
Efficiently Storing States For HTN Planner
Backtracking

Tyler Kitts1

1 Dept. of Computer Science, Univ. of Maryland, College Park, MD, USA

Abstract

Abstract When a HTN planner makes a choice which leads to a dead end, it may back-
track to a previous state to choose a different option. This requires the planner to copy and
store every state it creates for later backtracking, however copying the current state is costly.
To mitigate this issue we modified IPyHOP to avoid storing information that is the same
in multiple stored states. This saves time that would have been spent copying the state by
instead creating pointers to the variables which are the same in both the new state and a older
state.

1. Introduction

Pyhop and its successor GTPyhop are HTN planners which use a description of the world in the
form of possible actions, a set of variables describing the current state of the world, and a set
of variables describing the goal state. GTPyhop uses that goal state as the basis for a to-do list
which is broken down into sequences of tasks or actions [3]. When GTPyhop generates a plan that
does not accomplish the goal it backtracks to the last state checks if it can produce a plan that
accomplishes the goal. If it cannot then GTPyhop repeats this backtracking until it finds a state
that leads to accomplishing the goal.

IPyHOP is a re-entrant iterative HTN planner written in Python and based on GTPyhop.
IPyHOP is based on GTPyhop, but can resume planning at the point where the failure occurred
[1]. To facilitate this backtracking IPyHOP has to store every state it generates during planning
in case it has to backtrack to that state later.

The Simple Hierarchical Ordered Planner (SHOP) planning algorithm is a HTN planner written
in Lisp which predates Pyhop. SHOP2 and SHOP3 [2]. SHOP3 tracks the changes to the current
state through separate incremental updates to an original state; These incremental updates can
then be rolled back one at a time to backtrack to previous states. This method of tracking changes
to a state provided the inspiration for improving the efficiency of IPyHOP’s backtracking. Due to
IPyHOP being iterative and SHOP3 being recursive this modified backtracking is different, though
more directly analogous backtracking method could be applied to GTPyhop in future work.

Our primary contribution is a way to increase the efficiency of IPyHOP’s backtracking by re-
ducing the number of variables that must be copied from a state to prepare for later backtracking.
This paper discusses provides further details on GTPyhop, IPyHOP and SHOP3 in Section 2,
Section 3 explains the modifications made to IPyHOP to improve backtracking, Section 4 covers
two domains for HTN planning and the results of experiments comparing IPyHOP and the mod-
ifications we made, and Section 5 discusses the limitations of our work and features that future
work could expand on.

1



2 BACKGROUND: GTPYHOP, IPYHOP AND SHOP3 2

Figure 1. Pseudocode for IPyHOP [1]

2. Background: GTPyhop, IPyHOP and SHOP3

HTN planners are domain configurable planners that refine a set of tasks to produce a plan.
These planners require a description of the world in the form of a set of actions for interacting
with the world and a set of variables which are used to describe a state.

GTPyhop (Nau et al. 2021) is a domain-independent planner written in Python. GTPyhop
recursively plans for a set of tasks and goals in the same order that they will later be executed.
GTPyhop is the basis for both IPyHOP and out modification of IPyHOP[3].

IPyHOP is a planning system written in Python as an iterative version of GTPyhop. GTPyhop
recursively refines goals and tasks, but this can make re-entering due to action failure impossible.
IPyHOP was made to improve GTPyhop’s ability to replan by being an iterative version which
stores states as nodes in a tree. IPyHOP maintains a hierarchy of state nodes so that it can move
to a different node when it encounters a failure. Line 8 of IPyHOP’s pseudocode, which caches the
current state, occurs very often so our improvement to this caching is triggered many times[1].

SHOP3 is a HTN planning system written in Lisp and based on SHOP2. SHOP3 modern-
ized SHOP2’s architecture to make incorporating SHOP into external systems easier and support
Planning Domain Definition Language (PDDL). SHOP3 reads PDDL files and breaks the effects
of each action into individually traceable changes which it can revert during backtracking. This
way the entire state of each node does not need to be stored, instead only the exact changes to
individual variables within a state are stored and undone for backtracking[2].

