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Abstract

There is a huge and growing gap between the speed of ac-
cesses to data stored in main memory vs cache. Thus, cache
misses account for a significant portion of runtime over-
head in virtually every program and minimizing them has
been an active research topic for decades. The primary and
most classical formal model for this problem is that of Cache-
conscious Data Placement (CDP): given a commutative cache
with constant capacity k and a sequence ¥ of accesses to data
elements, the goal is to map each data element to a cache
line such that the total number of cache misses over ¥ is
minimized. Note that we are considering an offline single-
threaded setting in which X is known a priori. CDP has been
widely studied since the 1990s. In POPL 2002, Petrank and
Rawitz proved a notoriously strong hardness result: They
showed that for every k > 3, CDP is not only NP-hard
but also hard-to-approximate within any non-trivial factor
unless P = NP. As such, all subsequent works gave up on
theoretical improvements and instead focused on heuristic
algorithms with no theoretical guarantees.

In this work, we present the first-ever positive theoretical
result for CDP. The fundamental idea behind our approach
is that real-world instances of the problem have specific
structural properties that can be exploited to obtain efficient
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algorithms with strong approximation guarantees. Specifi-
cally, the access graphs corresponding to many real-world
access sequences are sparse and tree-like. This was already
well-known in the community but has only been used to de-
sign heuristics without guarantees. In contrast, we provide
fixed-parameter tractable algorithms that provably approxi-
mate the optimal number of cache misses within any factor
1 + €, assuming that the access graph of a specific degree
de is sparse, i.e. sparser real-world instances lead to tighter
approximations. Our theoretical results are accompanied by
an experimental evaluation in which our approach outper-
forms past heuristics over small caches with a handful of
lines. However, the approach cannot currently handle large
real-world caches and making it scalable in practice is a
direction for future work.

CCS Concepts: « Theory of computation — Parameter-
ized complexity and exact algorithms; - Software and
its engineering — Memory management.

Keywords: cache management, parameterization, data place-
ment, treewidth, cache misses, approximation
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1 Introduction

CACHE Misses. Most modern memory systems consist of
a large but relatively slow main memory and one or more
small but much faster cache levels. When a program wants
to access a specific data item during its execution, the ac-
cessed data must first be present in the cache. Otherwise, it
will be copied from the main memory to the cache, possi-
bly causing the eviction of other data from the cache. This
copying is called a “cache miss”. Given the low speed of
main memory, the back-and-forth copying between cache
and main memory caused by cache misses is a significant
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contributor to runtime overheads in virtually all programs.
Hence, minimizing cache misses has been a central prob-
lem in various communities, including programming lan-
guages [14, 19, 27, 35, 38, 50, 51], compilers [14, 36, 43, 46]
and operating systems [11, 42, 49] for many decades.

CacHE-conscious DATA PLACEMENT (CDP). In this work,
we focus on Cache-conscious Data Placement (CDP). CDP is
arguably the most classical formulation for the problem of
minimizing cache misses. It was first introduced in ASPLOS
1998 by Calder et al [14] and then further formalized by
Petrank and Rawitz in POPL 2002 [38]. In this model, the
memory system consists of two levels: a large main memory
storing a set O of n distinct objects 01, 0, . . ., 0,, and a small
cache with k lines. Depending on the variant, each cache
line can hold 1 or ¢ objects. A placement map is a function f :
O — {1,2,...,k} that maps each object to a cache line. When
a placement map f is fixed and an access to an object o; is
requested, the system first checks to see whether o; is already
present in its corresponding cache line f'(0;). If so, the access
is successful. Otherwise, a cache miss happens and o; must
first be copied from the main memory to line f(o;) of the
cache, potentially evicting another object that was already
in this cache line. Only after this copying can the access
go through. Given a sequence X = (01, 0%,...,0N) € ON of
accesses, CDP asks for a placement map f that minimizes
cache misses over X.

HarDNEss oF CDP. When considering the CDP problem,
it is usually assumed that k and t are small constants and
the complexity is studied with respect to the number of
objects, i.e. n, and the length of the access sequence, i.e. N.
In [38], Petrank and Rawitz showed that the CDP problem
is NP-hard for any cache with more than two lines. They
also showed that not only is the problem NP-hard, but it
is also hard-to-approximate within any non-trivial factor
O(N'~€) unless P=NP. This became a notorious and well-
known hardness result, causing all further works to focus on
heuristics with no worst-case bounds on their approximation
ratio. Some examples of this approach are [27, 28, 50, 51].
These heuristics try to identify and exploit affinities between
data items to minimize cache misses.

Acciss GRAPHS AND THEIR SPARSITY. A recurring struc-
ture in the cache management literature is that of an access
graph [12, 35, 46]. Simply put, an access graph is an undi-
rected graph which has one vertex corresponding to each
object 0; € O and an edge between two vertices if they ap-
pear consecutively in the access sequence ¥. Informally, the
access graph models the simplest type of affinity between
data items. Several previous works also consider extensions
of access graphs to hypergraphs whose edges model affini-
ties between more than two data items [19, 35, 46]. It is
well-known that access graphs of real-world sequences are
often sparse, opening the door to heuristics based on graph
sparsity. Moreover, the optimal algorithm for data packing,
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which is another formalism for minimizing cache misses, is
also based on the sparsity of access (hyper)graphs [19].

Our Focus. In this work, we consider the classical problem
of Cache-conscious Data Placement (CDP) from an algorith-
mic and complexity point-of-view. Note that our setting is
single-threaded and offline and we assume that the entire
sequence X of accesses is given as part of the input. We
focus on obtaining efficient algorithms that provably approx-
imate the optimal number of cache misses within a constant
multiplicative factor, assuming that the instance has sparse
access (hyper)graphs. This assumption was already shown to
hold for real-world instances in several previous works, such
as [19]. We use the treewidth of the access (hyper)graphs as
a measure of their sparsity.

TREewIDTH. Treewidth [10, 40, 41] is a well-known and oft-
used graph sparsity parameter. Intuitively, the treewidth
of a graph is a measure of its tree-likeness. Only trees and
forests have a treewidth of 1 and if a graph’s treewidth is w,
then the graph can be decomposed into parts of size w + 1
that are connected to each other in a tree-like manner. See
Section 2.2 for a more formal definition. The algorithmic im-
portance of treewidth is due to the fact that many NP-hard
graph problems are solvable in polynomial time over graphs
of bounded treewidth [2, 6, 8, 9, 33]. Moreover, many fami-
lies of graphs that appear in real-world contexts are shown
to have small treewidth. This includes series-parallel and
outer-planar graphs [7]. Control flow graphs of structured
programs also have bounded treewidth [13, 15, 20, 34, 47],
leading to faster program analysis and model checking al-
gorithms [3, 16-18, 21-25, 30-32, 37, 39, 44]. Finally, access
(hyper)graphs of many classical algorithms and programs are
also shown to have small treewidth [19]. This is the family
that is most relevant to the current work.

INTUITION BEHIND THE PARAMETER. At first sight, treewidth
of the access graph might come off as a surprising parameter.
However, it is quite natural to expect this parameter to be
small and this expectation was already confirmed by experi-
ments in [19]. The intuitive reason behind this is that most
real-world algorithms manipulate linear or tree-based data
structures, such as arrays, vectors, linked lists, heaps, binary
search trees and tries. Hence, the resulting access sequences
consist of accesses to these tree-like structures and other
helper variables which often have a short lifetime. So, the
access graph inherits much of the sparsity and tree-likeness
of the underlying data structures and the additional com-
plexity introduced by temporary variables does not make it
significantly denser. Treewidth is the classical parameter for
capturing and formalizing such tree-like properties.

