
Efficient Approximations for
Cache-Conscious Data Placement
Ali Ahmadi

∗

Sharif University of Technology

Tehran, Iran

ali.ahmadi.star27@gmail.com

Majid Daliri

University of Tehran

Tehran, Iran

daliri.majid@ut.ac.ir

Amir Kafshdar Goharshady
†

The Hong Kong University of Science and Technology

Hong Kong, China

goharshady@cse.ust.hk

Andreas Pavlogiannis

Aarhus University

Aarhus, Denmark

pavlogiannis@cs.au.dk

Abstract
There is a huge and growing gap between the speed of ac-

cesses to data stored in main memory vs cache. Thus, cache

misses account for a significant portion of runtime over-

head in virtually every program and minimizing them has

been an active research topic for decades. The primary and

most classical formal model for this problem is that of Cache-

conscious Data Placement (CDP): given a commutative cache

with constant capacity 𝑘 and a sequence Σ of accesses to data

elements, the goal is to map each data element to a cache

line such that the total number of cache misses over Σ is

minimized. Note that we are considering an offline single-

threaded setting in which Σ is known a priori. CDP has been

widely studied since the 1990s. In POPL 2002, Petrank and

Rawitz proved a notoriously strong hardness result: They

showed that for every 𝑘 ≥ 3, CDP is not only NP-hard

but also hard-to-approximate within any non-trivial factor

unless P = NP. As such, all subsequent works gave up on

theoretical improvements and instead focused on heuristic

algorithms with no theoretical guarantees.

In this work, we present the first-ever positive theoretical

result for CDP. The fundamental idea behind our approach

is that real-world instances of the problem have specific

structural properties that can be exploited to obtain efficient

∗
A longer version is available at [1]. Authors are ordered alphabetically.

†
Corresponding author

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

PLDI ’22, June 13–17, 2022, San Diego, CA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-9265-5/22/06. . . $15.00

https://doi.org/10.1145/3519939.3523436

algorithms with strong approximation guarantees. Specifi-

cally, the access graphs corresponding to many real-world

access sequences are sparse and tree-like. This was already

well-known in the community but has only been used to de-

sign heuristics without guarantees. In contrast, we provide

fixed-parameter tractable algorithms that provably approxi-

mate the optimal number of cache misses within any factor

1 + 𝜖, assuming that the access graph of a specific degree

𝑑𝜖 is sparse, i.e. sparser real-world instances lead to tighter

approximations. Our theoretical results are accompanied by

an experimental evaluation in which our approach outper-

forms past heuristics over small caches with a handful of

lines. However, the approach cannot currently handle large

real-world caches and making it scalable in practice is a

direction for future work.

CCS Concepts: • Theory of computation→ Parameter-
ized complexity and exact algorithms; • Software and
its engineering→Memory management.

Keywords: cachemanagement, parameterization, data place-

ment, treewidth, cache misses, approximation

ACM Reference Format:
Ali Ahmadi, Majid Daliri, Amir Kafshdar Goharshady, and Andreas

Pavlogiannis. 2022. Efficient Approximations for Cache-Conscious

Data Placement. In Proceedings of the 43rd ACM SIGPLAN Interna-
tional Conference on Programming Language Design and Implemen-
tation (PLDI ’22), June 13–17, 2022, San Diego, CA, USA. ACM, New

York, NY, USA, 15 pages. https://doi.org/10.1145/3519939.3523436

1 Introduction
Cache Misses. Most modern memory systems consist of

a large but relatively slow main memory and one or more

small but much faster cache levels. When a program wants

to access a specific data item during its execution, the ac-

cessed data must first be present in the cache. Otherwise, it

will be copied from the main memory to the cache, possi-

bly causing the eviction of other data from the cache. This

copying is called a “cache miss”. Given the low speed of

main memory, the back-and-forth copying between cache

and main memory caused by cache misses is a significant

857

https://orcid.org/0000-0003-1702-6584
https://orcid.org/0000-0002-8943-0722
https://doi.org/10.1145/3519939.3523436
https://doi.org/10.1145/3519939.3523436
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3519939.3523436&domain=pdf&date_stamp=2022-06-09

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Ali Ahmadi, Majid Daliri, Amir Kafshdar Goharshady, and Andreas Pavlogiannis

contributor to runtime overheads in virtually all programs.

Hence, minimizing cache misses has been a central prob-

lem in various communities, including programming lan-

guages [14, 19, 27, 35, 38, 50, 51], compilers [14, 36, 43, 46]

and operating systems [11, 42, 49] for many decades.

Cache-conscious Data Placement (CDP). In this work,

we focus on Cache-conscious Data Placement (CDP). CDP is

arguably the most classical formulation for the problem of

minimizing cache misses. It was first introduced in ASPLOS

1998 by Calder et al [14] and then further formalized by

Petrank and Rawitz in POPL 2002 [38]. In this model, the

memory system consists of two levels: a large main memory

storing a set𝑂 of 𝑛 distinct objects 𝑜1, 𝑜2, . . . , 𝑜𝑛, and a small

cache with 𝑘 lines. Depending on the variant, each cache

line can hold 1 or 𝑡 objects. A placement map is a function 𝑓 :

𝑂 → {1, 2, . . . , 𝑘} thatmaps each object to a cache line.When

a placement map 𝑓 is fixed and an access to an object 𝑜𝑖 is

requested, the system first checks to see whether 𝑜𝑖 is already

present in its corresponding cache line 𝑓 (𝑜𝑖). If so, the access
is successful. Otherwise, a cache miss happens and 𝑜𝑖 must

first be copied from the main memory to line 𝑓 (𝑜𝑖) of the
cache, potentially evicting another object that was already

in this cache line. Only after this copying can the access

go through. Given a sequence Σ = ⟨𝜎1, 𝜎2, . . . , 𝜎𝑁 ⟩ ∈ 𝑂𝑁
of

accesses, CDP asks for a placement map 𝑓 that minimizes

cache misses over Σ.

Hardness of CDP. When considering the CDP problem,

it is usually assumed that 𝑘 and 𝑡 are small constants and

the complexity is studied with respect to the number of

objects, i.e. 𝑛, and the length of the access sequence, i.e. 𝑁 .

In [38], Petrank and Rawitz showed that the CDP problem

is NP-hard for any cache with more than two lines. They

also showed that not only is the problem NP-hard, but it

is also hard-to-approximate within any non-trivial factor

𝑂 (𝑁 1−𝜖) unless P=NP. This became a notorious and well-

known hardness result, causing all further works to focus on

heuristics with no worst-case bounds on their approximation

ratio. Some examples of this approach are [27, 28, 50, 51].

These heuristics try to identify and exploit affinities between

data items to minimize cache misses.

Access Graphs and Their Sparsity. A recurring struc-

ture in the cache management literature is that of an access
graph [12, 35, 46]. Simply put, an access graph is an undi-

rected graph which has one vertex corresponding to each

object 𝑜𝑖 ∈ 𝑂 and an edge between two vertices if they ap-

pear consecutively in the access sequence Σ. Informally, the

access graph models the simplest type of affinity between

data items. Several previous works also consider extensions

of access graphs to hypergraphs whose edges model affini-

ties between more than two data items [19, 35, 46]. It is

well-known that access graphs of real-world sequences are

often sparse, opening the door to heuristics based on graph

sparsity. Moreover, the optimal algorithm for data packing,

which is another formalism for minimizing cache misses, is

also based on the sparsity of access (hyper)graphs [19].

Our Focus. In this work, we consider the classical problem

of Cache-conscious Data Placement (CDP) from an algorith-

mic and complexity point-of-view. Note that our setting is

single-threaded and offline and we assume that the entire

sequence Σ of accesses is given as part of the input. We

focus on obtaining efficient algorithms that provably approx-

imate the optimal number of cache misses within a constant

multiplicative factor, assuming that the instance has sparse

access (hyper)graphs. This assumption was already shown to

hold for real-world instances in several previous works, such

as [19]. We use the treewidth of the access (hyper)graphs as

a measure of their sparsity.

Treewidth. Treewidth [10, 40, 41] is a well-known and oft-

used graph sparsity parameter. Intuitively, the treewidth

of a graph is a measure of its tree-likeness. Only trees and

forests have a treewidth of 1 and if a graph’s treewidth is𝑤,

then the graph can be decomposed into parts of size𝑤 + 1
that are connected to each other in a tree-like manner. See

Section 2.2 for a more formal definition. The algorithmic im-

portance of treewidth is due to the fact that many NP-hard

graph problems are solvable in polynomial time over graphs

of bounded treewidth [2, 6, 8, 9, 33]. Moreover, many fami-

lies of graphs that appear in real-world contexts are shown

to have small treewidth. This includes series-parallel and

outer-planar graphs [7]. Control flow graphs of structured

programs also have bounded treewidth [13, 15, 20, 34, 47],

leading to faster program analysis and model checking al-

gorithms [3, 16–18, 21–25, 30–32, 37, 39, 44]. Finally, access

(hyper)graphs of many classical algorithms and programs are

also shown to have small treewidth [19]. This is the family

that is most relevant to the current work.

Intuition behind the Parameter. At first sight, treewidth

of the access graph might come off as a surprising parameter.

However, it is quite natural to expect this parameter to be

small and this expectation was already confirmed by experi-

ments in [19]. The intuitive reason behind this is that most

real-world algorithms manipulate linear or tree-based data

structures, such as arrays, vectors, linked lists, heaps, binary

search trees and tries. Hence, the resulting access sequences

consist of accesses to these tree-like structures and other

helper variables which often have a short lifetime. So, the

access graph inherits much of the sparsity and tree-likeness

of the underlying data structures and the additional com-

plexity introduced by temporary variables does not make it

significantly denser. Treewidth is the classical parameter for

capturing and formalizing such tree-like properties.

Our Contributions. We present the first positive theoreti-

cal results for the classical and notoriously-hard problem of

Cache-conscious Data Placement (CDP). Our detailed results

are as follows:

858

Efficient Approximations for Cache-Conscious Data Placement PLDI ’22, June 13–17, 2022, San Diego, CA, USA

• Approximation Scheme: For every constant 𝜖 > 0, we

provide an efficient linear-time algorithm for CDP that

is guaranteed to obtain a (1 + 𝜖)-approximation of

the optimal number of cache misses, assuming that

the access graph of a specific degree 𝑑𝜖 has bounded

treewidth. In other words, our scheme obtains tighter

approximations for sparser instances.

• Hardness Result:We provide a stronger hardness result

and show that CDP is NP-hard even when restricted

to instances in which access hypergraphs of a fixed

degree 𝑑 have bounded treewidth. Intuitively, this sug-

gests that both parameterization (sparsity) and approx-

imation are needed in solving CDP. It is impossible to

approximate CDP without a sparsity assumption as

shown by [38]. On the other hand, our hardness result

shows that it is also impossible to solve the problem ex-

actly (without approximation) even when we assume

that access hypergraphs of a fixed degree 𝑑 are sparse.

• Experimental Results: We provide experimental results

on the benchmarks of [19] and caches with 3–6 lines.

On these small caches, our approach beats several well-

known heuristics in the literature in terms of the num-

ber of cache misses.

Novelty. In summary, we provide the first positive theoreti-

cal result for CDP by a combination of approximation and

parameterization. We also show a stronger hardness result

that suggests both approximation and parameterization are

probably necessary. Our algorithms are the first to provide

provable bounds on the approximation ratio. To the best of

our knowledge, graph sparsity parameters such as treewidth

were not previously used in the context of CDP. We are also

not aware of any other systems problem that is solved by

applying both parameterization and approximation.

2 Preliminaries
In this section, we provide a formal definition of the CDP

problem (mostly following [38]), as well as the necessary

background from parameterized complexity.

2.1 Cache-Conscious Data Placement

Memory System. We consider a memory system consisting

of a large main memory and a small cache with 𝑘 lines. We

also fix a set 𝑂 = {𝑜1, 𝑜2, . . . , 𝑜𝑛} of objects (data items). We

do not make any assumptions about the locations of objects

in the main memory or its size.

