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Abstract

Website fingerprinting attacks on Tor seek to identify the specific
webpage visited by a user given only the anonymized traffic to and
from that user. Such attacks have been shown to be effective when
the set of webpages a user visits can come from one of only a small
set of candidates, but become significantly less effective as the set
of candidates grows large.

In this paper, we demonstrate a way to significantly improve the
performance of virtually all website fingerprinting techniques to
work on a large set of candidates. Our insight is that users very
rarely ever visit a single website, but rather visit multiple, related
websites in succession over the course of a browsing session. Thus,
rather than try to fingerprint a single website independent of all
others, we fingerprint the browsing session itself, using consecutive
websites as contextual clues.

We introduce a browsing session fingerprinting technique that
uses as a building block any (individual-)website fingerprinting
technique. We evaluate it using the largest public fingerprinting
dataset to date, which we collected, and show that our techniques
can achieve a top-1 accuracy that approaches the individual-website
fingerprinting techniques’ top-5 accuracy. We will be making our
code and data publicly available.

1 Introduction

Every day, millions of people use Tor [8] to anonymously browse
the web and communicate [26]. More precisely, Tor provides a form
of anonymity known as unlinkability, which permits an attacker
to know at most one side of a communicating pair (e.g., either
the client or the server), but not both. Ensuring Tor’s resilience to
deanonymization attacks is critical in helping users to evade threats
to Internet freedom.

Some of the most pernicious attacks on Tor’s anonymity are
website fingerprinting attacks. The insight behind these attacks is
that, while the actual content (and, of course, destination) of Tor
packets are hidden, the sequence of packet uploads and downloads
themselves can serve as a fingerprint of the specific webpage being
downloaded. The attack thus involves the adversary first visiting a
set of candidate webpages and collecting the resulting fingerprints.
The attacker then observes a target user’s traffic while they visit
a single webpage, and compares the traffic against the collected
fingerprints to determine which webpage they are visiting—thereby
violating unlinkability.

While simple in principle, website fingerprinting attacks in prac-
tice remain extremely challenging. This is because they have to
contend with network randomness and dynamic webpage content,
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Figure 1: Overview of our browser session fingerprinting at-
tack. Rather than simply return each top-1 guess, we identify
common trends amongst the top-5 as contextual clues for
what pages the user may have visited. In this example, the
user was visiting politics-related webpages.

both of which result in nondeterministic fingerprints for even sim-
ple webpages. As a result, today’s website fingerprinting attacks in-
volve increasingly sophisticated machine learning (ML) techniques,
yet still have significant errors, even when the attacker has only a
modest number of candidate webpages. For example, we evaluate
Triplet Fingerprinting (TF) [25], a state-of-the-art ML-based web-
site fingerprinting attack on a candidate set of 7,110 webpages and
find that it determines the correct webpage precisely only 58% of
the time, and places it within its top-5 guesses 77% of the time.

In this paper, we introduce a fundamentally new approach to
website fingerprinting: instead of viewing and trying to identify
only a single webpage that the target user is visiting, the attacker
is able to view multiple consecutive webpages visited by the user—
what we refer to as a “browsing session”—and seeks to identify as
many of them as possible. We believe this attack to be more realistic
than website fingerprinting attacks—after all, it is rare for a user to
start up their browser, visit a single webpage, and then shut down
their browser.

Moreover, we demonstrate that, under reasonable assumptions,
this attack is also more dangerous than traditional website finger-
printing. To understand our insight, consider an attacker monitor-
ing each webpage a user visits, and applying a website fingerprint-
ing technique to each.

Our underlying assumption is that webpages visited consecu-
tively by a user are likely (but not guaranteed) to be related to one
another—such as viewing multiple news webpages, several different
restaurant-related pages, or various message boards on the same
social media website. When this reasonable assumption holds, we
show that the attacker can use consecutively-visited webpages as
contextual cues to achieve better accuracy.

Figure 1 provides an example of our attack. The attacker uses a
standard website fingerprinting tool to obtain its top-5 guesses for
each webpage the user has visited. Then, using information about
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the relatedness of the different candidate webpages, the attacker
looks for common trends amongst them, and infers what amounts
to the context of the user’s browsing at that point in time. In this ex-
ample, either the user is randomly jumping across multiple contexts,
or the user has visited a series of politics-related webpages—we
argue the latter is more likely. Using this additional information
allows the attacker to more confidently guess webpages that were
not already selected in the top-1 spot. We formalize and thoroughly
evaluate this approach in this paper.

