
An Efficient Implementation of the Robust

k-Center Clustering Problem

Rachel Schwartz
University of Maryland

College Park, Maryland 20742, United States

April 29, 2010

Abstract

The standard k-center clustering problem is very sensitive to outliers.
Charikar et al. proposed an alternative algorithm to cluster p points out of
n total, thereby avoiding the distortion caused by outliers. The algorithm
has an approximation bound of three times the true solution, but is very
slow if implemented naively. We propose a modified implementation of
the algorithm that runs significantly faster than the standard version. It
does this while keeping the memory bound within the same asymptotic
bound as that of the naive implementation. We show that, as the size of
the problem increases, our algorithm maintains a relatively low running
time, while the standard implementation time increases in proportion to
it.

1 Introduction

Clustering problems arise almost everywhere in computer science, from systems
applications to artificial intelligence research to statistical analysis; the question
of how to best categorize points into distinct groups based on distance is there-
fore a very well studied one. One standard variant of the problem is k-center
clustering: the NP-complete challenge of finding k centers from a set of n points,
minimizing the maximum distance for each point from its chosen center. The
problem has a widely used approximation algorithm, the k-means algorithm,
which performs well under most circumstances.

While the standard k-center clustering optimization often provides a good frame-
work for analyzing a set of points, it does not adequately describe the goal in
every clustering problem. One drawback of k-center is its sensitivity to every
one of the n points in the set. Since the goal of k-center clustering is to keep
the maximum distance of a point from its nearest center low, outlying points
need to be carefully considered so that they do not inflate the solution radius.
This may mean choosing a center especially for these outlying points, which

1



may be close to very few of all n points. If the goal of the clustering is for every
point to be within a given radius of a center, this over-emphasis of the outliers
cannot be helped. However, for many problems, the requirement that every
point be within some distance of a center is overly stringent. In such a case,
the skewing of the centers towards the outliers produces an unnecessarily sub-
optimal solution. To obtain the optimal answer, the problem statement must
be modified: find k centers from n points such that for p points of the n in the
set, the maximum distance for each point from its nearest center is minimized.
(n − p) points are then considered outliers, and may be arbitrarily far from a
center without affecting the solution.

Charikar, et al. introduce an approximation algorithm for solving this version of
k-center clustering, known as the robust k-center clustering problem [2]. Briefly,
the algorithm relies on a binary search for the solution from among all possible
radii (consisting of distances between every pair of points). For each possible
radius tried, a series of discs and expanded discs is constructed. Each point’s
disc is composed of points within that radius and each point’s expanded disc is
composed of points within three times that radius. For k iterations, the largest
disc is chosen as a center and all points in its expanded disc are marked as
covered and removed from the discs. After k iterations, if no more than (n− p)
points remain uncovered, a solution has been found for this radius. If not, no
solution exists for this radius. The binary search continues until the smallest
radius with a solution is found. At that point, the solution is guaranteed to be
within three times the optimal radius.

The Charikar et al. algorithm, while it provides a good approximation of an NP
complete problem, can be untenably slow if implemented naively. Disc genera-
tion can require checking the distance between every pair of points, resulting in
O(n2) time for each solution search. Updating the discs can be even slower, with
each point in every disc checked to see if it is a newly covered point; this must be
repeated k times for each solution search. There is also a large memory cost as-
sociated with storing the discs explicitly. For the algorithm to be a really useful
one, it must be capable of computing solutions for large numbers of points. It is
therefore necessary to devise a more clever approach of implementing the algo-
rithm. In this paper, we present an implementation that considerably reduces
the necessary computing time. We also implement a memory-efficient version,
though without any optimizations to reduce computing time.

The rest of the paper is organized as follows. Section 2 contains related work.
Section 3 discusses the algorithm and our implementation in detail. Section 4
contains results for the naive and improved implementations while Section 5
concludes the paper.

2



2 Related work

The general area of clustering is a very well studied one; the specific method
of clustering using approximations algorithms has been much explored as well.
Shmoys et al. were the first to present a constant time approximation algorithm
for the uncapacitated facilities location problem, the most general version of the
clustering problem; Guha and Khuller improved on the algorithm with a better
approximation bound [9] [4]. A series of methods reduced this constant further,
concluding with the Mahdian et al. approximation constant of 1.52 [8].