Placement Map. A placement map is a function 𝑓 : 𝑂 →
{1, 2, . . . , 𝑘} that maps each object to a cache line.

Direct Mapping vs 𝑡-way Mapping. In direct mapping, each
cache line can hold at most one data item at a time. In 𝑡-
way mapping, each cache line can hold up to 𝑡 objects. Our

main focus is on the direct mapping case, but our approaches

extend to 𝑡-way mapping as well.

Accesses and Cache Misses. Given a fixed placement map

𝑓 , when an access to an object 𝑜𝑖 is requested, 𝑜𝑖 must first

be present in cache line 𝑓 (𝑜𝑖). If this is not the case, then a

cache miss occurs and 𝑜𝑖 is copied from the main memory

to cache line 𝑓 (𝑜𝑖). If this cache line is already full, another

data item will be evicted from it. Note that if each cache line

can hold more than one object, then we should also fix a

replacement policy for each line. In this work, we assume

that the replacement policy is LRU, i.e. the least recently

used element is always evicted. This is because LRU is the

most commonly-used policy in practice [51]. Our algorithms

are also extensible to FIFO and ORP with minimal changes
1
.

Access Seqence. An access sequence is simply a sequence

Σ = ⟨𝜎1, 𝜎2, . . . , 𝜎𝑁 ⟩ ∈ 𝑂𝑁
of objects. Intuitively, Σ repre-

sents the order in which a program accesses the data items.

We denote byMisses𝑡
𝑘
(𝑓 , Σ) the number of cache misses that

occur in a 𝑡-way cache with 𝑘 lines if the placement map is

𝑓 and the accesses are made according to Σ. We assume the

cache is empty at the beginning and drop 𝑘 when it is clear

from the context. We also drop 𝑡 = 1 in direct mapping.

Cache-conscious Data Placement (CDP). Given a set

𝑂 = {𝑜1, . . . , 𝑜𝑛} of objects, an access sequence Σ ∈ 𝑂𝑁 ,

and cache parameters 𝑡 and 𝑘 as input, the Cache-conscious
Data Placement problem asks for an optimal placement map

𝑓 ∗ that minimizes the number of cache misses. More for-

mally, it asks for a placement map 𝑓 ∗, such that for any other

placement map 𝑓 , we have Misses𝑡
𝑘
(𝑓 ∗, Σ) ≤ Misses𝑡

𝑘
(𝑓 , Σ) .

Approximations. For an 𝜖 > 0, we say that an algorithm is a

(1 + 𝜖)-approximation of CDP if given the same inputs, it al-

ways produces a placement map 𝑓 such thatMisses𝑡
𝑘
(𝑓 , Σ) ≤

(1 + 𝜖) ·Misses𝑡
𝑘
(𝑓 ∗, Σ).

Instances. An instance of the CDP problem is a tuple 𝐼 =

(𝑛,𝑂, 𝑁, Σ, 𝑡, 𝑘) specifying all parts of the input.

2.2 Parameterization and Treewidth

Parameterized Complexity. The central idea in parameter-

ized complexity is to analyze the runtime of an algorithm not

only based on its input size 𝑛, but also based on another pa-

rameter 𝑝 [29]. The parameter itself can be explicit, i.e. part

of the input, or implicit, e.g. a structural property.

Fixed-parameter Tractability (FPT). A problem is called

Fixed-parameter Tractable (FPT) wrt a parameter 𝑝 , if there

exists an algorithm that solves the problem in time 𝑂 (𝑛𝑐 ·
𝑔(𝑝)), where 𝑛 is the input size, 𝑐 is a constant that does not

depend on either 𝑛 or 𝑝 and 𝑔 is an arbitrary computable

function [26, 29]. Intuitively, when a problem is FPT, the

instances in which the parameter 𝑝 is small are easy to solve

and can be handled in polynomial time.

When dealing with a hard problem, such as CDP, the main

challenge is to come up with a suitable parameter 𝑝 , such

1
The FIFO and ORP cases are removed since the space is limited and they

do not provide new insights. We will publish them as a tech report.

859

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Ali Ahmadi, Majid Daliri, Amir Kafshdar Goharshady, and Andreas Pavlogiannis

𝑜1 𝑜2

𝑜3 𝑜4

𝑜5 𝑜6

𝑜7

{𝑜1, 𝑜3, 𝑜4}
𝑏1

{𝑜1, 𝑜2}𝑏2 {𝑜3, 𝑜4, 𝑜6} 𝑏3

{𝑜4, 𝑜5, 𝑜6}𝑏4 {𝑜4, 𝑜6, 𝑜7} 𝑏5

Figure 1. A graph𝐺 = (𝑉 , 𝐸) (left) and a tree decomposition

𝑇 of width 2 for 𝐺 (right).

that (i) all or most real-world instances have a small 𝑝 , and

(ii) the problem becomes FPTwrt 𝑝 . Finding such a parameter

would effectively lead to efficient solutions for the real-world

instances of the problem. We now define the parameter that

will be used in this work, i.e. treewidth.

Graphs and Hypergraphs. A directed graph is a pair 𝐺 =

(𝑉 , 𝐸) where 𝑉 is a finite set of vertices and 𝐸 ⊆ 𝑉 × 𝑉 is

a finite set of edges. Each edge 𝑒 ∈ 𝐸 is an ordered pair of

vertices. An undirected graph is defined similarly, except that

each edge 𝑒 is a subset {𝑢, 𝑣} ⊆ 𝑉 . An ordered hypergraph is

a pair𝐺 = (𝑉 , 𝐸) where 𝐸 ⊆ 𝑉 +, i.e. each hyperedge 𝑒 ∈ 𝐸 is

an ordered tuple of vertices in 𝑉 . Similarly, in an unordered

hypergraph, each edge 𝑒 is simply a subset of vertices. The

base (hyper)graph of a directed graph/ordered hypergraph is

obtained by ignoring the order of vertices in each edge.

Tree Decompositions [26]. Consider an undirected / un-

ordered (hyper)graph 𝐺 = (𝑉 , 𝐸). A tree decomposition of 𝐺

is a rooted tree 𝑇 = (𝐵, 𝐸𝑇 , 𝑟) where:
(1) 𝐵 is the set of nodes in the tree and 𝐸𝑇 is the set of edges.

We call each node in 𝐵 a bag and 𝑟 ∈ 𝐵 is the root bag.
(2) Each bag 𝑏 ∈ 𝐵 has an associated subset 𝑉𝑏 ⊆ 𝑉 of

vertices. We reserve the word vertex for vertices of 𝐺 .

(3) Each vertex appears in at least one bag, i.e.

⋃
𝑏∈𝐵 𝑉𝑏 = 𝑉 .

(4) Each (hyper)edge appears in at least one bag. Formally,

for every 𝑒 ∈ 𝐸, there exists a bag 𝑏 ∈ 𝐵, such that 𝑒 ⊆ 𝑉𝑏 .
In other words, 𝑏 contains all endpoints of 𝑒 .

(5) Each vertex appears in a connected subtree of 𝑇 . Equiva-

lently, if a bag 𝑏3 ∈ 𝐵 is on the unique path between the

bags 𝑏1 and 𝑏2 in 𝑇, then 𝑉𝑏3 ⊇ 𝑉𝑏1 ∩𝑉𝑏2 , i.e. if 𝑣 ∈ 𝑉 ap-

pears in the two bags 𝑏1 and 𝑏2, then it must also appear

on any bag 𝑏3 that is on the unique path between them.

Note that tree decompositions do not distinguish between

ordered/directed and unordered/undirected edges, i.e. a tree

decomposition of an ordered/directed (hyper)graph is simply

a tree decomposition of its base graph.

Example 1. Figure 1 shows a graph 𝐺 and one of its tree
decompositions. Intuitively, in a tree decomposition the graph
is broken into several small pieces (bags) that are connected to
each other in a tree-like manner.

Treewidth [26, 40]. The width of a tree composition is de-

fined as the size of its largest bag minus 1, i.e. 𝑤 (𝑇) :=

max𝑏∈𝐵 |𝑉𝑏 | − 1. The treewidth of a (hyper)graph 𝐺 is the

smallest width among all of its tree decompositions.

Cut Property [6, 26]. Consider a (hyper)graph𝐺 and a tree

decomposition𝑇 of𝐺 and suppose that the vertices 𝑣1, 𝑣2 ∈ 𝑉
appear in bags 𝑏1, 𝑏2 ∈ 𝐵 respectively. Then every path from

𝑣1 to 𝑣2 in 𝐺 has to pass through every bag 𝑏3 that is on the

path from 𝑏1 to 𝑏2 in𝑇 . This is called the cut property of tree

decompositions.

Example 2. The tree decomposition in Figure 1 has a width
of 2 and is optimal. So, the treewidth of the graph 𝐺 is also 2.
Consider vertices 𝑜1 ∈ 𝑉𝑏2 and 𝑜7 ∈ 𝑉𝑏5 . Since 𝑏1 and 𝑏3 are on
the unique path from 𝑏2 to 𝑏5 in𝑇 , then any path that connects
𝑜7 to 𝑜1 in𝐺 has to intersect both of these bags. As an example,
consider the path ⟨𝑜7, 𝑜6, 𝑜5, 𝑜4, 𝑜1⟩. It intersects 𝑏3 in both 𝑜4
and 𝑜6. Similarly, it intersects 𝑏1 in both 𝑜1 and 𝑜4.

Dynamic Programming. The cut property enables one to

perform dynamic programming on low-treewidth graphs in a

similar manner to trees. Intuitively, in dynamic programming

approaches, each bag in a tree decomposition serves the

same purpose as a vertex in a tree whose removal breaks

the graph/tree down into several completely independent

connected components. This can potentially lead to much

faster algorithms, especially when the bags, and hence the

treewidth, are small. See [6, 26] for some examples and a

more detailed treatment.

Nice Tree Decompositions [26]. We say that a tree decom-

position 𝑇 = (𝐵, 𝐸𝑇) is nice if (i) the root bag and every leaf

bag ℓ are empty, i.e. 𝑉𝑟 = 𝑉ℓ = ∅, (ii) every bag has at most

two children, (iii) if a bag 𝑏 has a single child 𝑐 , then 𝑏 and

𝑐 differ in exactly one vertex, i.e. |𝑉𝑏 Δ 𝑉𝑐 | = 1, and (iv) if

a bag 𝑏 has two children 𝑐1 and 𝑐2, then 𝑉𝑏 = 𝑉𝑐1 = 𝑉𝑐2 .

Every tree decomposition can be easily converted to a nice

decomposition of the same width in linear time [26]. Nice

decompositions help us in designing dynamic programming

procedures in Section 3.3.

Computing Optimal Tree Decompositions. Given a graph

𝐺, computing its treewidth 𝑤 and an optimal tree decom-

position are FPT problems wrt𝑤 . Specifically, [5] provides

a linear-time algorithm. Hence, we always assume that an

optimal tree decomposition is given as part of the input.

3 An Efficient Parameterized
Approximation Scheme for CDP

In this section, we first formalize the notion of access hyper-

graphs and then use it to provide an efficient parameterized

approximation algorithm for CDP, consisting of two steps:

1. We reduce the problem of approximating CDP within

any constant factor (1 + 𝜖) to a special type of graph

coloring on a sparsified subgraph of the access hyper-

graph (Section 3.2).

860

Efficient Approximations for Cache-Conscious Data Placement PLDI ’22, June 13–17, 2022, San Diego, CA, USA

2. We provide a decomposition-based algorithm that ef-

ficiently solves the coloring problem on graphs that

have bounded treewidth (Section 3.3).