Contributions This paper makes the following contributions:

e We introduce browser session fingerprinting, a generaliza-
tion of website fingerprinting that leverages contextual clues
from consecutively visited webpages.

e We introduce a new, controlled website fingerprinting dataset,
the largest of its kind to date.

e We present the first browser session fingerprinting attack
and evaluate it on our dataset and others’, demonstrating
that, under reasonable assumptions, it is able to drastically
improve the accuracy of identifying individual webpages.

e We will be making our code and dataset publicly available.

Roadmap The rest of this paper is structured as follows. We
review background and related work in §2. We present our attack’s
design in §3, and our new dataset in §4. We perform a thorough
evaluation of our attack in §5, and conclude in §6.

2 Background and Related Work

In this section, we review relevant details of Tor, website finger-
printing attacks, and fingerprint datasets.

2.1 Tor background

Tor [8] is a peer-to-peer, anonymizing communication network.
Participants can join the Tor network and run a relay to help for-
ward traffic for users. A client creates a Tor circuit comprising (at
least) three Tor relays: an entry node, a middle node, and an exit
node. Circuits are constructed in such a manner that each hop
only learns the identity of the hops immediately preceding and
succeeding it.

To mitigate information leaked from the packet sizes, Tor seg-
ments all of its communication into fixed-sized cells, and communi-
cates through encrypted TLS sessions. In practice, TLS can choose to
combine multiple separate application packets into a single record,
and TCP can combine or segment data, so while every individual
on-the-wire packet may not be the same size, the raw amount of
information is.

Research into attacking [9, 31] defending [14, 16, 30], and opti-
mizing [1, 3, 17] Tor is rich and varied, but we focus in this paper
on improving a particular kind of attack: website fingerprinting.

2.2 Website fingerprinting attacks and defenses

Website fingerprinting (WF) attacks involve an attacker who can
view a Tor user’s traffic, exploiting the (semi-)deterministic nature
of how websites’ data appears on the wire to construct “fingerprints”

'We do not yet make them publicly available, as the size of our dataset has made it
challenging to post it somewhere where we can retain author anonymity.
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of webpages. WF attacks [4, 7, 10, 11, 18, 22, 24, 25, 27, 28] are pos-
sible in Tor because, traditionally, it does not inject “junk” traffic,
unlike mixnets [6]. Nonetheless, there is some non-determinism
in website downloads, due to varying network conditions and dy-
namic web content. To overcome these challenges, WF attacks have
evolved to incorporate increasingly sophisticated machine learning
techniques [25].

Of particular relevance to this work is how WF attacks are eval-
uated. Attackers operating in a “closed world” model are assumed
to have identified some number N of candidate webpages that the
victim user may attempt to visit, and the goal is to determine which
of the N they did. Accuracy is typically measured in one of two
ways: the top-1 accuracy is the fraction of the time the WF tech-
nique can guess the precise webpage that the user went to. The
top-5 (or more generally top-k) accuracy is the fraction of time that
the actual website is among the WF technique’s top five guesses.
Naturally, as N increases, the accuracy tends to decrease.

Defenses to WF attacks [4, 5, 15, 29] involve reordering and batch-
ing requests, injecting junk traffic, and offloading the download to
a programmable agent [21].

Despite these impressive defensive efforts, WF attacks are still
able to achieve high degrees of accuracy, though are still imperfect.
Cherubin et al. [7] showed that Triplet Fingerprinting (TF) [25]—a
state of the art ML-based technique—quickly degrades in accuracy
with even modest increases to the size of the closed world. We show
in §4 that TF is able to guess the precise webpage 46-64% of the
time, and can guess the website within the top-5 75-81% of the
time, depending on the fingerprinting dataset and size of the closed
world.

We believe that our work significantly extends this large body of
prior work by introducing a new, orthogonal dimension to website
fingerprinting. Our work is, to the best of our knowledge, the first
to take into account the fact that users rarely visit webpages purely
at random, and that one can use information gleaned from one of
a user’s webpage visits to help identify another. The attack that
we present in §3 uses existing WF techniques as a core building
block, thus as WF techniques improve, so too does our attack. More-
over, we show that our attack can drastically improve the accuracy
of even poorly-performing WF techniques. Thus, we believe that
future WF work should evaluate based not only on guessing indi-
vidual webpages, but on identifying browser sessions as performed
in this paper.

2.3 Fingerprint datasets

One of our major contributions in this work is the curation and
public release of a new fingerprint dataset. Fingerprint datasets are
critical to supporting research into website fingerprinting, as they
are used to train and evaluate attack models.