Our CoNTRIBUTIONS. We present the first positive theoreti-
cal results for the classical and notoriously-hard problem of
Cache-conscious Data Placement (CDP). Our detailed results
are as follows:
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o Approximation Scheme: For every constant € > 0, we
provide an efficient linear-time algorithm for CDP that
is guaranteed to obtain a (1 + €)-approximation of
the optimal number of cache misses, assuming that
the access graph of a specific degree d. has bounded
treewidth. In other words, our scheme obtains tighter
approximations for sparser instances.

Hardness Result: We provide a stronger hardness result
and show that CDP is NP-hard even when restricted
to instances in which access hypergraphs of a fixed
degree d have bounded treewidth. Intuitively, this sug-
gests that both parameterization (sparsity) and approx-
imation are needed in solving CDP. It is impossible to
approximate CDP without a sparsity assumption as
shown by [38]. On the other hand, our hardness result
shows that it is also impossible to solve the problem ex-
actly (without approximation) even when we assume
that access hypergraphs of a fixed degree d are sparse.
Experimental Results: We provide experimental results
on the benchmarks of [19] and caches with 3-6 lines.
On these small caches, our approach beats several well-
known heuristics in the literature in terms of the num-
ber of cache misses.

NoveLTy. In summary, we provide the first positive theoreti-
cal result for CDP by a combination of approximation and
parameterization. We also show a stronger hardness result
that suggests both approximation and parameterization are
probably necessary. Our algorithms are the first to provide
provable bounds on the approximation ratio. To the best of
our knowledge, graph sparsity parameters such as treewidth
were not previously used in the context of CDP. We are also
not aware of any other systems problem that is solved by
applying both parameterization and approximation.

2 Preliminaries

In this section, we provide a formal definition of the CDP
problem (mostly following [38]), as well as the necessary
background from parameterized complexity.

2.1 Cache-Conscious Data Placement

MEMORY SYSTEM. We consider a memory system consisting
of a large main memory and a small cache with k lines. We
also fix a set O = {01, 09, ..., 0,} of objects (data items). We
do not make any assumptions about the locations of objects
in the main memory or its size.

PLACEMENT MAP. A placement map is a function f : O —
{1,2,...,k} that maps each object to a cache line.

DIRECT MAPPING VS {-WAY MAPPING. In direct mapping, each
cache line can hold at most one data item at a time. In ¢-
way mapping, each cache line can hold up to ¢ objects. Our
main focus is on the direct mapping case, but our approaches
extend to t-way mapping as well.
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Accesses AND CACHE MissEs. Given a fixed placement map
f, when an access to an object o; is requested, 0; must first
be present in cache line f(o;). If this is not the case, then a
cache miss occurs and o; is copied from the main memory
to cache line f(o;). If this cache line is already full, another
data item will be evicted from it. Note that if each cache line
can hold more than one object, then we should also fix a
replacement policy for each line. In this work, we assume
that the replacement policy is LRU, i.e. the least recently
used element is always evicted. This is because LRU is the
most commonly-used policy in practice [51]. Our algorithms
are also extensible to FIFO and ORP with minimal changes’.

AccEss SEQUENCE. An access sequence is simply a sequence
S ={o1,09...,0n) € ON of objects. Intuitively, ¥ repre-
sents the order in which a program accesses the data items.
We denote by Misses; (f,) the number of cache misses that
occur in a t-way cache with k lines if the placement map is
f and the accesses are made according to X. We assume the
cache is empty at the beginning and drop k when it is clear
from the context. We also drop t = 1 in direct mapping.

CacHE-conscious DATA PLaceMeENT (CDP). Given a set
O = {o1,...,0,} of objects, an access sequence ¥ € oN,
and cache parameters t and k as input, the Cache-conscious
Data Placement problem asks for an optimal placement map
f* that minimizes the number of cache misses. More for-
mally, it asks for a placement map f*, such that for any other
placement map f, we have Misses; (f*,%) < Misses; (f,X).

APPROXIMATIONS. For an € > 0, we say that an algorithm is a
(1 + €)-approximation of CDP if given the same inputs, it al-
ways produces a placement map f such that Misses,tC (f.2) <
(1+e€) - Misses; (f*, %).

INSTANCES. An instance of the CDP problem is a tuple I =
(n,0, N, 3, t, k) specifying all parts of the input.

2.2 Parameterization and Treewidth

PARAMETERIZED COMPLEXITY. The central idea in parameter-
ized complexity is to analyze the runtime of an algorithm not
only based on its input size n, but also based on another pa-
rameter p [29]. The parameter itself can be explicit, i.e. part
of the input, or implicit, e.g. a structural property.

FIXED-PARAMETER TRACTABILITY (FPT). A problem is called
Fixed-parameter Tractable (FPT) wrt a parameter p, if there
exists an algorithm that solves the problem in time O(n° -
g(p)), where n is the input size, ¢ is a constant that does not
depend on either n or p and g is an arbitrary computable
function [26, 29]. Intuitively, when a problem is FPT, the
instances in which the parameter p is small are easy to solve
and can be handled in polynomial time.

When dealing with a hard problem, such as CDP, the main
challenge is to come up with a suitable parameter p, such

IThe FIFO and ORP cases are removed since the space is limited and they
do not provide new insights. We will publish them as a tech report.
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b
{01, 03,04}
by | {01,02} | | {03,04,06} | b3
by | {04, 05,06} | | {04, 06,07} | bs

Figure 1. A graph G = (V, E) (left) and a tree decomposition
T of width 2 for G (right).

that (i) all or most real-world instances have a small p, and
(ii) the problem becomes FPT wrt p. Finding such a parameter
would effectively lead to efficient solutions for the real-world
instances of the problem. We now define the parameter that
will be used in this work, i.e. treewidth.

GraPHS AND HYPERGRAPHS. A directed graph is a pair G =
(V,E) where V is a finite set of verticesand E C V X V is
a finite set of edges. Each edge e € E is an ordered pair of
vertices. An undirected graph is defined similarly, except that
each edge e is a subset {u,v} C V. An ordered hypergraph is
apair G = (V,E) where E C V7, i.e. each hyperedge e € E is
an ordered tuple of vertices in V. Similarly, in an unordered
hypergraph, each edge e is simply a subset of vertices. The
base (hyper)graph of a directed graph/ordered hypergraph is
obtained by ignoring the order of vertices in each edge.

TREE DECcOMPOSITIONS [26]. Consider an undirected / un-
ordered (hyper)graph G = (V, E). A tree decomposition of G
is a rooted tree T = (B, ET, r) where:

(1) B is the set of nodes in the tree and Er is the set of edges.
We call each node in B a bag and r € B is the root bag.

(2) Each bag b € B has an associated subset V, € V of
vertices. We reserve the word vertex for vertices of G.

(3) Each vertex appears in at least one bag, i.e. | Jpep Vo = V.

(4) Each (hyper)edge appears in at least one bag. Formally,
for every e € E, there exists abag b € B, such thate C V.
In other words, b contains all endpoints of e.

(5) Each vertex appears in a connected subtree of T. Equiva-
lently, if a bag b3 € B is on the unique path between the
bags by and by in T, then Vp,, 2 Vj,, NV}, ie.ifv € V ap-
pears in the two bags b; and b,, then it must also appear
on any bag b3 that is on the unique path between them.

Note that tree decompositions do not distinguish between

ordered/directed and unordered/undirected edges, i.e. a tree

decomposition of an ordered/directed (hyper)graph is simply

a tree decomposition of its base graph.

Example 1. Figure 1 shows a graph G and one of its tree
decompositions. Intuitively, in a tree decomposition the graph
is broken into several small pieces (bags) that are connected to
each other in a tree-like manner.
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TREEWIDTH [26, 40]. The width of a tree composition is de-
fined as the size of its largest bag minus 1, ie. w(T) :=
maxpep |Vp| — 1. The treewidth of a (hyper)graph G is the
smallest width among all of its tree decompositions.