Putting the two ingredients above together, we achieve an

efficient solution for CDP which first turns CDP approxi-

mation into graph coloring and then efficiently colors the

graph, assuming that it has bounded treewidth. Given that

the bounded treewidth property holds for the access hyper-

graphs of many classical algorithms and programs [19], our

approach can provide arbitrarily tight approximations of

CDP in these cases. Throughout this section, we fix an input

instance 𝐼 = (𝑛,𝑂, 𝑁, Σ, 𝑡, 𝑘).

3.1 Access Graphs and Access Hypergraphs

Access Graph. The access graph of a CDP instance 𝐼 =

(𝑛,𝑂, 𝑁, Σ, 𝑡, 𝑘) is a directed graph𝐺 = (𝑂, 𝐸) in which every
vertex is a data item and there is an edge between 𝑜𝑖 and 𝑜 𝑗
if and only if 𝑜𝑖 appears directly before 𝑜 𝑗 somewhere in the

access sequence Σ. We do not add self-loops in 𝐺 .

Example 3. Consider the access sequence

Σ = ⟨𝑜1, 𝑜2, 𝑜1, 𝑜4, 𝑜5, 𝑜3, 𝑜3, 𝑜1, 𝑜2⟩.
Figure 2 shows the access graph of this sequence.

𝑜1 𝑜2 𝑜3 𝑜4 𝑜5

Figure 2. Access graph of Σ.

Access Hypergraphs. The access hypergraph of order 𝑑 of

the instance 𝐼 is an ordered hypergraph𝐺𝑑 = (𝑂, 𝐸), in which
there is an edge 𝑒𝑖 corresponding to each access 𝜎𝑖 in Σ =

⟨𝜎1, 𝜎2, . . . , 𝜎𝑛⟩. The edge 𝑒𝑖 is of the form ⟨𝜎 𝑗 , 𝜎 𝑗+1, . . . , 𝜎𝑖⟩
in which 𝑗 ≤ 𝑖 is the largest index where at least one of the

following holds:

1. ⟨𝜎 𝑗 , 𝜎 𝑗+1, . . . , 𝜎𝑖⟩ contains two accesses to 𝜎𝑖 .

2. ⟨𝜎 𝑗 , 𝜎 𝑗+1, . . . , 𝜎𝑖⟩ contains accesses to 𝑑 distinct objects.

3. 𝑗 = 1.

Informally, to form the edge corresponding to 𝜎𝑖 , we start

from 𝜎𝑖 and move backwards in the access sequence until

we either reach another access to 𝜎𝑖 or see 𝑑 distinct data

items or get to the beginning of the sequence.

Example 4. Consider the same access sequence as in Exam-
ple 3. Let 𝑑 = 3. The access hypergraph of order 3 has the
following edges:

𝑒1 = ⟨𝑜1⟩ 𝑒2 = ⟨𝑜1, 𝑜2⟩ 𝑒3 = ⟨𝑜1, 𝑜2, 𝑜1⟩
𝑒4 = ⟨𝑜2, 𝑜1, 𝑜4⟩ 𝑒5 = ⟨𝑜1, 𝑜4, 𝑜5⟩ 𝑒6 = ⟨𝑜4, 𝑜5, 𝑜3⟩

𝑒7 = ⟨𝑜3, 𝑜3⟩ 𝑒8 = ⟨𝑜5, 𝑜3, 𝑜3, 𝑜1⟩ 𝑒9 = ⟨𝑜3, 𝑜1, 𝑜2⟩

It is well-known that access hypergraphs are often sparse.

In [19], the sparsity was formalized and it was shown that

the access hypergraphs of many real-world algorithms and

programs have bounded treewidth
2
. Thus, wewill design FPT

algorithms parameterized by the treewidth of a sparsified

subgraph of the access hypergraphs.

3.2 Sparsification and Reduction to Graph Coloring
We now show how an approximation of the number of op-

timal cache misses in CDP can be obtained by reduction to

a graph coloring problem over certain subgraphs of access

hypergraphs.

Colorings. Consider a placementmap 𝑓 : 𝑂 → {1, 2, . . . , 𝑘}.
By definition, 𝑓 assigns a cache line to every object 𝑜𝑖 ∈ 𝑂 .
However, given that𝑂 is also the set of vertices in our access

hypergraphs, one can equivalently think of 𝑓 as a coloring

of vertices in these graphs with 𝑘 colors
3
.

Direct Mapping. Let us first assume that we have a direct

mapping instance, i.e. 𝑡 = 1 and each cache line can hold

only one object.

Sparsification. Consider the access hypergraph𝐺𝑑 of order

𝑑 . Recall that𝐺𝑑 has an edge 𝑒𝑖 corresponding to each access

𝜎𝑖 in Σ. We divide the edges of 𝐺𝑑 in two groups: 𝐸1 is the

set of edges 𝑒𝑖 that contain the vertex 𝜎𝑖 only once and 𝐸2 is

the set of edges 𝑒𝑖 that contain 𝜎𝑖 twice. Let 𝐺̃𝑑 = (𝑂, 𝐸2) be
the subgraph of 𝐺𝑑 containing only the edges of the second

kind. We call 𝐺̃𝑑 the sparsified access hypergraph of order

𝑑 . Informally, 𝐺̃𝑑 keeps the edge corresponding to an access

𝜎𝑖 iff the number of other distinct data items seen since the

last access to 𝜎𝑖 is less than 𝑑 . The intuition is to focus on

data items that are accessed regularly and whose placement

in the memory really matters in the number of cache misses.

These are elements that can likely cause capacity/conflict

misses. In contrast, we would rather ignore elements that

are accessed only once or rarely and cause a compulsory

first-time cache miss anyway. In other words, if many dis-

tinct data items have been accessed since the last time we

saw 𝜎𝑖 , then it is very likely that 𝜎𝑖 is already evicted from

the cache and that the current access leads to a cache miss.

Hence, we focus on minimizing the number of cache misses

in accesses corresponding to 𝐸2 only and assume all other ac-

cesses lead to cache misses. We will later see that discarding

𝐸1 does not affect the optimal value too much, in the sense

that the optimal solution to 𝐸2 is always within a constant

factor to the optimal solution overall. Hence, this leads to

an approximation of the optimal number of cache misses

within a constant multiplicative factor.

Canonical Hypergraphs. We say that an ordered hyper-

graph 𝐺 = (𝑉 , 𝐸) is canonical if every edge 𝑒 ∈ 𝐸 is of

2
The definition of access hypergraphs provided here is a bit different

from [19] since we allow our hyperedges to include the same vertex more

than once. However, this difference does not affect the treewidth.

3
Adjacent vertices need not necessarily have different colors.

861

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Ali Ahmadi, Majid Daliri, Amir Kafshdar Goharshady, and Andreas Pavlogiannis

the form ⟨𝑣1, 𝑣2, . . . , 𝑣𝑚, 𝑣1⟩ where 𝑣1 ∉ {𝑣2, . . . , 𝑣𝑚}. In other

words, every edge starts and ends with the same vertex and

the start/end vertex does not appear anywhere else in the

edge. Note that 𝐺̃𝑑 is canonical by definition.

Optimal Coloring. Consider a canonical hypergraph 𝐺 =

(𝑉 , 𝐸) and a coloring function 𝑓 : 𝑉 → {1, 2, . . . , 𝑘}. We de-

fineCost(𝑓 ,𝐺) as the number of edges 𝑒 = ⟨𝑣1, 𝑣2, . . . , 𝑣𝑚, 𝑣1⟩ ∈
𝐸 such that 𝑓 (𝑣1) ∈ 𝑓 ({𝑣2, . . . , 𝑣𝑚}), i.e. an edge contributes

to the cost if it has an internal vertex with the same color

as its start/end vertex. Such an edge is called a missed edge.
Given a canonical 𝐺 and a positive integer 𝑘 as input, the

Optimal Coloring problem asks for a coloring
ˆ𝑓 with minimal

cost, i.e. minimal number of missed edges.

The following lemma establishes a correspondence be-

tween missed edges in 𝐺̃𝑑 and cache misses in the CDP

instance 𝐼 .

Lemma 1. Let 𝑓 be a coloring of vertices in 𝐺̃𝑑 = (𝑂, 𝐸2)
or equivalently a placement map for 𝐼 = (𝑛,𝑂, 𝑁, Σ, 1, 𝑘). An
edge 𝑒𝑖 ∈ 𝐸2 is missed in the coloring 𝑓 iff a cache miss occurs
at its corresponding access 𝜎𝑖 with placement map 𝑓 .

Proof. Recall that 𝑒𝑖 is of the form ⟨𝜎 𝑗 , 𝜎 𝑗+1, . . . , 𝜎𝑖⟩ and since
𝐺̃𝑑 is canonical we have 𝜎𝑖 = 𝜎 𝑗 . If 𝑒𝑖 is a missed edge, then

there is some index 𝑗 + 1 ≤ 𝑙 ≤ 𝑖 − 1 such that 𝑓 (𝜎𝑙) = 𝑓 (𝜎𝑖).
Hence, when an access to 𝜎𝑙 is made, the data item 𝜎𝑖 is

evicted from the cache. As such, 𝜎𝑖 leads to a cache miss.

Conversely, if no such 𝑙 exists, then since 𝜎 𝑗 = 𝜎𝑖 , this item

has been moved to cache at time 𝑗 and remained there until

time 𝑖 . So, there is no cache miss at 𝜎𝑖 . □

Corollary 1. Misses𝑘 (𝑓 ∗, Σ) ≤ Misses𝑘 (ˆ𝑓 , Σ) ≤ Cost(ˆ𝑓 , 𝐺̃𝑑)+
|𝐸1 |.

Proof. Recall that 𝑓 ∗ is the optimal placement map that min-

imizes the number of cache misses and
ˆ𝑓 is the optimal

coloring that minimizes the number of missed edges in 𝐺̃𝑑 .

Consider
ˆ𝑓 as a placement map. Based on the lemma above,

it causes exactly Cost(ˆ𝑓 , 𝐺̃𝑑) cache misses in accesses corre-

sponding to 𝐸2. It can also cause at most |𝐸1 | cache misses

in accesses corresponding to 𝐸1 . □

This corollary allows us to bound the number of cache

misses by solving the optimal coloring problem over the

sparsified hypergraph 𝐺̃𝑑 . We will later provide an algo-

rithm for optimal coloring in Section 3.3. First, we provide

a theorem showing that this approach leads to a constant

approximation factor.

Theorem 1. We have

Misses𝑘 (𝑓 ∗, Σ) ≤ Misses𝑘 (ˆ𝑓 , Σ) ≤
𝑑

𝑑 − 𝑘 ·Misses𝑘 (𝑓 ∗, Σ).