There are three critical features that a fingerprint dataset should
have. First, it should span a large number of individual domains, so
as to allow researchers to test large closed-world attacks. Second, it
should comprise not just landing pages (the webpage when the URL
is simply the domain name), but also internal pages to that domain.
Internal pages are where users spend most of their time browsing,
and they have been shown to be fundamentally different from land-
ing pages [2] in terms of content, size, performance optimizations,
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and even adoption of HTTPS [19]. Finally, the pages visited should
approximate real human behavior to the extent possible.

Several such datasets have been introduced [22, 24, 27], but
of particular note are the GoodEnough (GE) [20] and BigEnough
(BE) [15] datasets. Table 1 in §4 compares these datasets to the one
we collect.

Recently, Cherubin et al. [7] evaluated a new method of obtaining
fingerprint data: instead of obtaining synthetic website visits, they
collected data to and from exit relays they ran. Their evaluation
showed that, even though it is collected at the exit and not at
the entry (where website fingerprinting attacks take place), the
dataset loses virtually no fidelity as a tool for training a website
fingerprinting classifier. They have since released their datasets
publicly [10]. Such a dataset has the benefit that it is driven by
real user behavior, and is significantly larger than other synthetic
datasets by several orders of magnitude. However, because they
collect data at the exit relays, they can only see the (ostensible)
domain in the TLS SNI, and cannot determine what the precise
internal page was. We felt this was important information for our
experiments, so we constructed our own synthetic dataset.

3 Attack Design

Here, we present the intuition, design, and limitations of our browser
session fingerprinting attack.

3.1 Intuition

Users rarely open up a browser, go to a single webpage, and then
close the browser. Yet this is essentially how today’s website finger-
printing attacks model this problem: each webpage being visited in
complete isolation of any other.

Rather, users typically navigate to multiple pages, often with
related pages viewed in direct succession. For example, a user look-
ing for information about a sensitive political topic might view
historical information about that topic, read the latest news about
it, and engage in several online forms to discuss the current events.
In other words, subsets of a user’s browser session span a particular
“context” of webpages.

The insight behind browser session fingerprinting attacks is that,
if the attacker can infer the current context the user is in, they can
use this to help refine their accuracy.

Most website fingerprinting techniques today do not just output
a single guess of a webpage, but rather assign probabilities to each
webpage. Indeed, it is standard for website fingerprinting papers
to report on both their top-1 accuracy (the probability of guessing
the correct webpage exactly) as well as their top-5 accuracy (the
probability that one of their top-5 guesses is the correct webpage.
Naturally, an attack’s top-5 accuracy is better than its top-1; for
example, we show in §4.3 that Triplet Fingerprinting [25] is able to
obtain a top-1 accuracy of 58% and a top-5 of 77%, when applied to
a fingerprint dataset we collected.

3.2 Model of user browsing behavior

The core assumption underlying our attack is that users’ browsing
behavior can be modeled in a very crude manner. Specifically, we
assume that it is possible to separate webpages into groups of
related webpages, such that if a user is on a webpage from group G,
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then the user is more likely to subsequently visit a webpage that
is also in G than to switch to another group. Put another way, we
assume that the conditional probability of visiting a webpage in
group G given that the previously visited webpage was also in G
(Pr[G]|G]) is greater than if it had come from an unrelated group
(Pr[G|H # G]). This is in essence the intuition behind Page Rank;
users are likely to navigate in large part by clicking on links they
find on the current webpage they are on, and those links are likely
to be on the same topic.

There are many possible ways to group webpages together, such
as based on the topic of their content, whether they have hyperlinks
to one another, or by collecting users’ browsing habits to construct
a predictive model. We do not claim to have an accurate model
of user behavior; it is an interesting and important area of future
work, but we consider it out of scope for this paper. However, to
demonstrate our sensitivity to the quality of the user model, we
evaluate in §5 against a set of worst-case models, and still show our
ability to achieve improved accuracy.

User model used in this paper The specific model of users’
browsing behavior we consider here proceeds as follows. We cluster
the webpages into non-overlapping groups—we evaluate several
different groupings, including random groups, grouping by domain
name, and grouping by website fingerprint similarity (we evaluate
their relative effects on our accuracy in §5).

We model the user as starting on a webpage chosen at random.
The user then visits another webpage. With probability pswitch, the
user switches to a different group, chosen at random, and then
chooses a random webpage within that group. Otherwise, the user
stays in the same group, and chooses a different page within that
group at random. Low values of pgyitch represent users who stay on
one topic over the course of a browsing session, while high values
of pswitch represent users who jump from one topic to another.