There is also much research on clustering methods that are robust to outliers,
with many different approaches suggested. Baduoi et al. presented a (1 + ε)
approximation algorithm for clustering via coreset, and extended their method
to allow for outliers [1]. Guha et al. developed a hierarchical clustering method,
aimed at large datasets, which is more robust to outliers than standard meth-
ods [5]. For streaming algorithms, Charikar et al. developed a constant guar-
antee approximation for k-center clustering using random sampling [3]. A few
methods took a two-phased approach, separating outlier detection and cluster-
ing. Jiang et al. used a modified version of the k-means algorithm and then built
a minimum spanning tree to detect likely outliers [7]. Hautamaki et al. used
a defined outlyingness factor to iteratively select clusters that are likely to be
outliers [6]. The Charikar method differs from all of the above in being a general
purpose single step k-center clustering algorithm using partitional clustering.

3 The Algorithm

3.1 Basic Algorithm

The Charikar et al. algorithm consists of a binary search from a series of pos-
sible solutions. Since the maximum radius must be the distance between two
points, the solution must be one of those O(n2) distances. Given a radius r,
the algorithm can determine whether there is a solution to the k-center problem
with that radius. First, the points within a distance r of each point are assigned
as that point’s disc and those within 3r assigned to its expanded disc. The point
with the largest disc is then chosen as the first point of the k in the solution
and the points in the expanded disc are marked as covered and removed from
all discs. This is repeated k times, with the largest disc chosen as the new point
added to the solution. After k repetitions, there are k points in the solution
and computation stops. If at least p points are covered, a solution has been
found. A binary search from among all possible distances will find the smallest
r for which a solution can be found. This solution will be within three times
the minimum radius possible.

If naively implemented, the algorithm can be a very expensive one. To generate
the discs, each point must be compared with every other, an O(n2) process.
Each of the k iterations requires searching every disc for newly covered points,

3



an O(n2) process as well, though practically, it will often be far less expensive.
Since a binary search is done to find the minimum solution radius, the total
cost is O(n2 log(n2)) = O(n2 log n). The memory cost of the solution is heavy
as well. At a minimum, each disc/expanded disc must be stored, which is an
O(n2) proposition.

3.2 Fast Disc Generation

The naive method of disc generation necessitates a comparison between every
pair of points in the problem. Since in the majority of cases, most of the points
will not fall within each other’s disc radii, most of these comparisons are super-
fluous. If distances are known in advance, however, disc generation becomes a
trivial task. Obviously, it is not possible to know which points are neighbors
initially; however, in order to obtain a list of distances for a binary search, every
set of points must be compared at least once. This comparison can be utilized
to find neighbors for disc generation purposes. If every pair of points is stored
in order of distance, disc generation can be accomplished simply by traversing
the list until distances beyond the current radius are reached. To obtain this
list, the extra computation cost is an O(n2 log n2) = O(n2 log n) sorting cost for
this list of pairs, which may not be too painful. However, the extra memory
cost is prohibitive: storing every pair of points requires O(n2) space. Although
this is actually the same bound required by the discs themselves, practically,
the discs will require much less, while the pairs cost is a high one, independent
of the points’ layout.

Since for solution searches, the only interesting pairs are those whose distance
falls below a given radius, the pair storage can be greatly reduced. In our im-
plementation, a configurable constant is chosen as the bound of pairs stored,
where the number of pairs is capped at the constant times the number of points.
Alternatively, some radius could be used as the cutoff point, but that raises the
question of how a radius is chosen. Additionally, that method would not guar-
antee an O(n) storage cost, while our method does this naturally. As the pairs
are generated, it becomes necessary to determine whether each pair should be
stored. Our method of doing so relies on a max heap capped in size at the stor-
age limit. Each new pair is checked against the top of the heap to determine
whether its distance is smaller than the current largest distance stored. Check-
ing whether a pair needs to be stored is then a constant operation, although
removal and replacement of a pair requires an additional log(n) cost for each
point. This does introduce an extra cost into the distance list/pairs generation,
with an O(n2 log n) cost instead of the O(n2) cost in the naive implementation.
There is an additional O(n log n) cost for sorting the pairs into order of distance
once the list is generated.

Although limiting the size of the pairs list greatly reduces the memory cost of
the implementation, some solution searches will require a radius larger than the
maximum distance stored in the list. Without some additional method for gen-

4



erating discs, it would be necessary to fall back on the naive method, so that no
savings at all could be acquired from the pairs list. Our implementation com-
pensates for this deficit with the use of special points. A number of points are
randomly chosen as special points, and their distances from every other point
are stored in order. These points’ distances can then be used as approximations
when looking for points under a given distance from a point near a special one.