Proof. The first inequality follows from the definition of 𝑓 ∗.
Let𝑀∗ be the set of indices of accesses that lead to a cache

𝑀∗𝐿

𝑖

𝑗

𝜎𝑖′, 𝜎𝑖′+1, . . . , 𝜎 𝑗 , 𝜎 𝑗+1, . . . , 𝜎𝑖

Figure 3. Construction of the bipartite graph B. There is an
edge from 𝑖 in 𝐿 to 𝑗 in 𝑀∗ iff in the access sequence Σ, 𝜎 𝑗

is between 𝜎𝑖 and the previous access to the same element,

i.e. 𝜎𝑖′ .

miss if we use the optimal placement map 𝑓 ∗ and 𝑀̂ be the

set of indices of accesses that lead to a cache miss when

the optimal coloring
ˆ𝑓 is used as the placement map. So,

|𝑀∗ | = Misses𝑘 (𝑓 ∗, Σ) and |𝑀̂ | = Misses𝑘 (ˆ𝑓 , Σ). Moreover,

let 𝐿 be the set of indices in Σ that correspond to edges in 𝐸1
but did not lead to a cache miss in 𝑓 ∗ . Note that we have

|𝑀∗ | ≥ Cost(ˆ𝑓 , 𝐺̃𝑑) + |𝐸1 | − |𝐿 |. (1)

To see this, let us count the number of misses caused by 𝑓 ∗ in
accesses corresponding to 𝐸1 and 𝐸2 separately. By definition

of 𝐿, 𝑓 ∗ causes |𝐸1 | − |𝐿 | cache misses in accesses of 𝐸1. By

definition of
ˆ𝑓 , we know that Cost(𝑓 ∗, 𝐺̃𝑑) ≥ Cost(ˆ𝑓 , 𝐺̃𝑑),

so by Lemma 1, 𝑓 ∗ causes at least Cost(ˆ𝑓 , 𝐺̃𝑑) cache misses

in accesses corresponding to 𝐸2. By combining Equation (1)

and Corollary 1, we get

|𝑀̂ | ≤ |𝑀∗ | + |𝐿 |. (2)

So, it suffices to find a bound on |𝐿 |.
Let us form a bipartite graph B in which 𝑀∗ serves as

the set of vertices on one part and 𝐿 as the set of vertices

on the other part. Let 𝑖 ∈ 𝐿, 𝑗 ∈ 𝑀∗ and 𝑖 ′ be the index of

the previous access to 𝜎𝑖 , i.e. 𝑖
′ = max{𝑙 < 𝑖 |𝜎𝑙 = 𝜎𝑖 }. Note

that 𝑖 ′ always exists, because if the first access to 𝜎𝑖 was at
time 𝑖 , then it would cause a cache miss with any placement

map and hence 𝑖 could not possibly be in 𝐿. We put an edge

from the vertex 𝑖 in 𝐿 to the vertex 𝑗 in𝑀 iff 𝑖 ′ < 𝑗 < 𝑖 . See

Figure 3. Note that the edges of B do not exactly correspond

to cache misses. The only reason behind this construction

is that counting the number of edges in two different ways

enables us to bound |𝐿 | in terms of |𝑀∗ |.
We now bound the number of edges of B in two ways.

First, consider a vertex 𝑖 ∈ 𝐿. The degree of 𝑖 is the number

of cache misses occurred between times 𝑖 ′ + 1 and 𝑖 − 1. Note
that 𝐿 only contains indices corresponding to 𝐸1. Hence, at

least 𝑑 distinct data items were accessed in this period. At

the end of time 𝑖 ′, at most 𝑘 of these items could potentially

be in the cache. Thus, there are at least 𝑑 − 𝑘 cache misses

in this period, i.e. the degree of 𝑖 is at least 𝑑 − 𝑘, and the

number of edges is at least |𝐿 | · (𝑑 − 𝑘).

862

Efficient Approximations for Cache-Conscious Data Placement PLDI ’22, June 13–17, 2022, San Diego, CA, USA

Now consider a vertex 𝑗 ∈ 𝑀∗ . We prove that the degree

of 𝑗 is at most 𝑘 . To get a contradiction, suppose that 𝑗 has

edges to 𝑖1, 𝑖2, . . . , 𝑖𝑘 , 𝑖𝑘+1 ∈ 𝐿. Given that the range of 𝑓 has

𝑘 different values, by the pigeonhole principle there exist

𝑎, 𝑏 ∈ {𝑖1, . . . , 𝑖𝑘+1} such that 𝑓 ∗ (𝜎𝑎) = 𝑓 ∗ (𝜎𝑏) = 𝑓0. We

know that 𝑎′ < 𝑗 < 𝑎 and 𝑏 ′ < 𝑗 < 𝑏. Without loss of

generality, assume 𝑎 > 𝑏. Since 𝜎𝑎 and 𝜎𝑏 are both mapped

to 𝑓0, 𝜎𝑎 was brought to cache line 𝑓0 at time 𝑎′ but was then
evicted on or before time 𝑏. Hence, we have a cache miss at

time 𝑎. This contradicts the definition of 𝐿. Therefore, the

total number of edges is at most |𝑀∗ | · 𝑘.
Putting the two bounds together, we get |𝐿 | ≤ |𝑀∗ | · 𝑘

𝑑−𝑘 .

Combining this with (2), we have |𝑀̂ | ≤ |𝑀∗ | · 𝑑
𝑑−𝑘 . □

Corollary 2. For any 𝜖 > 0, by applying the approach above
using the sparsified access hypergraph 𝐺̃𝑑𝜖 of order𝑑𝜖 := ⌈𝑘 + 𝑘

𝜖
⌉,

we obtain a (1 + 𝜖)−approximation of the optimal number of
cache misses in a direct-mapped cache, i.e. Misses𝑘 (ˆ𝑓 , Σ) ≤
(1 + 𝜖) ·Misses𝑘 (𝑓 ∗, Σ).

Extension to 𝑡-way Mapping. Extending the approach

above to 𝑡-way mapping is quite straightforward and all

steps go through naturally. Thus, we only present the differ-

ences. See [1, Appendix A] for a detailed treatment of the

𝑡-way mapping case.

Optimal 𝑡-way Coloring. In a canonical hypergraph𝐺 =

(𝑉 , 𝐸), we define Cost𝑡 (𝑓 ,𝐺) of a coloring function 𝑓 as the

number of edges 𝑒 = ⟨𝑣1, 𝑣2, . . . , 𝑣𝑚, 𝑣1⟩ that have at least

𝑡 distinct internal vertices with the same color as 𝑣1. We

call these edges missed edges. The optimal 𝑡−way coloring
problem asks for a coloring

ˆ𝑓 with minimal cost.

Lemma 1 and Corollary 1 apply to the 𝑡-way case with no

changes and Theorem 1 sees only a minor change:

Theorem 2. We have

Misses𝑡
𝑘
(𝑓 ∗, Σ) ≤ Misses𝑡

𝑘
(ˆ𝑓 , Σ) ≤ 𝑑

𝑑 − 𝑡 · 𝑘 ·Misses𝑡
𝑘
(𝑓 ∗, Σ).

Proof. Every step is the same as in the proof of Theorem 1,

except that the total cache size is now 𝑡 ·𝑘. Hence, the degree
of each vertex in 𝐿 is at least 𝑑 − 𝑡 · 𝑘 and the degree of each

vertex in𝑀∗ is at most 𝑡 · 𝑘 . □

Corollary 3. For any positive constant 𝜖 > 0, by applying
the approach above using the sparsified access hypergraph 𝐺̃𝑑𝜖

of order 𝑑𝜖 := ⌈𝑡 · 𝑘 + 𝑡 ·𝑘
𝜖
⌉, we obtain a (1+ 𝜖)−approximation

of the optimal number of cache misses in a 𝑡-way cache, i.e.
Misses𝑡

𝑘
(ˆ𝑓 , Σ) ≤ (1 + 𝜖) ·Misses𝑡

𝑘
(𝑓 ∗, Σ).

Remark. The proofs of the 𝑡-way results above, which are

provided in detail in [1, Appendix A], are applicable even

when the data items can have varying non-unit integer sizes.

Hence, our approach is not limited to unit-sized objects.

Corollaries 2 and 3 show that we can get arbitrarily tight

(1+𝜖)-approximations of the optimal number of cachemisses

provided that we can solve the optimal (𝑡-way) coloring prob-

lem on the sparsified access hypergraph of the right order

and obtain the coloring/placement map
ˆ𝑓 . This is summa-

rized in Algorithm 1. In Section 3.3, we provide a linear-time

FPT algorithm for solving the optimal coloring and 𝑡-way

coloring problems parameterized by treewidth. Hence, we

can obtain a (1 + 𝜖)-approximation of the number of cache

misses whenever the sparsified access hypergraph 𝐺̃𝑑𝜖 is

sparse and has bounded treewidth. It is also noteworthy that

Theorems 1 and 2 and hence the (1 + 𝜖) factor are not tight.
In practice, our approach may find much tighter approxima-

tions.

Algorithm 1 A (1 + 𝜖)-approximation for CDP

1: procedure CDP(𝑛,𝑂, 𝑁, Σ, 𝑡, 𝑘, 𝜖)

2: 𝑑 ← ⌈𝑡 · 𝑘 + 𝑡 ·𝑘
𝜖 ⌉

3: 𝐸2 ← ∅
4: for 𝑖 = 1 to 𝑁 do
5: 𝑒𝑖 ← ⟨𝜎𝑖 ⟩
6: for 𝑗 = 𝑖 − 1 downto 1 do
7: 𝑒𝑖 ← ⟨𝜎 𝑗 ⟩ + 𝑒𝑖
8: if 𝜎 𝑗 = 𝜎𝑖 then
9: 𝐸2 ← 𝐸2 ∪ {𝑒𝑖 }
10: break
11: if |set(𝑒𝑖) | > 𝑑 then
12: break
13: 𝑇 = (𝐵, 𝐸𝑇) ← NiceTreeDecomposition(𝑂, 𝐸2)
14: return OptimalColoring(𝑂, 𝐸2, 𝑡, 𝑘,𝑇)

3.3 A Decomposition-Based Algorithm for Optimal
Coloring

In this section, we consider the problem of (𝑡-way) optimal

coloring, as defined in Section 3.2 and provide a linear-time

FPT algorithm wrt treewidth for solving it, i.e. our algorithm

can solve the problem in linear time if the input graph is

sparse and has bounded treewidth.

Input. The input consists of two integers 𝑡 and 𝑘 , a canonical
hypergraph 𝐺 = (𝑉 , 𝐸) with 𝑛 vertices and 𝑁 edges, each

with at most 𝑑 endpoints, and a nice tree decomposition

𝑇 = (𝐵, 𝐸𝑇) of 𝐺 with 𝑂 (𝑛) bags and constant width𝑤 .

Output. The output is an optimal coloring function
ˆ𝑓 : 𝑉 →

{1, 2, . . . , 𝑘} with minimal total cost.

Note that we are mostly focused on direct mapping, i.e. 𝑡 =

1. However, our algorithm can handle any value of 𝑡 . More-

over, we can assume that a tree decomposition of linear size

is given as part of the input, since, as mentioned in Sec-

tion 2.2, there are linear-time FPT algorithms for computing

an optimal tree decomposition and making it nice.

Subtrees and Subgraphs. We say that a vertex 𝑣 appears

in a bag 𝑏, if 𝑣 ∈ 𝑉𝑏 . Similarly, an edge 𝑒 appears in 𝑏 if all

863

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Ali Ahmadi, Majid Daliri, Amir Kafshdar Goharshady, and Andreas Pavlogiannis

𝑜3 𝑜4

𝑜5 𝑜6

𝑜7

{𝑜3, 𝑜4, 𝑜6} 𝑏3

{𝑜4, 𝑜5, 𝑜6}𝑏4 {𝑜4, 𝑜6, 𝑜7} 𝑏5

Figure 4. The subtree 𝑇 ↓
𝑏3

(right) and the subgraph 𝐺
↓
𝑏3

(left)

of the bag 𝑏3 of Figure 1.

of its endpoints appear in 𝑏, i.e. 𝑒 ⊆ 𝑉𝑏 . We denote the set

of all edges appearing in 𝑏 by 𝐸𝑏 . For a bag 𝑏 ∈ 𝐵, we define
its corresponding subtree 𝑇

↓
𝑏

= (𝐵↓
𝑏
, 𝐸

𝑇
↓
𝑏

) as the part of 𝑇

that is rooted at 𝑏, i.e. including 𝑏 and all of its descendants.

The subgraph 𝐺
↓
𝑏
corresponding to 𝑏 consists of all vertices

and edges that appear in at least one bag in 𝑇
↓
𝑏
, i.e. 𝐺

↓
𝑏
=(⋃

𝑏′∈𝐵↓
𝑏

𝑉𝑏′,
⋃

𝑏′∈𝐵↓
𝑏

𝐸𝑏′
)
.

Example 5. Consider the graph and decomposition of Fig-
ure 1. Figure 4 shows the subtree and subgraph corresponding
to the bag 𝑏3 .