Our attack does not require that the attacker know what a user’s
Pswiteh 18; it only needs to know the grouping of related webpages,
and the reasonable assumption that, once a user visits a webpage
on a particular topic, they are more likely to stay on that topic than
to switch to another, for a while anyway:.

Potential future extensions Our attack does not preclude—and
would likely benefit from—more sophisticated models of user be-
havior. For example, rather than partitioning webpages into non-
overlapping groups, another alternative would be to allow overlaps,
e.g., for webpages spanning multiple topic areas. Another extension
would be to have notions of relatedness across different groups; one
might partition “news”-related sites from “politics”-related ones,
but the conditional probability of going to a politics site from a news
site may be higher than switching to, say, a travel site. Yet another
extension would be to assign higher probabilities of switching to a
given topic if the user had recently visited that topic. Developing
more refined user models is left for future work, and is beyond the
scope of this paper.

3.3 Attack design

Our attack comprises three broad steps:

Step 1: Apply standard website fingerprinting techniques

Consider a user who visits an ordered sequence of webpages (wy, wz, . ..
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Figure 2: An example of our attack identifying the group
with the longest consecutive sequence of webpages in the
top-5.

using Tor, and an attacker who collects the corresponding packet
traces (11, f2, . . .). The attack begins by first applying any existing
website fingerprinting (WF) algorithm to each ¢; independently. The
WF algorithm will output probabilities p{ : the probability that web-
page w; corresponds to webpage t;. Top-k(t;) is the set of webpages
with the k highest probabilities of corresponding to t;.

So far, this is just the standard approach to WF. To date, WF
techniques have been evaluated on their top-1 accuracy (when
w; € Top-1(t;)) or their top-5 accuracy (when w; € Top-5(¢;)),
treating each webpage independent of one another.

Step 2: Find the longest consecutively visited group Our user
model assigns each webpage w; to a specific group G(w;). Thus, in
the next step, the attacker identifies, for each packet trace t;, the
group of each webpage in Top-5(#;). For each t;, it computes which
group has the longest consecutive sequence of appearing in the
top-5, among the groups that are in Top-5(t;). It breaks ties with
the sum of the probabilities of the guessed groups.

Figure 2 provides a simplified example with four groups and a
browser session spanning 12 separate webpage visits. Blue dots
represent times when the respective group appeared in the top-5.
Note that the attack attributes tg to Group 2 instead of Group 3
because Group 2 has a consecutive sequence of five pages while
Group 3 has four.

Step 3: Choose webpages from the selected groups The final
step of the attack is to choose, from within each selected group,
the webpage with the highest probability according to the WF
algorithm. For example, recall from Figure 1 that the last packet
trace had two candidate webpages from the same group, and the
one with the highest probability was chosen.

Using our above notation, our attack chooses

wj = argmax,, {p,ic | G(wy) is the longest sequence at t;}

This gives us conditional probabilities, selected only from the web-
pages in the group that forms the longest sequence. Note in Figure 1
that the in-group webpage with the highest WF-assigned probabil-
ity is not necessarily the webpage in Top-1(t;); in fact, in practice,
it often is not.

Optionally permitting gaps WF techniques do not have perfect

top-5 accuracy. If the correct group had no pages in the top-5, it
would appear as a gap in the group sequence, and in the worst case
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Figure 3: Distribution of number of non-zero probability
classifications returned by TF.

could mean the correct group would not be identified. This can be
detrimental to our attack, because it could mean that the correct
group is not chosen, in which case the correct webpage will not be
chosen. To mitigate this, we also consider a variant implementation
in which the attacker can permit some configurable number of
consecutive gaps.

Limiting to top-5 For all of our experiments, we only consider
the top 5 predictions for each site in the session. To determine this
top-k value, we ran 1,000 trial sessions of length 50 and recorded
the number of non-zero probability classifications returned by TF
per fingerprint. This result is shown in Figure 3. TF did not return
more than five non-zero probability predictions for any of the trial
sessions.

While TF essentially forces us to limit it to the top-5 in this
paper, our technique naturally extends to other values of top-k. If a
different WF technique returns more than 5 non-zero probability
classifications, we can use a larger k to capture more non-zero
probability/"relevant” predictions.