Cut PROPERTY [6, 26]. Consider a (hyper)graph G and a tree
decomposition T of G and suppose that the vertices vy, v, € V
appear in bags by, b; € B respectively. Then every path from
v1 to vz in G has to pass through every bag b; that is on the
path from b; to b, in T. This is called the cut property of tree
decompositions.

Example 2. The tree decomposition in Figure 1 has a width
of 2 and is optimal. So, the treewidth of the graph G is also 2.
Consider vertices 0, € Vp, and 0; € V. Since by and bs are on
the unique path from b, to bs in T, then any path that connects
07 to oy in G has to intersect both of these bags. As an example,
consider the path {07, 06, 05, 04, 01). It intersects bz in both o4
and og. Similarly, it intersects by in both 01 and o4.

DynamIc PROGRAMMING. The cut property enables one to
perform dynamic programming on low-treewidth graphs in a
similar manner to trees. Intuitively, in dynamic programming
approaches, each bag in a tree decomposition serves the
same purpose as a vertex in a tree whose removal breaks
the graph/tree down into several completely independent
connected components. This can potentially lead to much
faster algorithms, especially when the bags, and hence the
treewidth, are small. See [6, 26] for some examples and a
more detailed treatment.

Nice TREE DECOMPOSITIONS [26]. We say that a tree decom-
position T = (B, Er) is nice if (i) the root bag and every leaf
bag ¢ are empty, i.e. V., = V; = 0, (ii) every bag has at most
two children, (iii) if a bag b has a single child ¢, then b and
c differ in exactly one vertex, i.e. |V A V| = 1, and (iv) if
a bag b has two children ¢; and c3, then V, = V,;, = V,.
Every tree decomposition can be easily converted to a nice
decomposition of the same width in linear time [26]. Nice
decompositions help us in designing dynamic programming
procedures in Section 3.3.

ComPUTING OPTIMAL TREE DECOMPOSITIONS. Given a graph
G, computing its treewidth w and an optimal tree decom-
position are FPT problems wrt w. Specifically, [5] provides
a linear-time algorithm. Hence, we always assume that an
optimal tree decomposition is given as part of the input.

3 An Efficient Parameterized
Approximation Scheme for CDP

In this section, we first formalize the notion of access hyper-
graphs and then use it to provide an efficient parameterized
approximation algorithm for CDP, consisting of two steps:
1. We reduce the problem of approximating CDP within
any constant factor (1 + €) to a special type of graph
coloring on a sparsified subgraph of the access hyper-
graph (Section 3.2).
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2. We provide a decomposition-based algorithm that ef-
ficiently solves the coloring problem on graphs that
have bounded treewidth (Section 3.3).
Putting the two ingredients above together, we achieve an
efficient solution for CDP which first turns CDP approxi-
mation into graph coloring and then efficiently colors the
graph, assuming that it has bounded treewidth. Given that
the bounded treewidth property holds for the access hyper-
graphs of many classical algorithms and programs [19], our
approach can provide arbitrarily tight approximations of
CDP in these cases. Throughout this section, we fix an input
instance I = (n,O, N, 2, t, k).

3.1 Access Graphs and Access Hypergraphs

Access GrapH. The access graph of a CDP instance [ =
(n,O,N, 2, t, k) is a directed graph G = (O, E) in which every
vertex is a data item and there is an edge between o; and o;
if and only if 0; appears directly before 0; somewhere in the
access sequence 2. We do not add self-loops in G.

Example 3. Consider the access sequence
3 = (01, 02,01, 04, 05, 03, 03,01, 02).

Figure 2 shows the access graph of this sequence.

Figure 2. Access graph of X.

Access HYPERGRAPHS. The access hypergraph of order d of
the instance I is an ordered hypergraph G; = (O, E), in which
there is an edge e; corresponding to each access o; in X =
(01,02, ...,04). The edge e; is of the form (0}, 0j41,...,0:)
in which j < iis the largest index where at least one of the
following holds:

1. {0}, 0j41, . .., 0i) contains two accesses to ;.
2. {0j,0js1,...,0;) contains accesses to d distinct objects.
3. j=1.

Informally, to form the edge corresponding to o;, we start
from o; and move backwards in the access sequence until
we either reach another access to o; or see d distinct data
items or get to the beginning of the sequence.

Example 4. Consider the same access sequence as in Exam-
ple 3. Let d = 3. The access hypergraph of order 3 has the
following edges:

e; = (01) es = (01,02) e3=(01,03,01)
ey = 02,01, 04) es = (01,04,05) €5 = (04,05, 03)
e7 =(03,03) eg =(05,03,03,01) €y = (03,01,0z)
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It is well-known that access hypergraphs are often sparse.
In [19], the sparsity was formalized and it was shown that
the access hypergraphs of many real-world algorithms and
programs have bounded treewidth?. Thus, we will design FPT
algorithms parameterized by the treewidth of a sparsified
subgraph of the access hypergraphs.

3.2 Sparsification and Reduction to Graph Coloring

We now show how an approximation of the number of op-
timal cache misses in CDP can be obtained by reduction to
a graph coloring problem over certain subgraphs of access
hypergraphs.

CororiNGs. Consider a placementmap f : O — {1,2,...,k}.
By definition, f assigns a cache line to every object o; € O.
However, given that O is also the set of vertices in our access
hypergraphs, one can equivalently think of f as a coloring
of vertices in these graphs with k colors®.

DIRECT MAPPING. Let us first assume that we have a direct
mapping instance, i.e. t = 1 and each cache line can hold
only one object.

SpARrsIFICATION. Consider the access hypergraph G4 of order
d. Recall that G, has an edge e; corresponding to each access
o; in 2. We divide the edges of G4 in two groups: E; is the
set of edges e; that contain the vertex o; only once and E; is
the set of edges e; that contain o; twice. Let Gy = (O, E,) be
the subgraph of G, containing only the edges of the second
kind. We call G, the sparsified access hypergraph of order
d. Informally, G4 keeps the edge corresponding to an access
o; iff the number of other distinct data items seen since the
last access to o; is less than d. The intuition is to focus on
data items that are accessed regularly and whose placement
in the memory really matters in the number of cache misses.
These are elements that can likely cause capacity/conflict
misses. In contrast, we would rather ignore elements that
are accessed only once or rarely and cause a compulsory
first-time cache miss anyway. In other words, if many dis-
tinct data items have been accessed since the last time we
saw o, then it is very likely that o; is already evicted from
the cache and that the current access leads to a cache miss.
Hence, we focus on minimizing the number of cache misses
in accesses corresponding to E; only and assume all other ac-
cesses lead to cache misses. We will later see that discarding
E; does not affect the optimal value too much, in the sense
that the optimal solution to E; is always within a constant
factor to the optimal solution overall. Hence, this leads to
an approximation of the optimal number of cache misses
within a constant multiplicative factor.

CanonicAL HYPERGRAPHS. We say that an ordered hyper-
graph G = (V,E) is canonical if every edge e € E is of

>The definition of access hypergraphs provided here is a bit different
from [19] since we allow our hyperedges to include the same vertex more
than once. However, this difference does not affect the treewidth.

3 Adjacent vertices need not necessarily have different colors.
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the form (vy,0s,...,0m, 1) where v; € {vs,...,0,,}. In other
words, every edge starts and ends with the same vertex and
the start/end vertex does not appear anywhere else in the
edge. Note that Gy is canonical by definition.