For the disc of a point p, we are actually interested in points p2 that are at
a distance ≤ r from p. Since p is a distance of rsp from some special point,
points p2 are at most a distance of rsp + r from the special point. The special
point’s distance list can therefore be searched for points in p’s disc, stopping
when the distance reaches r+ rsp. In addition, the points very near in distance
to p need not be searched either, as they will be on the pairs list. Points that
are a distance of more than the maximum pairs list radius rm from p will be
at least rm − rsp from the special point. If a point was a distance less than
rm − rsp from the special point, it would be at most rm − rsp + rsp = rm from
p. In that case it would be on the pairs list and would be added to the disc
using that method. The section of the special points distance list that needs
to be traversed in generating a point p’s disc is for points of distances between
(rm− rsp) and (r+ rsp). Of course, because the expanded disc must be built as
well, the actual upper limit becomes (3r + rsp).

The significance of the savings depends on the value of rsp: the closer this value
is to 0, the smaller the range of points that needs to be searched for disc genera-
tion. Of the special points, the one closest to the center point of the current disc
is used as an approximation. A larger number of special points will decrease
the average distance rsp. However, each special point requires a full list of point
distances stored, resulting in an extra O(n) storage cost for each point. Of
course, as long as the number of special points is held constant, the storage cost
will stay at O(n), but the number of points chosen must be balanced against
the significant cost for each extra point. This number is therefore configurable
in the implementation.

3.3 Fast Disc Updating

The disc generation phase of the algorithm is expensive, but, for the naive
implementation, the solution search cost exceeds it. Once a disc is chosen to be
added to the solution, all its points are marked as covered and removed from
all discs. In the basic implementation, this requires traversing each disc and
removing any covered points. Of course, many discs will have no covered points
at all, as long as they do not overlap with the newly chosen solution disc.

Our implementation utilizes a very simple property of metrics to avoid this extra
disc search. Since distances are symmetrical, any point in the disc of another
point will contain that other point in its disc. The only discs that may contain
newly covered points are those discs with centers that are contained in the discs

5



of the newly covered points. Furthermore, many of those discs will have centers
that are covered themselves; these discs do not need to be searched for newly
covered points at all, since they will shortly be removed from the solution. By
searching the discs of all the newly covered points, i.e. those that are covered
by the point newly added to the solution, we can obtain a list of all the discs
that need to be “cleaned up” - have covered points removed. These discs will, in
general, be only a subset of the entire disc set that must be searched in the naive
implementation. The computational cost of updating the discs is significantly
lessened, while no extra memory is required.

The final step for each of the k iterations of the disc update is finding the new
biggest disc. This is an O(n) computation, upon which we did not seek to
approve in our implementation.

3.4 Memory Considerations

Although the efficient algorithm offers a speed improvement, it actually uses
even more memory than the naive implementation. This is not practical for
very large numbers of points. We also implement a memory efficient solution
method, which does not seek to optimize the computational time. This algo-
rithm does not store discs explicitly at all. Instead, for each of the k iterations
of every radius checked for a solution, the number of points in each point’s ra-
dius is recalculated. This means the computation time basically consists of disc
generation time, but that generation happens more frequently.

4 Results

All three implementations, naive, efficient and memory efficient, were written
in Java. All tests were run on a 32-bit Windows machine with a 32 bit JVM.
The machine used had 4G of RAM and a 3.06 Ghz duel core processor. The
JVM was run with a maximum heap size of 1500 MB, which was the limit for
this machine.

4.1 Disk Generation Constants Study

Before running the main comparison of the algorithms, we analyzed the effect
of the two configurable parameters on the solution time. Both parameters,
the pairs list constant and the number of special points, effect only the disc
generation time, so only that time is noted here. We used a small number
of points so that we could observe the advantage gained from the changing
constants without considering the effects of memory shortages. Points were
two dimensional Euclidean points distributed in a 500x500 area. We examined
two different point layouts, one a completely random generation and one where
points were generated uniformly around k clusters, with random outliers. For
each distribution, we ran the algorithm for 645 points, with k = 15. Up to 30

6



points were allowed as outliers. The two constants were both tested with values
of {10, 25, 50, 60, 75}. For each combination of values, we ran the algorithm
three times each for both the random and centered distributions. The random
distribution was slower than the centered one, but they seem to exhibit the same
trends. In general, we observed that, unsurprisingly, as the number of special
points and number of pairs stored went up, the overall disc generation time went
down. Also unsurprisingly, the more dramatic reductions in time came with the
earlier increases in the constants. These numbers confirm the general efficacy of
the improved implementation in reducing computational time for the solution.