3.4 Limitations

Our design requires some way to determine “similarity” of web-
pages in order to group them. While there is no restriction imposed
by our design on the exact model used to determine this, we do not
provide any definitive solution in this work but simply posit that
such a method of grouping exists. In our experiments we evaluate
several potential methods of doing so, such as grouping pages by
domain and grouping via nearest neighbors of fingerprints in a
KNeighborsClassifer. Other approaches could look at text similarity
metrics, utilize large language models/natural language processing,
or investigate links from one webpage to another. We leave finding
the optimal method to group websites to future work.

4 Fingerprint Dataset

In order to “stress-test” today’s website fingerprinting techniques,
we sought a fingerprinting dataset that: (1) Spanned many distinct
domains, particularly those that are commonly censored by various
nations, (2) Contained multiple internal pages, and not just the
landing page of the domain, and (3) Provided the specific URL that
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Dataset Closed world size | Total domains | Samples per page | Internal pages? | Page URLs?
Wang [27] 100 100 90 No N/A
AWF [22] 900 900 2,500 No N/A

DF [24] 95 95 1,000 No N/A

GE [20] 500 50 20 Yes Yes

BE [15] 950 95 20 Yes No
GTT23 [10] 1.4x107 1.1x10° N/A Yes No

Ours 7,110 466 30 Yes Yes

Table 1: Comparison between existing datasets and our dataset. Wang, AWF, and DF were used in the original TF work.

was visited. Unfortunately, we were unable to identify any publicly
available dataset that provided all three of these, so we instead
collected our own.

In this section, we describe how we collected our dataset, and
compare it to other publicly available ones. We then use our dataset
in our subsequent analyses of our browser session fingerprinting
in §5.

4.1 Data collection methodology

Domain selection We selected a total of 1,200 domains to begin
building our dataset. Like in previous datasets, we decided to use
the most popular sites globally as a starting point, taking the top
600 domains from the Tranco list [13] generated on 03 March 2024.
We then took additional sites from the Citizen Lab test lists [12]
curated specifically for discovering website censorship to model
real-world usage of these attacks. From test lists for China, Iran,
Russia, Saudi Arabia, and Sudan we chose 600 additional domains
(120 from each list) for a total of 1,200 unique domains to select
internal pages from for fingerprinting.

Internal page selection For each domain, we selected 20 pages
for fingerprinting. However, the process for selecting such pages
proved to be a roadblock: how do we pick internal pages from each
domain that are “interesting” (likely for a user to visit)? Manually
visiting each of the 1,200 domains and putting together a list of links
would be too time-consuming, and scraping links from the landing
page of each site didn’t provide any obvious way to select “inter-
esting” pages. The methodology used for the Hispar top web pages
dataset [2] was to use the “site:” search operator in Google search,
but we found that the top pages returned by Google were often
unrepresentative of pages users would commonly visit. However,
the same search operator in Bing provided much more “interesting”
results, so we filtered for HTML results only and used a web scraper
built on Python’s requests and BeautifulSoup libraries to scrape
all internal pages returned in the first five pages of Bing results.
Domains with fewer than 20 pages were excluded from our list of
pages to fingerprint. The remaining domains from the Tranco list
were manually checked against the now-discontinued Alexa top
sites list [23]. From the list of Tranco domains not in the Alexa
list, pages that either serve as hosting domains or are unlikely to
be visited by humans were also removed. This left us with 1,038
domains and 61,616 total webpages for building a dataset.

We then selected 10,000 webpages for fingerprinting - 20 pages
including landing page from 500 domains. These 500 domains were
made of the top 250 domains remaining from the Tranco list, and

50 random domains from each of the five Citizen Lab test lists.
Internal pages used for each domain were simply the top results
returned by Bing. This list of webpages served as our starting point
for fingerprinting.

Crawling methodology Our fingerprinting script runs a Tor
Browser in a virtual frame buffer using Xvfb, Selenium, and the
Stem Python controller library. The script is contained within a
Docker container to isolate from external traffic, and a subprocess
running tshark sniffs specifically for the Tor traffic being sent to
the guard nodes of our circuit, saving pertinent information such
as timestamps, source and destination IP addresses, source and
destination ports, and TLS record length. These fields are important
for processing the sniffed traffic into fingerprints, as the IP addresses
tell us the direction of each packet (request or response) and the
TLS record length gives us the number of Tor cells sent or received.
We ignore packets without a TLS record length, as the record length
gives us a precise count of cells in the data stream since each cell
is 514 bytes. We don’t save the packet captures themselves as they
consume too much storage space, and since the payloads of the
packets are encrypted, we can’t perform any analysis on them
anyway. Additionally, caching is disabled to ensure each page load
is fresh, and various datapoints like screenshots for checking for
captchas, document body scroll height, start/stop timestamps for
each page load, and error logs are also saved. To prevent traffic
from one page load leaking into the packet capture for another, we
always open a new tab for every page load and close the tab once
it finishes or times out, as tshark shows a clean cutoff shortly after
the tab is closed. As a result, a short sleep is added after closing the
tab to allow remaining traffic to flow in before starting the next
iteration.