OprTIMAL COLORING. Consider a canonical hypergraph G =
(V,E) and a coloring function f : V. — {1,2,...,k}. We de-
fine Cost(f, G) as the number of edges e = (v1, 03, ...,0m,01) €
E such that f(v1) € f({vz,...,0m}), i.e. an edge contributes
to the cost if it has an internal vertex with the same color
as its start/end vertex. Such an edge is called a missed edge.
Given a canonical G and a positive integer k as input, the
Optimal Coloring problem asks for a coloring f with minimal
cost, i.e. minimal number of missed edges.

The following lemma establishes a correspondence be-
tween missed edges in Gy and cache misses in the CDP
instance I.

Lemma 1. Let f be a coloring of vertices in Gg = (O, Ey)
or equivalently a placement map forI = (n,O,N, %, 1,k). An
edge e; € E; is missed in the coloring f iff a cache miss occurs
at its corresponding access o; with placement map f.

Proof. Recall that e; is of the form (o}, 0j1, ..., 0;) and since
Gd is canonical we have o; = 0. If ¢; is a missed edge, then
there is some index j+1 <[ < i—1 such that f(o7) = f(03).
Hence, when an access to o; is made, the data item o; is
evicted from the cache. As such, o; leads to a cache miss.
Conversely, if no such [ exists, then since o; = o3, this item
has been moved to cache at time j and remained there until
time i. So, there is no cache miss at o;. O

Corollary 1. Missesi(f*,X) < Missesk(f, %) < Cost(f, Ga)+
|E1l.

Proof. Recall that f* is the optimal placement map that min-
imizes the number of cache misses and f is the optimal
coloring that minimizes the number of missed edges in G.
Consider f as a placement map. Based on the lemma above,
it causes exactly Cost( f éd) cache misses in accesses corre-
sponding to E,. It can also cause at most |E;| cache misses
in accesses corresponding to Ej. (]

This corollary allows us to bound the number of cache
misses by solving the optimal coloring problem over the
sparsified hypergraph G;. We will later provide an algo-
rithm for optimal coloring in Section 3.3. First, we provide
a theorem showing that this approach leads to a constant
approximation factor.

Theorem 1. We have

Missesi. (f*,2) < Missesk(f, M) <

d
T 5 Missesi. (f*,2).
Proof. The first inequality follows from the definition of f*.
Let M* be the set of indices of accesses that lead to a cache
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M*

T

Oirs 041, - -

+30j,0j41,+ .., 0j

Figure 3. Construction of the bipartite graph 8. There is an
edge from i in L to j in M* iff in the access sequence %, o;
is between o; and the previous access to the same element,
ie. oy.

miss if we use the optimal placement map f* and M be the
set of indices of accesses that lead to a cache miss when
the optimal coloring f is used as the placement map. So,
|M*| = Missesi(f* ) and M| = Missesk(f, %). Moreover,
let L be the set of indices in ¥ that correspond to edges in E;
but did not lead to a cache miss in f*. Note that we have

IM*| > Cost(f,Gg) + |E:| - |LI. (1)

To see this, let us count the number of misses caused by f* in
accesses corresponding to E; and E; separately. By definition
of L, f* causes |E;| — |L| cache misses in accesses of E;. By
definition of f we know that Cost(f*, éd) > Cost( f ; éd),
so by Lemma 1, f* causes at least Cost(f, Gq) cache misses
in accesses corresponding to E,. By combining Equation (1)
and Corollary 1, we get

M| < |M*| +]L]. ()

So, it suffices to find a bound on |L|.

Let us form a bipartite graph 8 in which M* serves as
the set of vertices on one part and L as the set of vertices
on the other part. Let i € L,j € M* and i’ be the index of
the previous access to o, i.e. i’ = max{l < i|o; = 0;}. Note
that i’ always exists, because if the first access to o; was at
time i, then it would cause a cache miss with any placement
map and hence i could not possibly be in L. We put an edge
from the vertex i in L to the vertex jin M iff i’ < j < i. See
Figure 3. Note that the edges of 8 do not exactly correspond
to cache misses. The only reason behind this construction
is that counting the number of edges in two different ways
enables us to bound |L| in terms of |M*|.

We now bound the number of edges of 8 in two ways.
First, consider a vertex i € L. The degree of i is the number
of cache misses occurred between times i’ + 1 and i — 1. Note
that L only contains indices corresponding to E;. Hence, at
least d distinct data items were accessed in this period. At
the end of time i’, at most k of these items could potentially
be in the cache. Thus, there are at least d — k cache misses
in this period, i.e. the degree of i is at least d — k, and the
number of edges is at least |L| - (d — k).
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Now consider a vertex j € M*. We prove that the degree
of j is at most k. To get a contradiction, suppose that j has
edges to iy, iy, ..., ik, ik+1 € L. Given that the range of f has
k different values, by the pigeonhole principle there exist
a,b € {i1,...,ig+1} such that f*(o,) = f*(op) = fo. We
know that a’ < j < aand b’ < j < b. Without loss of
generality, assume a > b. Since o, and o, are both mapped
to fo, 0, was brought to cache line f; at time a’ but was then
evicted on or before time b. Hence, we have a cache miss at
time a. This contradicts the definition of L. Therefore, the
total number of edges is at most |M*| - k.

Putting the two bounds together, we get |L| < |M*| - ﬁ.
Combining this with (2), we have |M| < |M*] - ﬁ. O

Corollary 2. For any e > 0, by applying the approach above
using the sparsified access hypergraph CN}de oforderde := [k + é],
we obtain a (1 + €)—approximation of the optimal number of
cache misses in a direct-mapped cache, i.e. Missesy (f %) <
(1+¢€) - Misses (f*,%).

EXTENSION TO t{-WAY MAPPING. Extending the approach
above to t-way mapping is quite straightforward and all
steps go through naturally. Thus, we only present the differ-
ences. See [1, Appendix A] for a detailed treatment of the
t-way mapping case.
OPTIMAL t-wAY COLORING. In a canonical hypergraph G =
(V,E), we define Cost’ (f, G) of a coloring function f as the
number of edges e = (v1,0s,...,0,01) that have at least
t distinct internal vertices with the same color as v;. We
call these edges missed edges. The optimal t—way coloring
problem asks for a coloring f with minimal cost.

Lemma 1 and Corollary 1 apply to the t-way case with no
changes and Theorem 1 sees only a minor change:

Theorem 2. We have

R d
Misses;. (f*,%) < Misses;. (f,3) < Tk - Misses, (f*, 2).

t-k
Proof. Every step is the same as in the proof of Theorem 1,
except that the total cache size is now ¢ - k. Hence, the degree
of each vertex in L is at least d — t - k and the degree of each
vertex in M* is at most ¢ - k. ]

Corollary 3. For any positive constant € > 0, by applying
the approach above using the sparsified access hypergraph éde
of orderde == [t - k+ %] we obtain a (1+ €)—approximation
of the optimal number of cache misses in a t-way cache, i.e.
Misses]i(f, %) < (1+¢€) - Misses; (f*, %).

ReEMARK. The proofs of the t-way results above, which are
provided in detail in [1, Appendix A], are applicable even
when the data items can have varying non-unit integer sizes.
Hence, our approach is not limited to unit-sized objects.
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Corollaries 2 and 3 show that we can get arbitrarily tight
(1+€)-approximations of the optimal number of cache misses
provided that we can solve the optimal (¢-way) coloring prob-
lem on the sparsified access hypergraph of the right order
and obtain the coloring/placement map f . This is summa-
rized in Algorithm 1. In Section 3.3, we provide a linear-time
FPT algorithm for solving the optimal coloring and ¢-way
coloring problems parameterized by treewidth. Hence, we
can obtain a (1 + €)-approximation of the number of cache
misses whenever the sparsified access hypergraph G~d€ is
sparse and has bounded treewidth. It is also noteworthy that
Theorems 1 and 2 and hence the (1 + €) factor are not tight.
In practice, our approach may find much tighter approxima-
tions.