Partial Coloring. Let 𝑏 ∈ 𝐵 be a bag. A partial coloring
on 𝑏 is simply a function 𝑓𝑏 : 𝑉𝑏 → {1, 2, . . . , 𝑘} that assigns
a color to each vertex in 𝑏. We denote the set of all 𝑘 |𝑉𝑏 |

possible partial colorings on 𝑏 by C𝑏 .
Our algorithm is a bottom-up dynamic programming on

the nice tree decomposition 𝑇 . There are two basic observa-

tions: (i) since every bag 𝑏 is small and has size at most𝑤 + 1,
we can do a brute-force check of all partial colorings over

𝑏, and (ii) we can define subproblems on 𝐺
↓
𝑏
and its tree de-

composition 𝑇
↓
𝑏
and use the solutions in these subproblems

to solve the initial instances.

Dynamic Programming Variables. Based on the two ob-

servations above, for every bag 𝑏 ∈ 𝐵 and partial coloring

𝑓𝑏 ∈ C𝑏, the algorithm defines a dynamic programming vari-

able dp[𝑏, 𝑓𝑏] and initializes it to +∞. Our goal is to compute

values for the dp[·, ·] in a bottom-up order such that the

following invariant holds after we compute dp[𝑏, 𝑓𝑏]:

dp[𝑏, 𝑓𝑏] = Minimal possible cost of a coloring of 𝐺
↓
𝑏
(†)

in which 𝑉𝑏 is colored according to 𝑓𝑏

In other words, we solve subproblems on 𝐺
↓
𝑏
corresponding

to each possible partial coloring of 𝑏.

Computing dp Values. Our algorithm processes the bags of

𝑇 in a bottom-up order and performs the following actions

based on the type of the bag:

(1) Leaf Bags: Consider a leaf bag ℓ ∈ 𝐵. Given that 𝑇 is

nice, we have 𝑉ℓ = ∅. Hence, Cℓ contains only a single

trivial coloring 𝑓ℓ . Since there are no edges in 𝐺
↓
ℓ
, the

total cost would always be 0. Hence, the algorithm sets

dp[ℓ, 𝑓ℓ] = 0.

(2) Bags with a Single Child: Suppose that 𝑏 ∈ 𝐵 is a bag

with a single child 𝑐 ∈ 𝐵. Given that 𝑇 is nice, we have

|𝑉𝑏 Δ 𝑉𝑐 | = 1. The algorithm considers two cases:

(i) 𝑉𝑏 = 𝑉𝑐 ∪ {𝑣}, i.e. the bag 𝑏 has one vertex 𝑣 which

does not appear in its child 𝑐: In this case, each

partial coloring 𝑓𝑏 ∈ C𝑏 induces a unique partial

coloring 𝑓𝑐 := 𝑓𝑏 |𝑉𝑐 on 𝑐 . Hence, the minimal total

cost in 𝐺
↓
𝑐 is dp[𝑐, 𝑓𝑐] which is already computed

in previous steps. The algorithm should compute

dp[𝑏, 𝑓𝑏], i.e. the minimal cost in 𝐺
↓
𝑏
. The edges in

𝐺
↓
𝑏
can be divided in two sets: (a) edges that appear

only in 𝐺
↓
𝑏
but not in 𝐺

↓
𝑐 ; and (b) edges that appear

𝐺
↓
𝑐 . Note that every edge 𝑒 = ⟨𝑣1, 𝑣2, . . . , 𝑣𝑚, 𝑣1⟩ in

part (a) must have all of its endpoints in 𝑉𝑏 . Hence,

the partial coloring 𝑓𝑏 fixes the colors of all 𝑣𝑖 . So,

the algorithm can simply iterate over the 𝑣𝑖 ’s and

check whether the edge 𝑒 is missed. Moreover, the

optimal cost (number of missed edges) in part (b) is

given by dp[𝑐, 𝑓𝑐] . Thus, the algorithm sets

dp[𝑏, 𝑓𝑏] = dp[𝑐, 𝑓𝑐]+ number of missed edges in (a).

b

c

Figure 5. 𝑏 has one vertex more than 𝑐 . A coloring of 𝑏 also

colors 𝑐 . New edges in 𝐺
↓
𝑏
, i.e. part (a), are shown in red.

(ii) 𝑉𝑐 = 𝑉𝑏 ∪ {𝑣}, i.e. the child 𝑐 has one vertex 𝑣 which
does not appear in its parent 𝑏: In this case, we

have𝐺
↓
𝑏
= 𝐺

↓
𝑐 . However, a partial coloring function

𝑓𝑏 ∈ C𝑏 does not provide a color for the vertex 𝑣 .

Let 𝑓𝑏 [𝑣 → 𝑖] be an extension of 𝑓𝑏 that maps 𝑣 to 𝑖 .

The algorithm sets

dp[𝑏, 𝑓𝑏] =
𝑘

min

𝑖=1
dp[𝑐, 𝑓𝑏 [𝑣 → 𝑖]] .

This is correct because𝐺
↓
𝑏
= 𝐺

↓
𝑐 and the only partial

colorings in C𝑐 that have no conflict with 𝑓𝑏 are

precisely those of the form 𝑓𝑏 [𝑣 → 𝑖] .

b

c

Figure 6. 𝑐 has one vertex 𝑣 more than its parent 𝑏. The

coloring of 𝑓𝑏 sets colors for all vertices of 𝑐 except 𝑣 . This

vertex can have any color.

864

Efficient Approximations for Cache-Conscious Data Placement PLDI ’22, June 13–17, 2022, San Diego, CA, USA

(3) Bags with Two Children: Consider a bag 𝑏 with two

children 𝑐1 and 𝑐2. Since𝑇 is nice, we have𝑉𝑏 = 𝑉𝑐1 = 𝑉𝑐2

and𝐺
↓
𝑏
= 𝐺

↓
𝑐1∪𝐺

↓
𝑐2 . So, when computing dp[𝑏, 𝑓𝑏],we can

use the same partial coloring function 𝑓𝑏 for both 𝑐1 and

𝑐2 and then the number of missed edges in 𝐺
↓
𝑏
is equal

to the number of missed edges in𝐺
↓
𝑐1 plus the number of

missed edges in 𝐺
↓
𝑐2 minus the number of missed edges

that were counted in both. If an edge 𝑒 is in both 𝐺
↓
𝑐1

and 𝐺
↓
𝑐2 , then all of its endpoints must appear in both

graphs. Using the last property of tree decompositions

(see Section 2.2), we conclude that all of its endpoints

have appeared in 𝑏 and hence 𝑒 ∈ 𝐸𝑏 = 𝐸𝑐1 = 𝐸𝑐2 . Thus,

the algorithm sets:

dp[𝑏, 𝑓𝑏] = dp[𝑐1, 𝑓𝑏] + dp[𝑐2, 𝑓𝑏]
− number of missed edges in 𝐸𝑏

As before, the algorithm can check whether an edge 𝑒 ∈
𝐸𝑏 is missed because the partial coloring 𝑓𝑏 provides the

color information for all endpoints of 𝑒 .

b

c1 c2

Figure 7. 𝑏 has two children 𝑐1 and 𝑐2. A coloring of 𝑏 will

also color all vertices in 𝑉𝑐1 and 𝑉𝑐2 . Some edges are shared

between 𝐺
↓
𝑐1 and 𝐺

↓
𝑐2 . All such edges appear in 𝑏.

Computing the FinalAnswer. Since𝑇 is nice, we have𝑉𝑟 =

∅. So, there is only one possible partial coloring ⊥∈ C𝑟 for
the root bag 𝑟 . Moreover, we have𝐺

↓
𝑟 = 𝐺. So, the algorithm

outputs dp[𝑟,⊥] as the minimal number of missed edges.

Algorithm 2 shows all steps of our method for obtaining the

cost of the optimal coloring.

Finding the Optimal Coloring. The algorithm above ob-

tains the minimal number of missed edges / minimal cost.

As is common in dynamic programming, one can obtain the

optimal coloring itself by simply keeping track of the partial

colorings that led to the optimal dp[·, ·] value at every step

of the algorithm.

Theorem 3. Given positive integer constants 𝑡 and𝑘 , a canon-
ical hypergraph 𝐺 with 𝑛 vertices whose edges have at most 𝑑
endpoints, and a nice tree decomposition of 𝐺 with 𝑂 (𝑛) bags
and width 𝑤 , the algorithm above solves the 𝑡-way optimal
coloring problem in total runtime 𝑂 (𝑛 · 𝑘𝑤+1 · (𝑘 + 𝑑 ·𝑤𝑑)) .

Proof. The correctness of the algorithmwas argued in its pre-

sentation above. We focus on the runtime bound. There are

𝑂 (𝑛) bags and the algorithm defines at most 𝑘𝑤+1 different
dp[·, ·] variables at each bag 𝑏, since there are at most 𝑘𝑤+1

Algorithm 2 Parameterized algorithm for optimal coloring

1: procedure OptimalColoring(𝑉 , 𝐸, 𝑡, 𝑘,𝑇 = (𝐵, 𝐸𝑇))
2: for 𝑏 ∈ 𝐵 in bottom-up order do
3: for 𝑓𝑏 : 𝑉𝑏 → {1, 2, . . . , 𝑘} do
4: if 𝑏.children = ∅ then
5: dp[𝑏, 𝑓𝑏] ← 0

6: else if |𝑏.children| = 1 then
7: 𝑐 ← 𝑏.children[1]
8: if 𝑉𝑐 ⊆ 𝑉𝑏 then
9: 𝑣 ← 𝑉𝑏 \𝑉𝑐
10: 𝑓𝑐 ← 𝑓𝑏 |𝑉𝑐
11: dp[𝑏, 𝑓𝑏] ← dp[𝑐, 𝑓𝑐]
12: for 𝑒 ∈ 𝐸𝑏 do
13: if 𝑣 ∈ 𝑒 ∧ is_missed(𝑒, 𝑓𝑏) then
14: dp[𝑏, 𝑓𝑏] ← dp[𝑏, 𝑓𝑏] + 1
15: else if 𝑉𝑏 ⊆ 𝑉𝑐 then
16: 𝑣 ← 𝑉𝑐 \𝑉𝑏
17: dp[𝑏, 𝑓𝑏] ← +∞
18: for 𝑖 = 1 to 𝑘 do
19: 𝑓𝑐 ← 𝑓𝑏 [𝑣 → 𝑖]
20: dp[𝑏, 𝑓𝑏] ← min(dp[𝑏, 𝑓𝑏], dp[𝑐, 𝑓𝑐])
21: else if |𝑏.children| = 2 then
22: 𝑐1, 𝑐2 ← 𝑏.children
23: dp[𝑏, 𝑓𝑏] ← dp[𝑐1, 𝑓𝑏] + dp[𝑐2, 𝑓𝑏]
24: for 𝑒 ∈ 𝐸𝑏 do
25: if is_missed(𝑒, 𝑓𝑏) then
26: dp[𝑏, 𝑓𝑏] ← dp[𝑏, 𝑓𝑏] − 1
27: 𝑟 ← 𝑇 .root
28: return dp[𝑟,⊥]

partial colorings in C𝑏 . Case (1) spends 𝑂 (1) time per vari-

able and Case (2.ii) takes the minimum of 𝑘 values in 𝑂 (𝑘).
In cases (2.i) and (3), all edges in the current bag should be

checked to see if they are missed. There are at most (𝑤 + 1)𝑑
such edges and checking each of them takes 𝑂 (𝑑)4. □

Remark. The bound above is a theoretical worst-case bound

and not tight. Our algorithm is indeedmuch faster in practice.

Moreover, we can improve the runtime to𝑂 (𝑁 ·𝑘𝑤+2) using a
slightly different notion of nice tree decompositions. See [1,

Appendix B] for details of theoretical improvements and

Section 5 for experimental results.

Corollary 4. When 𝑘,𝑤 and 𝑑 are bounded, our algorithm
solves the optimal coloring problem in linear time 𝑂 (𝑛).