For building our dataset, we load each page 125 times and aim
for 100 valid fingerprints, which gives a buffer of 25 fingerprints
for timeouts, errors, or other problems with individual fingerprint
attempts — these can be checked for through the error logs. We
then parallelize the data collection by running multiple containers,
each running the script on different sites. These fingerprints were
collected from October 2024 through March 2025.

Data validation Of course, not all fingerprints we collected were
ultimately valid fingerprints. We applied a variety of filters on
the initial collected set to get down to a valid set of fingerprints.
Our original goal was to filter out sites with less than 100 valid
fingerprints, but due to difficulties in training such a large set we
decided to settle for a minimum of 30 valid fingerprints instead.
A fingerprint is considered invalid if either an error was logged
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Site Domain
top-1 top-5 | top-1 top-5
GE 0.46 0.75 0.98 0.99
BE 0.64 0.81 0.86 0.93
Ours 0.58 0.77 0.90 0.96
Table 2: Top-1 and top-5 accuracies of both site and domain
predictions for TF on GE, BE, and our dataset.

Dataset

for the fingerprint or the logged scroll height for the page was
zero. Additionally, if we were unable to capture a screenshot for a
page we automatically rule all fingerprints for the page invalid, as a
screenshot is attempted after every successful page load. And lastly,
we check for fingerprints that are too short by taking the mean of
the valid fingerprints and removing those that are less than half of
the mean. If a site still has at least 30 fingerprints after these filters,
we add 30 fingerprints for the site to the final dataset.

4.2 Dataset properties

From the fingerprinted 10,000 sites across 500 domains, we filtered
down the final dataset to 7,110 unique sites across 466 domains,
with a mean of 15.2 sites per domain included. Each site had 30
fingerprints associated with it. Table 1 provides a comparison of
our dataset with those used in prior work.

4.3 Baseline evaluation with TF

Before evaluating our attack, we first performed a baseline eval-
uation on a TF model trained on our dataset and compared with
models trained on the GE and BE datasets. To be consistent with GE
we used a 4:1 ratio for splitting the dataset into training and testing.
This split was done for each webpage across all datasets to ensure
TF is not trained on the same webpages used for testing. Before
training, all fingerprints were preprocessed to match the inputs
for the original TF model. Each fingerprint was converted into a
list of +1 and -1 values for incoming and outgoing connections,
respectively. Because the original TF model requires an input with
a specific size, all fingerprints were either truncated or padded with
zeros to reach a length of 5,000. For each dataset, we ran 1,000 trials
of length 50 and recorded the top-1 and top-5 accuracies (whether
the true site is in the top-1 and top-5 predictions, respectively), as
well as the top-1 and top-5 domain accuracies (whether at least the
correct domain is in the top-1 and top-5 predictions, respectively).
The results are shown in Table 2. We observe that even though
TF can fairly reliably predict the domain of a fingerprint, it is un-
able to predict the specific webpage with similar levels of accuracy.
Additionally, the difference between top-1 and top-5 site accuracy
highlights the potential for our attack to bridge the gap and give
better predictions than TF alone.

5 Results

In this section, we evaluate the accuracy of our browsing session
fingerprinting attack, both with a state-of-the-art ML-based WF
technique as its building block, as well as with a set of simulated
WF techniques.
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Throughout this section, we evaluate our attack’s accuracy in
terms of the number of webpages it was able to precisely guess.

5.1 Attack Evaluation on TF

Recall that our attack uses an existing WF technique as its building
block. We use Triplet Fingerprinting [25], and evaluate all of the
critical parameters of our attack.

Evaluating the effect of pgyitch The pswitch parameter models
how likely a user is to switch from one group (e.g., topic) of web-
pages to another. To evaluate its effect on our attack’s accuracy, we
vary it between zero and one in increments of 0.1—when pswitch
is zero, a user never leaves the first webpage group they start in;
when pswitch is one, they randomly jump across groups with every
page visit. For each pgyitch interval we ran 1000 trials of length 50
and recorded the accuracy. Recall that our attack does not know
nor try to estimate pgywitch; it merely looks for the group with the
longest consecutive sequence of appearing in the top-5.