Algorithm 1 A (1 + €)-approximation for CDP

1: procedure CDP(n,O,N, 3, t,k, €)
2 de[t-k+ LK

3 Ey — 0

4 fori=1to N do

5: ej «— (0j)
6

7
8
9

for j =i — 1 downto 1 do
ej «— <O‘j> + €
if 0j = oj then
: Ey « Ep U {e;}
10: break
11: if |set(e;)| > d then
12: break
13: T = (B,ET) « NiceTreeDecomposition(O, E)
14: return OptimalColoring(O, Ey, t,k, T)

3.3 A Decomposition-Based Algorithm for Optimal
Coloring

In this section, we consider the problem of (t-way) optimal
coloring, as defined in Section 3.2 and provide a linear-time
FPT algorithm wrt treewidth for solving it, i.e. our algorithm
can solve the problem in linear time if the input graph is
sparse and has bounded treewidth.

InPUT. The input consists of two integers t and k, a canonical
hypergraph G = (V, E) with n vertices and N edges, each
with at most d endpoints, and a nice tree decomposition
T = (B, Er) of G with O(n) bags and constant width w.

Outpur. The output is an optimal coloring function f : V —
{1,2,...,k} with minimal total cost.

Note that we are mostly focused on direct mapping, i.e. t =
1. However, our algorithm can handle any value of t. More-
over, we can assume that a tree decomposition of linear size
is given as part of the input, since, as mentioned in Sec-
tion 2.2, there are linear-time FPT algorithms for computing
an optimal tree decomposition and making it nice.

SUBTREES AND SUBGRAPHsS. We say that a vertex v appears
in a bag b, if v € Vj,. Similarly, an edge e appears in b if all
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{03,04,06} | s

by | {04,05,06} | | {04,06,07} | bs

Figure 4. The subtree T, (right) and the subgraph Gli (left)
of the bag bs of Figure 1.

of its endpoints appear in b, i.e. e C V},. We denote the set
of all edges appearing in b by Ej. For a bag b € B, we define

its corresponding subtree Tbl = (Bi, E,.) as the part of T
b

that is rooted at b, i.e. including b and all of its descendants.
The subgraph Gi corresponding to b consists of all vertices

and edges that appear in at least one bag in T e Gi =
(Ub'eBi Ve Uprept Eb') :

Example 5. Consider the graph and decomposition of Fig-
ure 1. Figure 4 shows the subtree and subgraph corresponding
to the bag bs.

PARTIAL COLORING. Let b € B be a bag. A partial coloring
on b is simply a function f; : V = {1,2,..., k} that assigns
a color to each vertex in b. We denote the set of all k!"?!
possible partial colorings on b by Cy.

Our algorithm is a bottom-up dynamic programming on
the nice tree decomposition T. There are two basic observa-
tions: (i) since every bag b is small and has size at most w+1,
we can do a brute-force check of all partial colorings over
b, and (ii) we can define subproblems on Gi and its tree de-

composition Tbl and use the solutions in these subproblems
to solve the initial instances.

Dynamic PROGRAMMING VARIABLES. Based on the two ob-
servations above, for every bag b € B and partial coloring
Jv € Cyp, the algorithm defines a dynamic programming vari-
able dp[b, f,] and initializes it to +co. Our goal is to compute
values for the dp[-, -] in a bottom-up order such that the
following invariant holds after we compute dp[¥, f;]:

dp[b, fol

Minimal possible cost of a coloring of Gé (1)

in which Vj, is colored according to f;

In other words, we solve subproblems on Gi corresponding

to each possible partial coloring of b.

CoMmPUTING dp VALUEs. Our algorithm processes the bags of

T in a bottom-up order and performs the following actions

based on the type of the bag:

(1) LEAF Bags: Consider a leaf bag ¢ € B. Given that T is
nice, we have V; = 0. Hence, C, contains only a single
trivial coloring f;. Since there are no edges in G}, the
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total cost would always be 0. Hence, the algorithm sets
dpl¢, fe] = 0.

(2) BAGs WITH A SINGLE CHILD: Suppose that b € B is a bag
with a single child ¢ € B. Given that T is nice, we have
|V, A V| = 1. The algorithm considers two cases:

(i) V» = V. U {0}, i.e. the bag b has one vertex v which
does not appear in its child c: In this case, each
partial coloring f, € Cp induces a unique partial
coloring f. := fpv, on c. Hence, the minimal total
cost in Gi is dp[c, fc] which is already computed
in previous steps. The algorithm should compute
dp[b, f3], i.e. the minimal cost in Gi. The edges in

Gi can be divided in two sets: (a) edges that appear
only in Gi but not in Gcl; and (b) edges that appear

Gcl. Note that every edge e = (v1,02,...,0m,01) In
part (a) must have all of its endpoints in V3. Hence,
the partial coloring f; fixes the colors of all v;. So,
the algorithm can simply iterate over the v;’s and
check whether the edge e is missed. Moreover, the
optimal cost (number of missed edges) in part (b) is
given by dp[c, fz]. Thus, the algorithm sets

dp[bd, fp] = dp|[c, f.]+ number of missed edges in (a).

b e—"—e o e
[
c e—o—o9 o

Figure 5. b has one vertex more than c. A coloring of b also
colors c. New edges in Gi, i.e. part (a), are shown in red.

(ii) V; = V,, U {0}, i.e. the child c has one vertex v which
does not appear in its parent b: In this case, we
have Gi = Gci. However, a partial coloring function
f» € Cp does not provide a color for the vertex v.
Let f;[v — i] be an extension of f}, that maps v to i.
The algorithm sets

dolb, ] = min dple, fylo — 1]

This is correct because Glf = GCl and the only partial
colorings in C, that have no conflict with f;, are
precisely those of the form f;,[v — i].

o—o—o o

o—o0—o

e O

Figure 6. c has one vertex v more than its parent b. The
coloring of f; sets colors for all vertices of ¢ except v. This
vertex can have any color.
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(3) Bags witTH Two CHILDREN: Consider a bag b with two
children ¢; and c,. Since T is nice, we have V;, =V, =V,
and Gi = Gcl1 UGClZ‘ So, when computing dp |, f3,], we can
use the same partial coloring function f;, for both ¢; and
¢z and then the number of missed edges in Gé is equal
to the number of missed edges in Gcl1 plus the number of
missed edges in Gcl2 minus the number of missed edges
that were counted in both. If an edge e is in both Gci1
and Gclz, then all of its endpoints must appear in both
graphs. Using the last property of tree decompositions
(see Section 2.2), we conclude that all of its endpoints
have appeared in b and hence e € E; = E;, = E,,. Thus,
the algorithm sets:

dp[b>ﬁ] dp[cl’_ﬁ?] + dp[cz’ﬂ]
— number of missed edges in E,,

As before, the algorithm can check whether an edge e €
E}, is missed because the partial coloring f; provides the
color information for all endpoints of e.

b| e—e—e—e

AN

e R

Figure 7. b has two children ¢; and c;. A coloring of b will
also color all vertices in V, and V,,. Some edges are shared

between Gil and Giz. All such edges appear in b.

COMPUTING THE FINAL ANSWER. Since T is nice, we have V, =
0. So, there is only one possible partial coloring L& C, for
the root bag r. Moreover, we have Grl = G. So, the algorithm
outputs dp[r, L] as the minimal number of missed edges.
Algorithm 2 shows all steps of our method for obtaining the
cost of the optimal coloring.