pairs special random(ms) centered(ms)
10 10 798 569
10 25 688 453
10 50 676 426
10 60 620 427
10 75 610 416
25 10 811 349
25 25 660 342
25 60 610 297
25 75 626 313
50 10 427 286
50 25 433 323
50 50 406 318
50 60 448 402
50 75 458 296
60 10 437 307
60 25 453 313
60 50 400 318
60 60 417 312
60 75 402 312
75 10 391 255
75 25 391 292
75 50 390 286
75 60 396 276
75 75 375 298

Table 1: Disk Generation Times for Pairs and Special Points Constants

4.2 Implementation Comparisons

Based on the disk generation times, it would seem that fairly high constant
values remain very helpful, where values of about 10% of the total number of
points gave good results. However, for testing using a larger number of points,
such a high constant is impractical, as 1500 MB of memory cannot handle the

7



Figure 1: Average Disk Generation Time for Each of the Constants

amount of storage necessary. Based on trial and error, we determined that to
avoid a heap space error for the largest number of points tested, 6450, the both
the pairs constant and the number of special points should be 20. We therefore
used these values for all tests of the efficient implementation against the stan-
dard one and against the memory efficient one.

We tested all implementations for numbers of points = {1075, 2150, 4300, 6450}.
k and the number of outliers allowed were both fixed percentages, with k =
{25, 50, 100, 150} and number of outliers = {50, 100, 200, 300} respectively. As
stated, the pairs constant was 20, as was the number of special points. The
points were all generated from central distributions and were two-dimensional
Euclidean on a 2000x2000 grid. As a distance measure, the square of the actual
distance was used instead of distance (this is a faster computation, but does not
affect results otherwise). The experiment was repeated with a random distribu-
tion and all other factors identical.

There was not much difference between the random and centralized distribu-
tions for any of the implementations. The distance time was similar for both
distributions and all implementations. It was slightly larger for the efficient im-
plementation, because of the extra time required to compute pairs lists. How-

8



ever, none of the differences was great.

The most prominent result was the difference in the disc update time required
for the implementations. The standard disc updating time was magnitudes
greater than the efficient one. The disc generation time for the efficient solution
was also faster than for the naive, though not to the same degree. The disc
generation time was slowest for the memory efficient implementation; this was
as expected, because the low memory implementation does not do any updating
but generates new discs with each of k iterations per a radius search.

For disc generation and updating times added together, the efficient implemen-
tation had by far the fastest time. Significantly, the difference in time increased
as the number of points increased, indicating that the efficient solution becomes
more important for larger problem sizes. In addition, fairly small pair and spe-
cial point constants were chosen because of memory limits. Larger constants
would result in even greater time savings. Overall, the efficient implementation
proved its name.

Figure 2: Distance Time for Each of the Implementations, Centralized and
Random

9



k distance dis gen(ms) update(ms)
Centralized, Efficient
25 938 515 203
50 5032 2171 594
100 22187 9797 2597
150 48312 6422 25703
Random, Efficient
25 985 906 297
50 5078 4062 688
100 22297 16485 2827
150 49484 44157 6937
Centralized, Standard
25 719 3486 16029
50 3484 15082 111590
100 16687 66313 886046
150 42828 163609 2935907
Random, Standard
25 784 3844 17859
50 3516 15878 125686
100 16906 69360 945890
150 44904 170408 3063186
Centralized, Memory Efficient
25 783 11766 0
50 3485 86843 0
100 16734 709453 0
150 42906 2328735 0
Random, Memory Efficient
25 703 9407 0
50 3531 62109 0
100 16890 524563 0
150 43938 1987437 0

Table 2: Distance, Disk Generation, Disk Updating Times for All Implementa-
tions

4.3 Memory Considerations

The approximately 6000 point limit we encountered makes the efficient imple-
mentation unusable for large problems. We tested the memory efficient imple-
mentation, but it could only handle approximately 8000 points without running
out of memory. This use of memory was primarily due to the storage of each
unique distance between two points, which is essentially O(n2) storage. To re-
duce this need for storage, we rounded off distances to a factor of 10. In this
way, we greatly reduced the number of unique distances between points. This