Figure 4 shows the accuracy of our attack (the y-axis) as pswitch
(the x-axis) across various other selections of parameters we will
discuss next. Across all of these results, the trend is clear: our
accuracy improves as users are less likely to switch to different
webpage groups. This is a natural and expected result; the longer a
user stays within a group, the more chances we have to identify the
group. However, a pleasantly surprising result is that our attack’s
accuracy smoothly transitions between the underlying model’s
top-1 accuracy (when pgyiten approaches 1.0) and its top-5 accuracy
(when pswitch approaches 0.0).

While it seems natural that our attack would reduce to standard
website fingerprinting techniques’ top-1 accuracy when pgyitch =
1.0—after all, at that point, each webpage visit is done nearly in-
dependent of the others—it is actually possible for our attack to
perform worse. This is because, by random chance, there may be a
group that appears multiple times in the top-5, leading our attack
to mistakenly believe that multiple pages in that group have been
visited. That said, this rarely happened in our experiments.

Evaluating the effect of the grouping method Another critical

parameter in our attack is how the websites are grouped together.

A sophisticated model of user behavior would account for this, but

that is beyond the scope of this paper, so instead we evaluate several

different groupings that we believe approach worst-case settings.
The groupings we evaluated are:

(1) Random grouping: We split all of the webpages up into groups
of size 10, with each webpage being placed into a random
group.

(2) Domain grouping: We placed all of the pages from a given
domain in the same group, allowing variable group sizes as
large as 20.

(3) K-neighbors classifier grouping: TF converts each fingerprint
into a vector in a high-dimensional Euclidean space. This
method groups together the ten webpages whose vectorized
fingerprints are closest together. We did this in the hopes of
creating a worst-case scenario, in which it would be difficult
to accurately classify pages within a given group.

(4) Radius Neighbors Classifier Grouping: Like with K-neighbors,
this technique also groups nearby vectors together, but by
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Figure 4: Attack accuracy at each pgyitcn, interval for each grouping method and gap length.

specifying a small radius of 0.6 within which to gather nearby
vectors.

Figure 4 shows that different groupings can have an effect on
our attack’s accuracy. Our worst-performing grouping (group by
domain) offers only a slight improvement over the baseline, while
other groupings such as random grouping and Radius Neighbors
Classifier grouping can achieve close to the baseline top-5 site
accuracy for low pgyiten values.

These results are encouraging, as they show that even in con-
trived, worst-case scenarios, our attack still has a marked improve-
ment over standard WF attacks.

Evaluating the effect of the max gap lengths Recall that our
attack can optionally allow for “gaps” in the the contiguous se-
quence of groups in the top-5. We evaluate several different max
gap sizes: 0 (no gaps allowed), 1, 2, and 3. For this experiment, we
used random groupings of webpages.

We observe that allowing for gaps in the contiguous sequence
can offer a slight increase in performance as well, particularly at low
Pswitch values. This is surprising, as TF does not provide nonzero
probabilities outside of the top-5. A WF technique that would give
such probabilities would likely see an increased utility in gaps.

Evaluating effect of group size One other parameter that is not
tested in the previously mentioned experiments is group size. Here
we evaluate the effects of group size on the attack’s performance.
To evaluate this, we used random grouping with group sizes of [1, 2,
5, 10, 30, 50, 100, 200, 400] and no gap. For each group size, we ran
1000 trials of length 50 at each increment of pgyiten and recorded
the accuracy. These results are shown in Figure 5. We observe that
group sizes at the upper and lower bounds have lower accuracies,
and the best accuracies in the middle come close to the baseline
top-5 site accuracy of 0.77. Note that this attack with group size 1
is the same as just using the baseline TF.

Evaluation on different datasets Lastly, we compare our at-
tack’s performance on three datasets: ours, BE, and GE. For this,
we used random grouping with group size 10, no gap, and the same
Pswitch increments as previous experiments. For each combination
of parameters and dataset, we ran 1000 trials each of length 50 and
recorded the accuracy. The results are shown in Figure 6. These re-
sults show that our attack is still able to improve upon TF’s baseline
performance even when other datasets are used instead of ours. The

Accuracy for (group_size, p_switch) pairs, 1000 trials @ 50 session length
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Figure 5: Accuracy given pairings of group size and pgyitch, on
random grouping,.

improvement also follows a fairly consistent curve: at low pswitch
values we are close to baseline top-5 accuracy for each dataset, and
we fall off to baseline top-1 accuracy once psyitch has a high value.
Collectively, these results show the efficacy of our technique on
improving TF, particularly if the user does not switch groups fre-
quently, where we can achieve close to baseline top-5 accuracy. This
improvement is observed under a variety of scenarios - different
groupings, different group sizes, and different datasets used.