FINDING THE OPTIMAL COLORING. The algorithm above ob-
tains the minimal number of missed edges / minimal cost.
As is common in dynamic programming, one can obtain the
optimal coloring itself by simply keeping track of the partial
colorings that led to the optimal dp[-, -] value at every step
of the algorithm.

Theorem 3. Given positive integer constantst and k, a canon-
ical hypergraph G with n vertices whose edges have at most d
endpoints, and a nice tree decomposition of G with O(n) bags
and width w, the algorithm above solves the t-way optimal
coloring problem in total runtime O(n - k™*' - (k +d - w?)).

Proof. The correctness of the algorithm was argued in its pre-
sentation above. We focus on the runtime bound. There are
O(n) bags and the algorithm defines at most k**! different
dp[-, -] variables at each bag b, since there are at most k**!
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Algorithm 2 Parameterized algorithm for optimal coloring

1: procedure OptimalColoring(V,E,t,k,T = (B, ET))
2 for b € B in bottom-up order do

3 for f, : Vj, » {1,2,...,k} do

4 if b.children = () then

5: dp[b, f] <0

6 else if |b.children| = 1 then

7 ¢ « b.children|[1]

8 if V. €V}, then

9: v —Vp\V,

10: fe = fov,

11: dp[b. fp] < dple, fe

12: for e € E, do

13: if v € e A is_missed(e, f3) then
14: dp[b, fp] « dp[b, fp] +1
15: else if V;, C V. then

16: vV \ Vi

17: dp[b, fp] « +o0

18: fori=1tok do

19: fe — fplv — ]
20: dp[b, fy] « min(dp[b, fy], dplc, fo])
21: else if |b.children| = 2 then

22: c1, ¢y « b.children

23: dp[b, fp] < dp[c1, fi] + dp[ea, fi]
24: for e € E, do

25: if is_missed(e, f},) then

26: dp[b, fp] < dp[b, fp] — 1

27: r « T.root

28: return dp[r, 1]

partial colorings in Cp. Case (1) spends O(1) time per vari-
able and Case (2.ii) takes the minimum of k values in O(k).
In cases (2.i) and (3), all edges in the current bag should be
checked to see if they are missed. There are at most (w +1)?
such edges and checking each of them takes O(d)*. O

RemMARK. The bound above is a theoretical worst-case bound
and not tight. Our algorithm is indeed much faster in practice.
Moreover, we can improve the runtime to O(N -k"*?) using a
slightly different notion of nice tree decompositions. See [1,
Appendix B] for details of theoretical improvements and
Section 5 for experimental results.

Corollary 4. When k, w and d are bounded, our algorithm
solves the optimal coloring problem in linear time O(n).

We are now ready to present our main theorem:

Theorem 4. For any € > 0, there exists an order d., such
that by applying our tree decompostion-based algorithm to
the sparsified access hypergraph Gg4_, we obtain a linear-time

4Without loss of generality, we can assume every edge in Gy has exactly
d + 1 endpoints. Each edge has exactly d distinct vertices and removing
repetitive internal vertices from the edge has no effect in our algorithm.
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(1+ €)—approximation of the optimal number of cache misses,
as well as a placement map f such that

Misses,’c(f, 2) < (1+¢) - Misses, (f*,%).

For direct mapping, we have de = [k + §'| and for t-way
mapping, d. = [t - k + %]

Proof. Direct result of Corollaries 2, 3 and 4. O

4 Hardness of CDP in Bounded Treewidth

As proven in [38], it is impossible to approximate CDP within
any non-trivial factor unless P=NP. In this section, we show
that for every positive integer constant d, finding an exact
solution to the CDP problem remains NP-hard even if the
access hypergraph G, of order d has constant treewidth.
These two complementary hardness results show that both
parameterization and approximation are necessary for our
efficient solution in Section 3 and the problem remains NP-
hard if only one of them is applied.

Theorem 5 (Hardness of CDP with Direct Mapping). For
every positive integer constant d, the CDP problem with direct
mapping is NP-hard even when limited to instances where the
treewidth of Gy is bounded by a constant.

Example 6. Before providing a formal proof, let us illustrate
the main ideas by an example. Our goal is to find a reduction
from general CDP, which is NP-hard, to the special case of
CDP in which the treewidth is bounded. Consider the access
sequence of Example 3:

% = (01,03, 01, 04, 05, 03, 03, 01, 02).

Suppose that we have a cache of sizek = 2 and setd = 2 in
the theorem above. In other words, we want to reduce our CDP
instance I = (n,O,N’,%,1,k) = (5,{01,...,05},9,%,1,2)
to another CDP instance I’ = (n’,0’,N’,%’,1,k’) such that
the access graph of I' has small treewidth. We first intro-
duce two new data elements (objects) t; and 7, and set O’
{01, ..., 05,71, Tn }. Intuitively, we want to take ¥ and add (1, 12)
between any two consecutive accesses, so that the treewidth of
the access sequence becomes small. This leads to

A

>

<T1> T2, 01, T1, T2, 02, T1, T2, 01, T1, T2, 04, T1, T2, O5
71, T2, 03, T1, T2, 03, T1, T2, 01, T1, 72, 02, 71, T2>

Note that every access to any original data item o; is now
preceded and succeeded by the new elements t, and t,. Ignoring
edge directions and repetitions, this leads to an access graph
that is almost bipartite, except for the edge between the new
elements. See Figure 8. We can easily find a tree decomposition
of constant width 2 for this access graph, as shown in Figure 9.
We put a bag containing only the new elements as the root
and add a child of the form {ty, 7, 0;} for each o;. It is easy to
verify that this is a valid tree decomposition.

To have a reduction, we must be able to obtain the optimal
number of cache misses in I from the optimal number of cache
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Figure 8. Base access graph of the sequence .

{11, 72}

[ {z1, 72,01} || {71, 72,02} | [ {71, 72,05} | | {71, 72, 04} || {71, 7, 05} |

Figure 9. A tree decomposition of width 2 for the graph of
Figure 8.

misses in I’, but an optimal data placement for 3. might have
no resemblance to its counterpart for X. So, we first increase
our cache size by setting k' = 4, and then add a gadget that
ensures each t; gets its own dedicated cache line. This ensures
that exactly 2 = k cache lines remain for the o;’s and hence
we can simulate the original instance. To achieve this property,
we simply append many repetitions of (11, 7,) to the end of 3.,
and define:

Z, = 2 . <T1, Tg)li-ﬂl.

In other words, 3’ is obtained by appending |5, + 1| copies of
(11, 72) to the end offl. Note that in I’, the new items 1, and 1,
should be assigned to different cache lines. Otherwise, we will
get2- (3 +1) cache misses in the second part of 3 since every
access to the new items will be a miss. In contrast, if they are
assigned to the same cache line, we can get at most |2’| cache
misses in the first part and none in the second.

Now consider an optimal data placement for I’ and suppose
that it assigns 7y and some original object o; to the same cache
line. This means every access to 0; or 7y in 3 is a miss. We can
modify our data placement and assign o; to any other cache
line that is not assigned to 1, or 1, and this will not increase
the number of cache misses. In the worst case, every cache miss
on o; is preserved and every cache miss on 1, is replaced by
a miss on another element that shares a cache line with o;.
Hence, there is an optimal data placement ' for 1’ in which t;
and 1, have their own dedicated cache lines. This means that
the other elements must be put into k’ — 2 = k lines and hence
I is simulated by I’. So, we can just count the number of cache
misses on 0;’s in I’ and this gives us the optimal number of
misses in 1.
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[XUfo}| [XU {0}

Figure 10. A decomposition of G, with constant width d.