We are now ready to present our main theorem:

Theorem 4. For any 𝜖 > 0, there exists an order 𝑑𝜖 , such
that by applying our tree decompostion-based algorithm to
the sparsified access hypergraph 𝐺̃𝑑𝜖 , we obtain a linear-time

4
Without loss of generality, we can assume every edge in 𝐺̃𝑑 has exactly

𝑑 + 1 endpoints. Each edge has exactly 𝑑 distinct vertices and removing

repetitive internal vertices from the edge has no effect in our algorithm.

865

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Ali Ahmadi, Majid Daliri, Amir Kafshdar Goharshady, and Andreas Pavlogiannis

(1 + 𝜖)−approximation of the optimal number of cache misses,
as well as a placement map ˆ𝑓 such that

Misses𝑡
𝑘
(ˆ𝑓 , Σ) ≤ (1 + 𝜖) ·Misses𝑡

𝑘
(𝑓 ∗, Σ).

For direct mapping, we have 𝑑𝜖 = ⌈𝑘 + 𝑘
𝜖
⌉ and for 𝑡-way

mapping, 𝑑𝜖 = ⌈𝑡 · 𝑘 + 𝑡 ·𝑘
𝜖
⌉ .

Proof. Direct result of Corollaries 2, 3 and 4. □

4 Hardness of CDP in Bounded Treewidth
As proven in [38], it is impossible to approximate CDPwithin

any non-trivial factor unless P=NP. In this section, we show

that for every positive integer constant 𝑑 , finding an exact
solution to the CDP problem remains NP-hard even if the

access hypergraph 𝐺𝑑 of order 𝑑 has constant treewidth.

These two complementary hardness results show that both

parameterization and approximation are necessary for our

efficient solution in Section 3 and the problem remains NP-

hard if only one of them is applied.

Theorem 5 (Hardness of CDP with Direct Mapping). For
every positive integer constant 𝑑 , the CDP problem with direct
mapping is NP-hard even when limited to instances where the
treewidth of 𝐺𝑑 is bounded by a constant.

Example 6. Before providing a formal proof, let us illustrate
the main ideas by an example. Our goal is to find a reduction
from general CDP, which is NP-hard, to the special case of
CDP in which the treewidth is bounded. Consider the access
sequence of Example 3:

Σ = ⟨𝑜1, 𝑜2, 𝑜1, 𝑜4, 𝑜5, 𝑜3, 𝑜3, 𝑜1, 𝑜2⟩.
Suppose that we have a cache of size 𝑘 = 2 and set 𝑑 = 2 in
the theorem above. In other words, we want to reduce our CDP
instance 𝐼 = (𝑛,𝑂, 𝑁 ′, Σ, 1, 𝑘) = (5, {𝑜1, . . . , 𝑜5}, 9, Σ, 1, 2)
to another CDP instance 𝐼 ′ = (𝑛′,𝑂 ′, 𝑁 ′, Σ′, 1, 𝑘 ′) such that
the access graph of 𝐼 ′ has small treewidth. We first intro-
duce two new data elements (objects) 𝜏1 and 𝜏2 and set 𝑂 ′ =
{𝑜1, . . . , 𝑜5, 𝜏1, 𝜏2}. Intuitively, wewant to take Σ and add ⟨𝜏1, 𝜏2⟩
between any two consecutive accesses, so that the treewidth of
the access sequence becomes small. This leads to

Σ̂ = ⟨𝜏1, 𝜏2, 𝑜1, 𝜏1, 𝜏2, 𝑜2, 𝜏1, 𝜏2, 𝑜1, 𝜏1, 𝜏2, 𝑜4, 𝜏1, 𝜏2, 𝑜5
𝜏1, 𝜏2, 𝑜3, 𝜏1, 𝜏2, 𝑜3, 𝜏1, 𝜏2, 𝑜1, 𝜏1, 𝜏2, 𝑜2, 𝜏1, 𝜏2⟩

Note that every access to any original data item 𝑜𝑖 is now
preceded and succeeded by the new elements 𝜏2 and 𝜏1. Ignoring
edge directions and repetitions, this leads to an access graph
that is almost bipartite, except for the edge between the new
elements. See Figure 8. We can easily find a tree decomposition
of constant width 2 for this access graph, as shown in Figure 9.
We put a bag containing only the new elements as the root
and add a child of the form {𝜏1, 𝜏2, 𝑜𝑖 } for each 𝑜𝑖 . It is easy to
verify that this is a valid tree decomposition.
To have a reduction, we must be able to obtain the optimal

number of cache misses in 𝐼 from the optimal number of cache

𝜏1𝜏2𝑜1 𝑜2 𝑜3 𝑜4 𝑜5

𝜏1 𝜏2

Figure 8. Base access graph of the sequence Σ̂.

{𝜏1, 𝜏2, 𝑜1} {𝜏1, 𝜏2, 𝑜2} {𝜏1, 𝜏2, 𝑜3} {𝜏1, 𝜏2, 𝑜4} {𝜏1, 𝜏2, 𝑜5}

{𝜏1, 𝜏2}

Figure 9. A tree decomposition of width 2 for the graph of

Figure 8.

misses in 𝐼 ′, but an optimal data placement for Σ̂ might have
no resemblance to its counterpart for Σ. So, we first increase
our cache size by setting 𝑘 ′ = 4, and then add a gadget that
ensures each 𝜏𝑖 gets its own dedicated cache line. This ensures
that exactly 2 = 𝑘 cache lines remain for the 𝑜𝑖 ’s and hence
we can simulate the original instance. To achieve this property,
we simply append many repetitions of ⟨𝜏1, 𝜏2⟩ to the end of Σ̂,
and define:

Σ′ = Σ̂ · ⟨𝜏1, 𝜏2⟩ |Σ̂+1 | .
In other words, Σ′ is obtained by appending |Σ̂ + 1| copies of
⟨𝜏1, 𝜏2⟩ to the end of Σ̂. Note that in 𝐼 ′, the new items 𝜏1 and 𝜏2
should be assigned to different cache lines. Otherwise, we will
get 2 · (Σ̂ + 1) cache misses in the second part of Σ′ since every
access to the new items will be a miss. In contrast, if they are
assigned to the same cache line, we can get at most |Σ′ | cache
misses in the first part and none in the second.

Now consider an optimal data placement for 𝐼 ′ and suppose
that it assigns 𝜏1 and some original object 𝑜𝑖 to the same cache
line. This means every access to 𝑜𝑖 or 𝜏1 in Σ̂ is a miss. We can
modify our data placement and assign 𝑜𝑖 to any other cache
line that is not assigned to 𝜏1 or 𝜏2, and this will not increase
the number of cache misses. In the worst case, every cache miss
on 𝑜𝑖 is preserved and every cache miss on 𝜏1 is replaced by
a miss on another element that shares a cache line with 𝑜𝑖 .

Hence, there is an optimal data placement 𝑓 ′ for 𝐼 ′ in which 𝜏1
and 𝜏2 have their own dedicated cache lines. This means that
the other elements must be put into 𝑘 ′ − 2 = 𝑘 lines and hence
𝐼 is simulated by 𝐼 ′. So, we can just count the number of cache
misses on 𝑜𝑖 ’s in 𝐼 ′ and this gives us the optimal number of
misses in 𝐼 .

866

Efficient Approximations for Cache-Conscious Data Placement PLDI ’22, June 13–17, 2022, San Diego, CA, USA

𝑋 ∪ {𝑜1} 𝑋 ∪ {𝑜2} . . . 𝑋 ∪ {𝑜𝑛}

𝑋

Figure 10. A decomposition of 𝐺 ′
𝑑
with constant width 𝑑 .

Proof of Theorem 5. We provide a polynomial-time reduction

from the general case of CDP to low-treewidth CDP. Since

the former is NP-hard [38], then so is the latter. Let 𝐼 =

(𝑛,𝑂, 𝑁, Σ, 1, 𝑘) be a CDP instance with direct mapping. We

create a new CDP instance 𝐼 ′ = (𝑛′,𝑂 ′, 𝑁 ′, Σ′, 1, 𝑘 ′) where:
• 𝑛′ = 𝑛 + 𝑑 and 𝑂 ′ = 𝑂 ∪ {𝜏1, 𝜏2, . . . , 𝜏𝑑 }, i.e. we add 𝑑
new objects.

• 𝑁 ′ = 𝑑2 · 𝑁 + 𝑑2 + 2 · 𝑑 · 𝑁 + 2 · 𝑑 + 𝑁 and the access

sequence Σ′ is of the following form:

𝑋 𝜎1 𝑋 𝜎2 𝑋 . . . 𝑋 𝜎𝑁 𝑋 𝑋𝑑 ·𝑁+𝑑+𝑁+1

where 𝑋 = ⟨𝜏1, 𝜏2, . . . , 𝜏𝑑⟩. Intuitively, we add 𝑋 at the

beginning and end of Σ, as well as in between every

two accesses. Finally, we add 𝑑 · 𝑁 + 𝑑 + 𝑁 + 1 more

copies of 𝑋 to the end.

• 𝑘 ′ = 𝑘 + 𝑑, i.e. we add 𝑑 new cache lines.

Let 𝑓 ′ be an optimal placement function for 𝐼 ′. Note that

for every 𝑖 ≠ 𝑗, we have 𝑓 ′(𝜏𝑖) ≠ 𝑓 ′(𝜏 𝑗). This is because
assigning 𝜏𝑖 and 𝜏 𝑗 to the same cache line will cause at least

𝑑 · 𝑁 + 𝑑 + 𝑁 + 1 cache misses in the final part of Σ′, i.e. in
𝑋𝑑 ·𝑁+𝑑+𝑁+1, whereas any placement that assigns different

cache lines to each of the 𝜏𝑙 ’s leads to no cache misses in this

part. The length of the rest of the sequence is 𝑑 · 𝑁 + 𝑑 + 𝑁
which is a natural upper-bound on the number of possible

cache misses. Next, we argue that there is an optimal 𝑓 ′ that
does not assign any 𝜏𝑖 and 𝑜 𝑗 to the same cache line. Suppose

that 𝑓 (𝜏𝑖) = 𝑓 (𝑜 𝑗). Then every access to 𝑜 𝑗 at any time 𝑎 is

a cache miss, since 𝑓 (𝑜 𝑗) contains 𝜏𝑖 . Similarly, the access to

𝜏𝑖 at time 𝑎 + 𝑖 is also a cache miss. We now change 𝑓 (𝑜 𝑗)
arbitrarily to some other value 𝑞 that is not shared with any

𝜏𝑙 . It is easy to verify that this cannot increase the number

of cache misses. In the worst case, the misses on 𝑜 𝑗 remain

and the misses on 𝜏𝑖 are replaced by misses on the first other

access that is mapped to 𝑞. By repeating this process, we

will obtain an optimal 𝑓 ′ that uses 𝑑 of the cache lines for

{𝜏1, . . . , 𝜏𝑑 } and the other 𝑘 lines for 𝑂. Hence, 𝑓 ∗ = 𝑓 ′|𝑂
is an optimal solution for 𝐼 . This completes the reduction.

Figure 10 is a decomposition of this graph with width 𝑑 . □

Theorem 6 (Hardness of CDP with 𝑡-way Mapping). For all
positive integer constants 𝑑 and 𝑡 , the CDP problem with 𝑡-way
mapping is NP-hard even when limited to instances where the
treewidth of 𝐺𝑑 is bounded by a constant.

Proof. Section 4.3 of [38] provides a construction that, by

introducing new data items and polynomially increasing the

instance size, simulates a direct-mapping cache by a 𝑡−way
mapping cache. The construction in [38] uses a constant

number of extra data elements and does not blow up the

treewidth of 𝐺𝑑 . We can then apply Theorem 5. □

5 Experimental Results
In this section we report on an implementation and experi-

mental evaluation of our algorithm for CDP.

Implementation. We implemented our approach, i.e. the

algorithm of Section 3.3 for direct-mapped caches with the

optimizations of [1, Appendix B], in C++ and used the LibTW

library [48] for computing optimal tree decompositions.