10



Figure 3: Disk Generation + Updating Time for Each Implementation, Cen-
tralized and Random

allowed us to run the implementations on many more points, although with
some loss in the accuracy of the solution. The efficient implementation ran
successfully for sizes up to k = 400, with 80 points per cluster, for a total of
33, 200 points. The memory implementation could handle this size, and k = 500
with 90 points per cluster, or 46, 500 points, as well. However, when we ran the
implementation with this number of points, it had not finished after several
hours. To test larger sizes, we simply generated points without actually finding
a solution. Using this method, we found that the memory implementation could
handle as many as 304, 500 points in terms of storage cost, but was far too slow
to run with such a large number of points. As expected, therefore, the memory
efficient implementation has by far the smallest storage demand, but it is so
slow it cannot be used for a large number of points.

5 Conclusions

The algorithm proposed by Charikar et al. finds an approximate solution of
within three times the optimum for the robust k-center clustering problem. The
algorithm, while it is polynomial time, is impractically slow when implemented

11



naively. Our efficient implementation greatly decreases the computational time
necessary to compute the solution. It does so while adding only an O(n) mem-
ory cost. Though it uses more memory than a memory-focused implementation,
it is far faster than that method as well.

There is some work that can be done to improve the algorithm. Firstly, the
chief memory block in running the solution for more points is storage of every
possible distance, an O(n2) cost. However, this distance list is used only for bi-
nary search purposes. For a lower degree of accuracy, far fewer exact distances
need be stored; our preliminary work indicates this savings is considerable. In
future work, we will investigate this approximation more thoroughly. In general,
the algorithm uses a large amount of memory, and we will examine methods to
bring this cost down.

Some sections of the algorithm were not improved in our efficient implemen-
tation, but were left identical to their naive counterparts. In particular, disc
generation remained an O(n2) task. Also, we did not develop a fast method for
finding the current largest disc after an update. We would like to improve both
of these running times in future work.

6 Acknowledgements

We would like to thank Samir Khuller for his help throughout every stage of
this work.

References

[1] Mihai Bādoiu, Sariel Har-Peled, and Piotr Indyk. Approximate clustering
via core-sets. In STOC ’02: Proceedings of the thiry-fourth annual ACM
symposium on Theory of computing, pages 250–257, New York, NY, USA,
2002. ACM.

[2] Moses Charikar, Samir Khuller, David M. Mount, and Giri Narasimhan. Al-
gorithms for facility location problems with outliers. In SODA ’01: Proceed-
ings of the twelfth annual ACM-SIAM symposium on Discrete algorithms,
pages 642–651, Philadelphia, PA, USA, 2001. Society for Industrial and Ap-
plied Mathematics.

[3] Moses Charikar, Liadan O’Callaghan, and Rina Panigrahy. Better streaming
algorithms for clustering problems. In STOC ’03: Proceedings of the thirty-
fifth annual ACM symposium on Theory of computing, pages 30–39, New
York, NY, USA, 2003. ACM.

[4] Sudipto Guha and Samir Khuller. Greedy strikes back: improved facility
location algorithms. In SODA ’98: Proceedings of the ninth annual ACM-

12



SIAM symposium on Discrete algorithms, pages 649–657, Philadelphia, PA,
USA, 1998. Society for Industrial and Applied Mathematics.

[5] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. Cure: an efficient
clustering algorithm for large databases. In SIGMOD ’98: Proceedings of
the 1998 ACM SIGMOD international conference on Management of data,
pages 73–84, New York, NY, USA, 1998. ACM.

[6] Ville Hautammki, Svetlana Cherednichenko, Ismo Karkkainen, Tomi Kin-
nunen, and Pasi Franti. Improving k-means by outlier removal. In SCIA
2005: Scandinavian conference on image analysis, pages 978–987, Berlin,
Allemagne, 2005. Springer.

[7] M. F. Jaing, S. S. Tseng, and C. M. Su. Two-phase clustering process for
outliers detection. Pattern Recogn. Lett., 22(6-7):691–700, 2001.

[8] Mohammad Mahdian, Yinyu Ye, and Jiawei Zhang. Approximation algo-
rithms for metric facility location problems. SIAM J. Comput., 36(2):411–
432, 2006.

[9] David B. Shmoys, Éva Tardos, and Karen Aardal. Approximation algorithms
for facility location problems (extended abstract). In STOC ’97: Proceedings
of the twenty-ninth annual ACM symposium on Theory of computing, pages
265–274, New York, NY, USA, 1997. ACM.

13