5.2 How does it generalize to other
fingerprinters?

Our evaluation thus far has involved use of the state of the art
Triplet Fingerprinting technique. A natural question to ask is: how
well does our technique generalize to other fingerprinters? Does
it improve the performance of WF techniques that have markedly
bad top-1 and top-5 accuracy? Will the attack still be beneficial if
future WF techniques significantly improve top-1 accuracy?

Simulator design To evaluate this, we simulated fingerprinters
with a wide range of accuracies. Two parameters were given for the
simulator to simulate error: a top-1 accuracy parameter, which set
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Figure 6: Accuracy comparison for the attack on our dataset,
BE, and GE. The dots on the left denote TF’s top-5 accuracy,
and the dots on the right denote TF’s top-1 accuracy for the
respective datasets (from Table 2).

the probability that the simulator would have the correct site as the
top prediction, and a top-5 parameter, which set the probability that
the correct site would be in the top-5 predictions given that it is not
in the top-12 For all sites not in the top-5, we give a probability of 0,
and the rest of the top-5 is filled with random sites with decreasing
probability relative to their rank. To run, the simulator simply takes
in the list of test session sites and based on the top-1 and top-5
accuracy parameters chooses where to place the correct “prediction,”
returning the simulated top-k predictions for each site in the list.

Results We evaluate the performance of our attack on the sim-
ulated predictions. We have a set of 950 “sites” (same as BE) to
serve as our “fingerprints.” For this experiment we generate ran-
dom groups of size 10. There are three parameters we are changing
here: top-1 accuracy, top-5 accuracy, and pswitch. Each is tested at
increments of 0.1 in the range of [0,1]. For each combination of
(top-1 accuracy, top-5 accuracy, pswitch) We run 100 trials each of
length 25 and record both the accuracy of our attack and the differ-
ence from the simulator’s top-1 accuracy. For these experiments,
we set the maximum gap size to zero.

The accuracy results for pgyitch =0.2, 0.5, and 0.8 are shown in
Figures 7; Figure 8 shows how much these accuracy results improve
(or diminish) relative to the simulated fingerprinter’s top-1 accuracy.
From these results we see that the key factor appears to be the top-5
accuracy of the fingerprinter—if it is reasonably good at getting the
true site in the top-5, then the attack performs well even if the true
site is not frequently in top-1. This presents an interesting path
forward for future WF techniques: combined with our attack, top-5
accuracy may suffice. On the other hand, we observe that if the
fingerprinter already has an extremely high top-1 accuracy, our
attack often ends up hurting more than it helps.

2If @ = the top-1 accuracy and f3 = this top-5 accuracy, then the traditional top-5
accuracy isa + (1 — a) - p.

Nathan S. Pan, Phan Nguyen, Joshua Wang, Dave Levin

6 Conclusion

Users rarely open a browser, visit a single webpage, and then shut
their browser. Likewise, users rarely visit a series of websites chosen
uniformly at random, with no relevance to one another. And yet, to
date, website fingerprinting attacks have effectively assumed these.

In this paper, we show that taking into account not just the im-
mediate webpage a user is visiting but rather their entire browsing
session can help provide contextual clues that can significantly
improve website fingerprinting accuracy. We presented our attack,
which uses existing WF techniques as a building block, along with
novel processing that refines and improves the WF tools’ findings.
We evaluated it on existing fingerprint datasets as well as a new one
we collected for this work. To evaluate how our attack generalizes
to other, future WF techniques, we also simulated them with widely
varying degrees of accuracy. Collectively, our results show that our
attack improves WF accuracy, effectively boosting their accuracy
from top-1 rates to top-5 rates.

There remain several limitations, areas of improvement, and
interesting avenues of future work. Chief among these is the need
to study, develop, and analyze accurate models of user browsing
behavior. The results in this paper show that changes in behavior
(the value of pgywitch, how large groups of related webpages are, and
how they are grouped) can have significant impact on the results
of this attack. Fortunately, in most cases, our attack still improves
the performance of top-1 WF.

We believe that all future WF work should evaluate browsing
sessions, rather than singular webpages. To support these efforts,
we will be making our code and data publicly available.
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