Proof of Theorem 5. We provide a polynomial-time reduction
from the general case of CDP to low-treewidth CDP. Since
the former is NP-hard [38], then so is the latter. Let I =
(n,0,N, 2,1, k) be a CDP instance with direct mapping. We
create a new CDP instance I’ = (n/,0’, N’, 3/, 1, k") where:
en=n+dand O’ =0V {1, 1o,...,74}, i.e. we add d
new objects.
e N'=d> N+d?+2-d-N+2-d+ N and the access
sequence X’ is of the following form:

X0 X0y X ... X oy X X4 N+d+N+1

where X = (11, 73, . . ., 74). Intuitively, we add X at the

beginning and end of ¥, as well as in between every

two accesses. Finally, we add d - N + d + N + 1 more

copies of X to the end.

o k' =k +d,ie. we add d new cache lines.

Let f’ be an optimal placement function for I’. Note that
for every i # j, we have f'(r;) # f’(r;). This is because
assigning 7; and 7; to the same cache line will cause at least
d- N +d+ N + 1 cache misses in the final part of ¥, i.e. in
X@N+d+N+1 whereas any placement that assigns different
cache lines to each of the 7;’s leads to no cache misses in this
part. The length of the rest of the sequenceisd - N +d + N
which is a natural upper-bound on the number of possible
cache misses. Next, we argue that there is an optimal f” that
does not assign any 7; and o; to the same cache line. Suppose
that f(7;) = f(0;). Then every access to o; at any time a is
a cache miss, since f(0;) contains 7;. Similarly, the access to
7; at time a + i is also a cache miss. We now change f(o;)
arbitrarily to some other value q that is not shared with any
7;. It is easy to verify that this cannot increase the number
of cache misses. In the worst case, the misses on 0; remain
and the misses on z; are replaced by misses on the first other
access that is mapped to gq. By repeating this process, we
will obtain an optimal f” that uses d of the cache lines for
{r1,..., 74} and the other k lines for O. Hence, f* = f\/o

is an optimal solution for I. This completes the reduction.

Figure 10 is a decomposition of this graph with width d. [J

Theorem 6 (Hardness of CDP with ¢-way Mapping). For all
positive integer constants d and t, the CDP problem with t-way
mapping is NP-hard even when limited to instances where the
treewidth of G4 is bounded by a constant.
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Proof. Section 4.3 of [38] provides a construction that, by
introducing new data items and polynomially increasing the
instance size, simulates a direct-mapping cache by a t—way
mapping cache. The construction in [38] uses a constant
number of extra data elements and does not blow up the
treewidth of G;. We can then apply Theorem 5. (]

5 Experimental Results

In this section we report on an implementation and experi-
mental evaluation of our algorithm for CDP.

IMPLEMENTATION. We implemented our approach, i.e. the
algorithm of Section 3.3 for direct-mapped caches with the
optimizations of [1, Appendix B], in C++ and used the LibTW
library [48] for computing optimal tree decompositions.

MaAcHINE. All results were obtained on an Ubuntu 20.04
machine using a single thread of an Intel Xeon E3-1220 v2
Processor (3.1 GHz, 8M Cache) with 32 GB of RAM.

BENCHMARKS. We used the benchmarks of [19] for obtaining
experimental results. These benchmarks contain access se-
quences ¥ that are generated from a wide variety of classical
algorithms including in linear algebra, sorting, divide-and-
conquer, dynamic programming and string matching. In [19],
they were introduced as benchmarks for the problem of data
packing, which is another formalism of minimizing cache
misses. Given that both data packing and CDP have the
same input format, i.e. an access sequence of a program, we
can simply repurpose the benchmarks of [19] for our use-
case. Each benchmark corresponds to a classical algorithm,
e.g. Gram-Schmidt or Heap Sort, and can generate access se-
quences of various (arbitrarily long) lengths. See [19] and its
artifact for a complete list of benchmarks and other details.

TEesT Casks. Recall that a direct-mapping instance is a tuple
I'=(n,0,N, 3, 1,k). Our algorithm also needs an extra pa-
rameter d, i.e. the degree of the access hypergraph. We call
the tuple (n, O, N, 2, k, d) a test case. In our experiments, we
set a time limit of 5 minutes per test case for our algorithm
and, for each benchmark, each cache size 3 < k < 6, and each
hypergraph degree k < d < 15, generated all the test cases
that our algorithm could handle in this time limit. This led
to a total of 12,085 test cases, corresponding to 1,633 distinct
instances. Our longest access sequence in our instances has
12,917 accesses. Note that the cache sizes considered here
are much smaller than those in the real world. Our algorithm
is hence not suitable for practical cache management but
can instead be used for limit studies and profiling (See Sec-
tion 6). Similarly, note that we assume the entire sequence X
of accesses is given as part of the input and are solving the
single-threaded offline case of the problem.

SpARSITY OF INSTANCES. The fact that access graphs and
access hypergraphs are sparse is quite well-known. In [19],
it was shown that the access hypergraphs of most classical
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algorithms have bounded treewidth. However, in contrast
to previous methods, our algorithm does not depend on
the access hypergraph Gy itself, but only on a sparsified
subgraph G,. See Section 3.2. This means that we work with
a much sparser graph. In our experiments, the average ratio
of the number of edges in G4 to the number of edges in
Gy was 47.22%. So, our sparsification has significant impact,
leading to graphs that have less than half as many edges as
the widely-used access hypergraphs. Moreover, they have a
treewidth of at most 14. Figure 11 provides a histogram of
the treewidths of G, in our test cases.

2500 2384

2000

1640

1500

1000

500

Figure 11. Treewidths of our test cases. The x axis is the
treewidth of the sparsified access hypergraph G4 and the y
access is the number of cases.

BASELINES. We compare our algorithm against several well-
known heuristics in the literature.

e CKJA: This is the algorithm presented in [14], when
cache-conscious data placement was first defined. It is
a classic and has since been extensively studied.

e BB: This algorithm was presented in [4] and provides a
graph-theoretic approach that aims to totally prevent
the so-called “conflict misses” if possible.

e SCE: This approach aims to minimize cache misses us-
ing a coloring-based heuristic. It was presented in [45].

ExXPERIMENTAL RESULTS. Table 1 provides a summary of the
number of instances where our approach outperformed the
baseline heuristics. Overall, our algorithm beats CKJA in
85% of instances, BB in 84% and SCE in 88%. Figure 12 pro-
vides a detailed comparison between our algorithm and the
baselines above. In this figure, each red dot corresponds to
one instance. The dot’s x coordinate is the number of cache
misses obtained by our algorithm and its y coordinate is the
number of cache misses of the other method. The x = y line
is shown in blue. Hence, a red dot above the line corresponds
to an instance in which our algorithm performed better than
the other approach, and a red dot below the blue line signifies
that the other approach performed better.
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Table 1. Comparison of our algorithm with the baselines.
The total number of benchmarks instances is 1633. Each cell
contains the number of instances in which our algorithm
outperformed the base line (left) and the number of instances
in which the baseline had fewer misses (right).

CKJA
238

BB SCE

192

260

Our Algorithm

1395 1373 1441

LowER-BOUNDS. A major theoretical advantage of our ap-
proach is that, for the first time, it provides constant mul-
tiplicative approximation ratio guarantees. Specifically, we
can use the guaranteed ratio in Theorem 1 to obtain a lower-
bound ¢ on the optimal number of cache misses, i.e. we are
guaranteed to have at least £ cache misses no matter which
placement function is used. These lower-bounds are shown
in Figure 13. As before, there is a green dot corresponding to
each instance. The green dot’s x coordinate is the number
of cache misses obtained by our algorithm, whereas its y
coordinate is the guaranteed lower-bound ¢. As expected, all
green dots are below the x = y line.

