
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Fig. 5. 11-point average precision values for the background subtraction task.

C. Face Detection
Next, we applied our approach to the problem of identifying frames containing a face. As with the last

task, we collected three half-hour videos. We hand-labeled each frame as “interesting” if there is a frontal
or profile face in it and labeled it as “uninteresting” otherwise.

For the cheap algorithm, we used IAGMM with the area of the largest connected component as a feature
since it is relatively good at detecting the motion of a human and is still computationally cheap compared
to the face detector. The expensive algorithm was the face detection algorithm based on OpenCV [34],
using the scheme in [9]. We used both frontal and profile face detectors and the expensive feature was
a binary indicator of whether the detectors found a face. Fig. 6 shows frame examples from these three
videos.

TABLE II

CONVEXITY OF RB CURVES FOR THE FACE DETECTION TASK.

Video video 4 video 5 video 6
Number of subsections 2720 2840 2800
Convex (%) 80.22 66.16 68.61
Convex or ≈ convex (%) 98.16 98.45 99.07
Rest median 0.0970 0.1014 0.1014

We again first measured the convexity of the reward curves for the face detection videos. The results are
given in Table II. Again, the reward curves are largely convex. We show the 11-point average precision
results on the three videos in Figure 7. Our method outperforms the baseline methods in two videos, video
4 and 5, under all budget percentages. However, in video 6, our method has no advantage over uniform
sampling when the budget is small, but as the budget increases, the advantage of our method becomes
clear.

D. Accuracy of Expensive Features
The accuracy of the expensive feature can cause variations in performance of DPA, since our decisions

are based on the assumption that the expensive feature is very accurate. To see this, we measured the
prediction error rates of the expensive feature on all six videos. Remember that our method is guaranteed
to be optimal when the expensive feature determines the correct state perfectly, and our graphical model
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Video 4

Video 5

Video 6

Fig. 6. Example frames from video 4, 5, and 6 for the face detection task and their corresponding output from the cheap and expensive
algorithms. Within each video, the first row shows the original frame, the second and the third rows show the corresponding output from
IAGMM and face detectors respectively. IAGMM produces information about whether moving objects, such as humans, are present or not,
while face detectors give explicit knowledge about presence of faces.
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Fig. 7. 11-point average precision values for the face detection task.

correctly models the domain. The prediction error rates of the expensive feature in the six videos are
.0153, .0421, .0395, .0587, .0830, and .2328 respectively. Note that the error rate is highest in the sixth
video, the video on which our method has no clear advantage over uniform sampling when given a small
budget.

E. Usefulness of Cheap Features
Ideally, combining both features to guide DPA to determine the expensive feature sampling locations

should give better result than purely using expensive feature. However, we observe that when the model
does not fit the dependency properties of the domain, combining both features can actually hurt per-
formance of DPA. To show this, we replace the cheap feature with a constant synthetic feature. Under
this setting, the sampling locations and inference only depends on the expensive features. We compare
performance of these two cases. Following the similar setup above, we observe that combining both
features has a clear advantage over only using the expensive feature. Fig. 8 shows the result.

However, we do observe that when we vary the frame rates, purely using expensive features can have
better performance than combining both features. Fig. 9 shows the performance when the frame rate is 30,
6, 2, and 1. When the frame rate is 30 or 6 frame per second, combining both features has no advantage
over using purely expensive features. In particular, using purely expensive features has better performance
for the first three videos for background subtraction task under 30 frames per second. However, when the
frame rate is 2 or 1 frame per second, the advantage of combining both feature becomes clear again. This is
very likely due to the issue that how well our model fits the data. When the frame rate becomes higher and
higher, the dependency between the cheap features is stronger and stronger, and our model cannot capture
this well enough. As a result, the cheap feature is overconfident in some locations, and suppresses the
correct decisions by the expensive features. Using a better model that captures this dependency adequately
is one way to deal with this problem, however it adds significant computational complexity. Furthermore,
real world videos, such as surveillance videos, need to run for a long time in general. A small frame rate
is more suitable for storage and power issues [35]. Combining both features is good in this case. At the
same time, we stress that in situations in which cheap features are not helpful, DPA will still provide
significant benefits, using only expensive features to control processing.

F. Running Time
Finally, we discuss the processing overhead of DPA. Without considering the feature generation time,

which is application dependent, the main processing time of DPA is at the stage of determining expensive
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Fig. 8. Comparison of using cheap features from real data and constant synthetic cheap features under frame rate of 3 frame per second.

features sampling locations. With unoptimized MATLAB and Java code and without considering the
feature generation time, DPA requires an average of 7.6 seconds to handle one-fourth of a half-hour
video when the budget is 5% at 3 frames per second. And it needs about 9.7 seconds when the budget
is 25%. This overhead is small compared with the time to record the video. However, when the frame
rate is 30 frames per second, the average running time becomes 76.3 seconds when the budget is 5%
and 97.0 seconds when the budget is 25%. Both the length of a testing sequence and the running time in
the later case is 10 times longer than those in former case. With a fixed interval size, the running time
grows linearly as the testing frame sequence grows. However, we see that the computational overhead is
relatively small compared with the video recording time. For real world applications, in which the frame
rate needs to be small to save computational resource, DPA will in particular be useful.

VI. CONCLUSION

Our main goal has been to design inference algorithms that can be used to direct video processing.
This allows us to replace simplistic methods such as reducing the frame rate with principled decisions
that carry theoretical performance guarantees. We believe that this is a quite general framework that can
be applied to many video processing tasks and may be extended in the future to more complex graphical
structures.

To this end, we have made two more detailed contributions. First, we propose a graphical model that
maps onto a video frame sequence and allows us to combine features from expensive and cheap algorithms
to do inference. We show that in practical situations, there is much to be gained by this combination.
Second, we have shown how to build on an existing algorithm that was designed for short chains to
create an algorithm that runs efficiently on long video sequences. Specifically, we show that by applying
an expensive algorithm in some extra locations, we can control additional applications of the algorithm
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Fig. 9. Comparison of using cheap features from real data and constant synthetic cheap features under frame rate of 30, 15, 5, and 1 frame
per second. From top to bottom, each row shows the results for all videos under a frame rate, from 30 to 1 frame per second.

with significantly smaller running time. Experiments with two concrete video processing tasks, low-level
background subtraction and the higher level task of face detection, show that these can be mapped onto
our framework. The effectiveness of DPA’s inference algorithm in these tasks illustrates the potential of
our approach for general video processing.
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