Machine. All results were obtained on an Ubuntu 20.04

machine using a single thread of an Intel Xeon E3-1220 v2

Processor (3.1 GHz, 8M Cache) with 32 GB of RAM.

Benchmarks. We used the benchmarks of [19] for obtaining

experimental results. These benchmarks contain access se-

quences Σ that are generated from a wide variety of classical

algorithms including in linear algebra, sorting, divide-and-

conquer, dynamic programming and string matching. In [19],

they were introduced as benchmarks for the problem of data

packing, which is another formalism of minimizing cache

misses. Given that both data packing and CDP have the

same input format, i.e. an access sequence of a program, we

can simply repurpose the benchmarks of [19] for our use-

case. Each benchmark corresponds to a classical algorithm,

e.g. Gram-Schmidt or Heap Sort, and can generate access se-

quences of various (arbitrarily long) lengths. See [19] and its

artifact for a complete list of benchmarks and other details.

Test Cases. Recall that a direct-mapping instance is a tuple

𝐼 = (𝑛,𝑂, 𝑁, Σ, 1, 𝑘). Our algorithm also needs an extra pa-

rameter 𝑑 , i.e. the degree of the access hypergraph. We call

the tuple (𝑛,𝑂, 𝑁, Σ, 𝑘, 𝑑) a test case. In our experiments, we

set a time limit of 5 minutes per test case for our algorithm

and, for each benchmark, each cache size 3 ≤ 𝑘 ≤ 6, and each

hypergraph degree 𝑘 < 𝑑 < 15, generated all the test cases

that our algorithm could handle in this time limit. This led

to a total of 12,085 test cases, corresponding to 1,633 distinct

instances. Our longest access sequence in our instances has

12,917 accesses. Note that the cache sizes considered here

are much smaller than those in the real world. Our algorithm

is hence not suitable for practical cache management but

can instead be used for limit studies and profiling (See Sec-

tion 6). Similarly, note that we assume the entire sequence Σ
of accesses is given as part of the input and are solving the

single-threaded offline case of the problem.

Sparsity of Instances. The fact that access graphs and

access hypergraphs are sparse is quite well-known. In [19],

it was shown that the access hypergraphs of most classical

867

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Ali Ahmadi, Majid Daliri, Amir Kafshdar Goharshady, and Andreas Pavlogiannis

algorithms have bounded treewidth. However, in contrast

to previous methods, our algorithm does not depend on

the access hypergraph 𝐺𝑑 itself, but only on a sparsified

subgraph 𝐺̃𝑑 . See Section 3.2. This means that we work with

a much sparser graph. In our experiments, the average ratio

of the number of edges in 𝐺̃𝑑 to the number of edges in

𝐺𝑑 was 47.22%. So, our sparsification has significant impact,

leading to graphs that have less than half as many edges as

the widely-used access hypergraphs. Moreover, they have a

treewidth of at most 14. Figure 11 provides a histogram of

the treewidths of 𝐺̃𝑑 in our test cases.

Figure 11. Treewidths of our test cases. The 𝑥 axis is the

treewidth of the sparsified access hypergraph 𝐺̃𝑑 and the 𝑦

access is the number of cases.

Baselines. We compare our algorithm against several well-

known heuristics in the literature.

• CKJA: This is the algorithm presented in [14], when

cache-conscious data placement was first defined. It is

a classic and has since been extensively studied.

• BB: This algorithmwas presented in [4] and provides a

graph-theoretic approach that aims to totally prevent

the so-called “conflict misses” if possible.

• SCE: This approach aims to minimize cache misses us-

ing a coloring-based heuristic. It was presented in [45].

Experimental Results. Table 1 provides a summary of the

number of instances where our approach outperformed the

baseline heuristics. Overall, our algorithm beats CKJA in

85% of instances, BB in 84% and SCE in 88%. Figure 12 pro-
vides a detailed comparison between our algorithm and the

baselines above. In this figure, each red dot corresponds to

one instance. The dot’s 𝑥 coordinate is the number of cache

misses obtained by our algorithm and its 𝑦 coordinate is the

number of cache misses of the other method. The 𝑥 = 𝑦 line

is shown in blue. Hence, a red dot above the line corresponds

to an instance in which our algorithm performed better than

the other approach, and a red dot below the blue line signifies

that the other approach performed better.

Table 1. Comparison of our algorithm with the baselines.

The total number of benchmarks instances is 1633. Each cell

contains the number of instances in which our algorithm

outperformed the base line (left) and the number of instances

in which the baseline had fewer misses (right).

CKJA BB SCE

Our Algorithm
PPPPPPPP1395

238
PPPPPPPP1373

260
PPPPPPPP1441

192

Lower-bounds. A major theoretical advantage of our ap-

proach is that, for the first time, it provides constant mul-

tiplicative approximation ratio guarantees. Specifically, we

can use the guaranteed ratio in Theorem 1 to obtain a lower-

bound ℓ on the optimal number of cache misses, i.e. we are

guaranteed to have at least ℓ cache misses no matter which

placement function is used. These lower-bounds are shown

in Figure 13. As before, there is a green dot corresponding to

each instance. The green dot’s 𝑥 coordinate is the number

of cache misses obtained by our algorithm, whereas its 𝑦

coordinate is the guaranteed lower-bound ℓ . As expected, all

green dots are below the 𝑥 = 𝑦 line.

Summary. Our experimental results show that our novel

approach manages a better utilization of the cache compared

to previous heuristics, leading to improved cache perfor-

mance in the vast majority of the benchmarks. Moreover,

the performance gap increases as we go to more demanding

benchmarks, indicated by the widening distribution of data

points on the right-end side of the charts in Figure 12. Our

approach is the first to provide theoretical guarantees of

approximation within a constant ratio. Although our run-

ning time is generally larger than the heuristics, it is many

orders of magnitude faster than a purely exhaustive search,

which is the only other known approach so far that offers any

non-trivial guarantees of optimality. Performing exhaustive

search on our benchmark instances will take more than 10
500

years per instance. This matches the intuition provided by

the notorious hardness-of-approximation result in [38]. Our

parameterized approach overcomes this hardness of approx-

imation and solves instances that have thousands or even

tens of thousands of accesses. This being said, given that our

runtime depends exponentially on the cache size, we can

only handle small caches and our approach does not scale to

real-world cache sizes. Finally, our lower bounds can be used

in limit studies of heuristics, in order to characterize their

performance not against another approach, but compared to

the best theoretically-possible performance.

6 Further Discussion and Related Works
Limitations. The primary limitation of our approach is that

it is only applicable in the offline setting in which the entire

access sequence is known a priori. Note that all previous

hardness results were also for the same offline case. Our

868

Efficient Approximations for Cache-Conscious Data Placement PLDI ’22, June 13–17, 2022, San Diego, CA, USA

Figure 12. Performance of our algorithm vs BB (top), SCE
(middle), and CKJA (bottom).

experimental results demonstrate that our approach leads

to fewer misses than previous heuristics in the literature.

However, it can currently handle only small caches with a

handful of lines. More specifically, we provide algorithms

Figure 13. Number of cache misses obtained by our algo-

rithm vs the theoretical lower bounds of Theorem 1.

with runtimes of either𝑂 (𝑁 ·𝑘𝑤+2) or𝑂 (𝑛 ·𝑘𝑤+1 · (𝑘+𝑑 ·𝑤𝑑)),
in which 𝑘 is the cache size, 𝑑 is the order of the access hyper-

graph and𝑤 is the treewidth. Thus, while we overcome the

hardness-of-approximation and provide the first polynomial-

time algorithms with approximation-ratio guarantees, more

improvement is needed to handle larger instances. Our re-

sults strongly indicate that solving real-world instances of

CDP, within a provably-bounded approximation factor, is

likely within reach and not as hard as previously thought.

Moreover, they show that while the general case of the prob-

lem is NP-hard and hard-to-approximate, this is not the case

for the sparse instances that are often encountered in prac-

tice. Another limitation is that our problem only models

the single-threaded case and no parallelism is allowed in

accesses to the cache.

Offline vs Online. While it is more desirable to minimize

cache misses in an online setting, where the entire access

sequence Σ is not known in advance, the problem is often

studied in offline mode and Σ is assumed to be part of the

input. This applies not only to this work but also all previous

theoretical results on both data packing [19, 35] andCDP [38].

It is partly because the offline variants are already too hard,

i.e. NP-hard and hard-to-approximate. On the other hand,

solving the offline version is also useful in the following two

cases (taken from [19]):

• Limit studies: To test the performance of a compiler

for data placement, various inputs are generated as

benchmarks, and the baseline comparison of the per-

formance is performed against the best-known offline

algorithm [38]. Hence, an almost-optimal algorithm

with guaranteed approximation ratio for the offline

case is needed.

• Profiling: Programs usually have similar memory ac-

cess behaviors over different inputs [38]. Hence, an

869

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Ali Ahmadi, Majid Daliri, Amir Kafshdar Goharshady, and Andreas Pavlogiannis

effective approach for online cache management is to

consider several representative inputs, run an almost-

optimal offline algorithm for profiling, and then syn-

thesize an answer to the online case from the offline

solutions [14, 38]. Specifically, the traditional approach

of [14] for online CDP is to assign a cost to each pair

(𝑜𝑖 , 𝑜 𝑗) of elements which roughly correlates with the

number of extra cache misses that will be caused by

assigning both 𝑜𝑖 and 𝑜 𝑗 to the same cache line. This

cost is always approximated using various profiling

techniques. For example, we can run a program over

thousands of random inputs and solve the offline vari-

ant of CDP for each run. Then, the cost we assign to

(𝑜𝑖 , 𝑜 𝑗) should be inversely correlated with the number

of test cases in which 𝑜𝑖 and 𝑜 𝑗 were put in the same

cache line. The online algorithm will then simply work

greedily and, upon the first access to an element 𝑜𝑖 ,

assign it to a cache line that minimizes its cost. Alter-

natively, we can devise a supervised ML algorithm for

the online case in which the outputs of the optimal

offline algorithm are used as the training set.

As such, the offline case considered in this work, while not

leading to practical algorithms that can be directly used for

cache management, is still useful both theoretically and for

the applications above.

Paging. Paging is a related well-studied problem, in which

objects (or blocks) are not assigned to any specific cache

line. This is equivalent to having a cache with a single line

that can hold up to 𝑘 objects. The goal is to find an opti-

mal replacement policy that minimizes the total number of

cache misses [12], i.e. to find the optimal policy for choos-

ing which object should be evacuated each time new data

is brought into the cache. Common replacement policies in-

clude FIFO, which evicts the object that has been in the cache

for the longest, and LRU, which evicts the least-recently

used/accessed object [19, 35, 51]. In the offline case, where

the sequence Σ of accesses is known in advance, the Optimal

Replacement Policy (ORP) is to evict the object whose next

access is furthest in the future [12].

Data Packing. Data packing is another formulation of the

problem of minimizing cache misses. In this case, the objects

are not assigned to specific cache lines. Instead, they are

“packed” into blocks of a fixed size and the cache can hold

a fixed number of blocks. The goal is to find a packing that

minimizes the total number of cache misses over a given

access sequence Σ [46]. Similar to CDP, data packing is also

NP-hard and hard-to-approximate within any non-trivial

factor unless P=NP [35].

Comparison with [19]. The work [19] provides an algo-

rithm for the problem of data packing using a parameteri-

zation by the treewidth of the access hypergraphs. The pa-

rameter we use in this work is similar, but not exactly the

same. Specifically, we consider the treewidth of a sparsi-

fied subgraph of the access hypergraphs (Section 3.2). This

sparsification is a key part of our theoretical contribution

and necessary for obtaining a constant-ratio approximation.

Additionally, the two works also differ in the following ways:

• Modeling of the Cache: [19] considers the problem of

Data Packing (DP), whereas we study Cache-conscious

Data Placement (CDP). As mentioned above, DP and

CDP model the cache differently. In CDP, each data

item is mapped to a specific cache line, whereas in DP,

the items do not have a fixed position in the cache but

are instead grouped (packed) together to form blocks.