SumMMARY. Our experimental results show that our novel
approach manages a better utilization of the cache compared
to previous heuristics, leading to improved cache perfor-
mance in the vast majority of the benchmarks. Moreover,
the performance gap increases as we go to more demanding
benchmarks, indicated by the widening distribution of data
points on the right-end side of the charts in Figure 12. Our
approach is the first to provide theoretical guarantees of
approximation within a constant ratio. Although our run-
ning time is generally larger than the heuristics, it is many
orders of magnitude faster than a purely exhaustive search,
which is the only other known approach so far that offers any
non-trivial guarantees of optimality. Performing exhaustive
search on our benchmark instances will take more than 10°%
years per instance. This matches the intuition provided by
the notorious hardness-of-approximation result in [38]. Our
parameterized approach overcomes this hardness of approx-
imation and solves instances that have thousands or even
tens of thousands of accesses. This being said, given that our
runtime depends exponentially on the cache size, we can
only handle small caches and our approach does not scale to
real-world cache sizes. Finally, our lower bounds can be used
in limit studies of heuristics, in order to characterize their
performance not against another approach, but compared to
the best theoretically-possible performance.

6 Further Discussion and Related Works

LimiTATIONS. The primary limitation of our approach is that
it is only applicable in the offline setting in which the entire
access sequence is known a priori. Note that all previous
hardness results were also for the same offline case. Our
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Figure 12. Performance of our algorithm vs BB (top), SCE
(middle), and CKJA (bottom).

experimental results demonstrate that our approach leads

to fewer misses than previous heuristics in the literature.

However, it can currently handle only small caches with a
handful of lines. More specifically, we provide algorithms
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1000 4
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Figure 13. Number of cache misses obtained by our algo-
rithm vs the theoretical lower bounds of Theorem 1.

with runtimes of either O(N-k**2) or O(n-k**!-(k+d-w%)),
in which k is the cache size, d is the order of the access hyper-
graph and w is the treewidth. Thus, while we overcome the
hardness-of-approximation and provide the first polynomial-
time algorithms with approximation-ratio guarantees, more
improvement is needed to handle larger instances. Our re-
sults strongly indicate that solving real-world instances of
CDP, within a provably-bounded approximation factor, is
likely within reach and not as hard as previously thought.
Moreover, they show that while the general case of the prob-
lem is NP-hard and hard-to-approximate, this is not the case
for the sparse instances that are often encountered in prac-
tice. Another limitation is that our problem only models
the single-threaded case and no parallelism is allowed in
accesses to the cache.

OFrFLINE vs ONLINE. While it is more desirable to minimize
cache misses in an online setting, where the entire access
sequence ¥ is not known in advance, the problem is often
studied in offline mode and ¥ is assumed to be part of the
input. This applies not only to this work but also all previous
theoretical results on both data packing [19, 35] and CDP [38].
It is partly because the offline variants are already too hard,
i.e. NP-hard and hard-to-approximate. On the other hand,
solving the offline version is also useful in the following two
cases (taken from [19]):

o Limit studies: To test the performance of a compiler
for data placement, various inputs are generated as
benchmarks, and the baseline comparison of the per-
formance is performed against the best-known offline
algorithm [38]. Hence, an almost-optimal algorithm
with guaranteed approximation ratio for the offline
case is needed.

e Profiling: Programs usually have similar memory ac-
cess behaviors over different inputs [38]. Hence, an
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effective approach for online cache management is to
consider several representative inputs, run an almost-
optimal offline algorithm for profiling, and then syn-
thesize an answer to the online case from the offline
solutions [14, 38]. Specifically, the traditional approach
of [14] for online CDP is to assign a cost to each pair
(0i,05) of elements which roughly correlates with the
number of extra cache misses that will be caused by
assigning both o; and o; to the same cache line. This
cost is always approximated using various profiling
techniques. For example, we can run a program over
thousands of random inputs and solve the offline vari-
ant of CDP for each run. Then, the cost we assign to
(0, 0) should be inversely correlated with the number
of test cases in which o; and o; were put in the same
cache line. The online algorithm will then simply work
greedily and, upon the first access to an element o;,
assign it to a cache line that minimizes its cost. Alter-
natively, we can devise a supervised ML algorithm for
the online case in which the outputs of the optimal
offline algorithm are used as the training set.
As such, the offline case considered in this work, while not
leading to practical algorithms that can be directly used for
cache management, is still useful both theoretically and for
the applications above.

PaGING. Paging is a related well-studied problem, in which
objects (or blocks) are not assigned to any specific cache
line. This is equivalent to having a cache with a single line
that can hold up to k objects. The goal is to find an opti-
mal replacement policy that minimizes the total number of
cache misses [12], i.e. to find the optimal policy for choos-
ing which object should be evacuated each time new data
is brought into the cache. Common replacement policies in-
clude FIFO, which evicts the object that has been in the cache
for the longest, and LRU, which evicts the least-recently
used/accessed object [19, 35, 51]. In the offline case, where
the sequence X of accesses is known in advance, the Optimal
Replacement Policy (ORP) is to evict the object whose next
access is furthest in the future [12].

Darta PackiING. Data packing is another formulation of the
problem of minimizing cache misses. In this case, the objects
are not assigned to specific cache lines. Instead, they are
“packed” into blocks of a fixed size and the cache can hold
a fixed number of blocks. The goal is to find a packing that
minimizes the total number of cache misses over a given
access sequence Y. [46]. Similar to CDP, data packing is also
NP-hard and hard-to-approximate within any non-trivial
factor unless P=NP [35].

CompARISON WITH [19]. The work [19] provides an algo-
rithm for the problem of data packing using a parameteri-
zation by the treewidth of the access hypergraphs. The pa-
rameter we use in this work is similar, but not exactly the
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same. Specifically, we consider the treewidth of a sparsi-
fied subgraph of the access hypergraphs (Section 3.2). This
sparsification is a key part of our theoretical contribution
and necessary for obtaining a constant-ratio approximation.
Additionally, the two works also differ in the following ways:

o Modeling of the Cache: [19] considers the problem of
Data Packing (DP), whereas we study Cache-conscious
Data Placement (CDP). As mentioned above, DP and
CDP model the cache differently. In CDP, each data
item is mapped to a specific cache line, whereas in DP,
the items do not have a fixed position in the cache but
are instead grouped (packed) together to form blocks.

e Hardness and Parameterized Complexity: While both
CDP and DP are NP-hard and hard-to-approximate, the
DP problem of [19] becomes fixed-parameter tractable
and admits a polynomial-time algorithm when the
treewidth is bounded. In contrast, our problem re-
mains NP-hard even when limited to graphs of con-
stant treewidth (Section 4) and can only be approx-
imated. Hence, we are considering a strictly harder
problem in terms of parameterized complexity and the
techniques of [19] are not applicable to our setting.

e Solution Concepts: Both our solution and that of [19]
reduce cache management problems to variants of
graph coloring. In [19], the number of vertices of any
given color is bounded, whereas in our case the number
of colors is at most the cache size k.

7 Conclusion

We studied CDP, which is a standard and classical problem in
memory management. As previous works have either formal
and strong theoretical hardness results, or heuristics with
no guarantees of optimality, this work is the first to present
formal positive results. Particularly, we showed real-world
instances of CDP admit efficient approximations within a
constant ratio (1+¢) based on sparsification and parameteri-
zation by treewidth. Notably, our results differ from standard
algorithmic approaches in which treewidth suffices to make
the problem tractable and we show the problem remains NP-
hard even with bounded treewidth, and only approximations
are possible.

Interesting directions of future work include studying
the existence of other parameters that allow for an efficient
algorithm to solve CDP exactly, designing heuristics on top
of our treewidth-based algorithm to improve its performance,
and on the more practical side, incorporating our algorithm
in data placement processes of mainstream compilers.
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