• Hardness and Parameterized Complexity: While both

CDP andDP are NP-hard and hard-to-approximate, the

DP problem of [19] becomes fixed-parameter tractable

and admits a polynomial-time algorithm when the

treewidth is bounded. In contrast, our problem re-

mains NP-hard even when limited to graphs of con-

stant treewidth (Section 4) and can only be approx-

imated. Hence, we are considering a strictly harder

problem in terms of parameterized complexity and the

techniques of [19] are not applicable to our setting.

• Solution Concepts: Both our solution and that of [19]

reduce cache management problems to variants of

graph coloring. In [19], the number of vertices of any
given color is bounded, whereas in our case the number
of colors is at most the cache size 𝑘 .

7 Conclusion
We studied CDP, which is a standard and classical problem in

memory management. As previous works have either formal

and strong theoretical hardness results, or heuristics with

no guarantees of optimality, this work is the first to present

formal positive results. Particularly, we showed real-world

instances of CDP admit efficient approximations within a

constant ratio (1+𝜖) based on sparsification and parameteri-

zation by treewidth. Notably, our results differ from standard

algorithmic approaches in which treewidth suffices to make

the problem tractable and we show the problem remains NP-
hard even with bounded treewidth, and only approximations

are possible.

Interesting directions of future work include studying

the existence of other parameters that allow for an efficient

algorithm to solve CDP exactly, designing heuristics on top

of our treewidth-based algorithm to improve its performance,

and on the more practical side, incorporating our algorithm

in data placement processes of mainstream compilers.

Acknowledgments
We are grateful to the anonymous reviewers whose sug-

gestions significantly improved this paper. The research

was supported by the HKUST–Kaisa Joint Institute Grant

HKJRI3A055. A. Ahmadi andM.Daliri were interns at HKUST.

870

Efficient Approximations for Cache-Conscious Data Placement PLDI ’22, June 13–17, 2022, San Diego, CA, USA

References
[1] Ali Ahmadi, Majid Daliri, Amir Kafshdar Goharshady, and Andreas

Pavlogiannis. 2022. Efficient Approximations for Cache-conscious

Data Placement. https://hal.archives-ouvertes.fr/hal-03616652/
[2] Mohsen Alambardar, Amir Goharshady, Mohammad Reza Hooshman-

dasl, and Ali Shakiba. 2021. Optimal Mining: Maximizing Bitcoin Min-

ers’ Revenues. (2021). https://hal.archives-ouvertes.fr/hal-03232783
[3] Ali Asadi, Krishnendu Chatterjee, Amir Goharshady, Kiarash Moham-

madi, and Andreas Pavlogiannis. 2020. Faster algorithms for quan-

titative analysis of MCs and MDPs with small treewidth. In ATVA.
253–270.

[4] Mirza Beg and Peter Van Beek. 2010. A graph theoretic approach to

cache-conscious placement of data for direct mapped caches. In ISMM.

113–120.

[5] Hans Bodlaender. 1996. A linear-time algorithm for finding tree-

decompositions of small treewidth. SIAM Journal on computing 25, 6

(1996), 1305–1317.

[6] Hans Bodlaender. 1997. Treewidth: Algorithmic techniques and results.

In MFCS. 19–36.
[7] Hans Bodlaender. 1998. A Partial k-Arboretum of Graphs with

Bounded Treewidth. Theor. Comput. Sci. 209, 1-2 (1998), 1–45.
[8] Hans L Bodlaender. 1988. Dynamic programming on graphs with

bounded treewidth. In ICALP. 105–118.
[9] Hans L Bodlaender. 1994. A tourist guide through treewidth. Acta

cybernetica 11, 1-2 (1994), 1.
[10] Hans L Bodlaender. 2005. Discovering treewidth. In SOFSEM. 1–16.

[11] Hendrik Borghorst and Olaf Spinczyk. 2019. CyPhOS - A Component-

Based Cache-Aware Multi-core Operating System. In ARCS. 171–182.
[12] Allan Borodin, Sandy Irani, Prabhakar Raghavan, and Baruch Schieber.

1995. Competitive Paging with Locality of Reference. J. Comput. Syst.
Sci. 50, 2 (1995), 244–258.

[13] Bernd Burgstaller, Johann Blieberger, and Bernhard Scholz. 2004. On

the tree width of Ada programs. In ADA. 78–90.
[14] Brad Calder, Chandra Krintz, Simmi John, and Todd Austin. 1998.

Cache-Conscious Data Placement. In ASPLOS. 139–149.
[15] Krishnendu Chatterjee, Amir Goharshady, and Ehsan Goharshady.

2019. The treewidth of smart contracts. In SAC. 400–408.
[16] Krishnendu Chatterjee, Amir Goharshady, Prateesh Goyal, Rasmus

Ibsen-Jensen, and Andreas Pavlogiannis. 2019. Faster algorithms for

dynamic algebraic queries in basic RSMs with constant treewidth.

TOPLAS 41, 4 (2019), 1–46.
[17] Krishnendu Chatterjee, Amir Goharshady, Rasmus Ibsen-Jensen, and

Andreas Pavlogiannis. 2016. Algorithms for algebraic path properties

in concurrent systems of constant treewidth components. In POPL.
[18] Krishnendu Chatterjee, Amir Goharshady, Rasmus Ibsen-Jensen, and

Andreas Pavlogiannis. 2020. Optimal and perfectly parallel algorithms

for on-demand data-flow analysis. In ESOP. 112–140.
[19] Krishnendu Chatterjee, Amir Goharshady, Nastaran Okati, and An-

dreas Pavlogiannis. 2019. Efficient parameterized algorithms for data

packing. In POPL. 53:1–53:28.
[20] Krishnendu Chatterjee, Amir Goharshady, and Andreas Pavlogiannis.

2017. JTDec: A tool for tree decompositions in soot. In ATVA. 59–66.
[21] Krishnendu Chatterjee, Rasmus Ibsen-Jensen, Amir Goharshady, and

Andreas Pavlogiannis. 2018. Algorithms for algebraic path properties

in concurrent systems of constant treewidth components. TOPLAS 40,
3 (2018), 1–43.

[22] Krishnendu Chatterjee, Rasmus Ibsen-Jensen, and Andreas Pavlogian-

nis. 2015. Faster algorithms for quantitative verification in constant

treewidth graphs. In CAV. 140–157.
[23] Krishnendu Chatterjee, Rasmus Ibsen-Jensen, and Andreas Pavlogian-

nis. 2016. Optimal reachability and a space-time tradeoff for distance

queries in constant-treewidth graphs. In ESA, Vol. 57.
[24] Krishnendu Chatterjee, Rasmus Ibsen-Jensen, and Andreas Pavlo-

giannis. 2021. Quantitative Verification on Product Graphs of Small

Treewidth. In FSTTCS.
[25] Krishnendu Chatterjee and Jakub Łącki. 2013. Faster algorithms for

Markov decision processes with low treewidth. In CAV. 543–558.
[26] Marek Cygan, Fedor Fomin, Łukasz Kowalik, Daniel Lokshtanov,

Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh.

2015. Parameterized algorithms. Springer.
[27] Chen Ding and Ken Kennedy. 1999. Improving Cache Performance in

Dynamic Applications through Data and Computation Reorganization

at Run Time. In PLDI. 229–241.
[28] Wei Ding and Mahmut Kandemir. 2014. CApRI: CAche-conscious data

reordering for irregular codes. In SIGMETRICS. 477–489.
[29] Rodney Downey and Michael Fellows. 2012. Parameterized complexity.

Springer.

[30] John Fearnley and Sven Schewe. 2012. Time and parallelizability results

for parity games with bounded treewidth. In ICALP. 189–200.
[31] Andrea Ferrara, Guoqiang Pan, and Moshe Y Vardi. 2005. Treewidth

in verification: Local vs. global. In LPAR. 489–503.
[32] Amir Goharshady. 2020. Parameterized and algebro-geometric advances

in static program analysis. Ph.D. Dissertation. Institute of Science and
Technology Austria.

[33] Amir Goharshady and Fatemeh Mohammadi. 2020. An efficient algo-

rithm for computing network reliability in small treewidth. Reliability
Engineering & System Safety 193 (2020), 106665.

[34] Jens Gustedt, Ole A Mæhle, and Jan Arne Telle. 2002. The treewidth

of Java programs. In ALENEX. 86–97.
[35] Rahman Lavaee. 2016. The hardness of data packing. In POPL. 232–242.
[36] Abraham Mendlson, Shlomit Pinter, and Ruth Shtokhamer. 1994. Com-

pile Time Instruction Cache Optimizations. In CC. 404–418.
[37] Jan Obdržálek. 2003. Fast mu-calculus model checking when tree-

width is bounded. In CAV. 80–92.
[38] Erez Petrank and Dror Rawitz. 2002. The hardness of cache conscious

data placement. In POPL. 101–112.
[39] Leon R Planken, Mathijs M de Weerdt, and Roman PJ van der Krogt.

2012. Computing all-pairs shortest paths by leveraging low treewidth.

JAIR 43 (2012), 353–388.

[40] Neil Robertson and Paul Seymour. 1984. Graph minors. III. Planar

tree-width. J. Comb. Theory, Ser. B 36, 1 (1984), 49–64.

[41] Neil Robertson and Paul D. Seymour. 1986. Graph minors. II. Algorith-

mic aspects of tree-width. Journal of algorithms 7, 3 (1986), 309–322.
[42] Theodore Romer, Dennis Lee, Brian Bershad, and Bradley Chen. 1994.

Dynamic Page Mapping Policies for Cache Conflict Resolution on

Standard Hardware. In OSDI. 255–266.
[43] Shai Rubin, David Bernstein, and Michael Rodeh. 1999. Virtual Cache

Line: A New Technique to Improve Cache Exploitation for Recursive

Data Structures. In CC, Vol. 1575. 259–273.
[44] Sriram Sankaranarayanan. 2020. Reachability Analysis Using Message

Passing over Tree Decompositions. In CAV. 604–628.
[45] Timothy Sherwood, Brad Calder, and Joel Emer. 1999. Reducing cache

misses using hardware and software page placement. In ICS. 155–164.
[46] Khalid Thabit. 1982. Cache management by the compiler. Rice Univer-

sity.

[47] Mikkel Thorup. 1998. All Structured Programs have Small Tree-Width

and Good Register Allocation. Inf. Comput. 142, 2 (1998), 159–181.
[48] Thomas van Dijk, Jan-Pieter van den Heuvel, and Wouter Slob. 2006.

Computing treewidth with LibTW. Technical Report.

[49] Raj Vaswani and John Zahorjan. 1991. The Implications of Cache Affin-

ity on Processor Scheduling for Multiprogrammed, Shared Memory

Multiprocessors. In SOSP. ACM, 26–40.

[50] Chengliang Zhang, Chen Ding, Mitsunori Ogihara, Yutao Zhong, and

Youfeng Wu. 2006. A hierarchical model of data locality. In POPL.
16–29.

[51] Yutao Zhong, Maksim Orlovich, Xipeng Shen, and Chen Ding. 2004.

Array regrouping and structure splitting using whole-program refer-

ence affinity. In PLDI.

871

https://hal.archives-ouvertes.fr/hal-03616652/
https://hal.archives-ouvertes.fr/hal-03232783

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Cache-Conscious Data Placement
	2.2 Parameterization and Treewidth

	3 An Efficient Parameterized Approximation Scheme for CDP
	3.1 Access Graphs and Access Hypergraphs
	3.2 Sparsification and Reduction to Graph Coloring
	3.3 A Decomposition-Based Algorithm for Optimal Coloring

	4 Hardness of CDP in Bounded Treewidth
	5 Experimental Results
	6 Further Discussion and Related Works
	7 Conclusion
	References