3. Efficiently storing states

Our contribution is an improvement to IPyHOP’s backtracking procedure. After IPyHOP
expands a new node by selecting an action it updates the current tracked state to match the
results of that action, and it stores the current state as a node (line 8 of figure 1). To store that
state as a node in a tree it performs a deep copy of each dictionary stored at that node. For
the Satellite domain a node would include a dictionary for the direction each satellite is facing,
which instruments are powered on, which satellites have power available, which instruments are
calibrated, and what images have been taken. For any domain where actions may not affect every
dictionary, performing a deep copy is slow and uses more memory than necessary. Similarly



3 EFFICIENTLY STORING STATES 3

Problem Size Base IPyHOP Modified IPyHOP
5 2.20E-03 4.14582E-05
10 3.74E-03 3.92356E-05
15 6.87E-03 5.48842E-05
20 1.49E-02 6.92645E-05
25 1.80E-02 6.44468E-05
30 2.15E-02 6.90166E-05
35 2.81E-02 9.97501E-05
40 3.39E-02 1.02E-04

Figure 2. Mean time to copy a state in the rover domain. A problem size of X means there are
X rovers, X objectives for imaging, X cameras, X goals, and X+5 waypoints

Figure 3. Time required to copy one state by IPyHOP in the Rover domain on a semi-log scale.
The error bars show the standard error. One state contains the following dictionaries: empty rovers,
rovers carrying rock analysis, rovers carrying soil analysis, full rovers, calibrated rovers, rovers that
have an image, communicated soil data, communicated rock data, communicated image data,
location of soil samples, location of rock samples, free communication channels, objectives at each
waypoint.

to how IPyHOP requires a list of declared actions, our modified version of IPYHOP requires a
dictionary that maps actions to the variables they can affect. Our modified version of IPyHOP
uses this dictionary to identify which variables were modified by an action, and thus need to be
deep copied, and which variables can be replaced with a pointer referencing the parent node’s
corresponding variable. For example, when an instrument is calibrated in the satellite domain the
dictionary that maps each instrument with their calibration status must be deep copied, but that
is the only dictionary that is affected by that action so all other variables in the new node are
replaced with pointers. The figure below shows a more complex example, where multiple actions
are taken.



4 EXPERIMENTS 4

Figure 4. This chart shows what is stored in each dictionaries at a node when it is generated by
taking an action. The leftmost column shows the most recent action; the first row shows the name
of each dictionary; the second row shows the initial values for each dictionary; each subsequent
row shows what is stored at the newly generated node. Arrows signify a pointer to the previous
node’s dictionary for that variable. At the top of the figure is a list of rigid relations, which are
dictionaries that do not need to be copied because they cannot be modified.

4. Experiments

We expect our modified IPyHOP to be more efficient than base IPyHOP because it copies fewer
variables when cloning a state node. We expect a greater difference in more complex domains where
each action only affects a small subset of the variables that make up a state.

4.1. Satellite Domain

This Satellite domain was derived from the IPC 2002 competition where images of stars and
planets need to be taken using different instruments housed on separate satellites. For this evalua-
tion 50 trials were performed for 50 problem sizes. A problem size of X means there are X satellites,
X maximum instruments per satellite, X imaging modes, X imaging targets and X required obser-
vations. Planning in the Satellite Domain with modified IPyHOP requires significantly less time
and memory than base IPyhop, and both planners produce similarly sized plans. These results
suggest modified IPyHOP is an improved algorithm since it is more efficient at producing the same
plans.



4.2 Rover Domain 5

Figure 5. Mean time spent to plan by modified and unmodified IPyHOP in the Satellite domain
on a semi-log scale. The error bars show the standard error.

Figure 6. Peak Memory usage of modified and unmodified IPyHOP in the Satellite domain on a
semi-log scale. The error bars show the standard error.

4.2. Rover Domain

This Rover domain was derived from IPC 2002 competition where rovers must collect samples
from waypoints and maneuver between locations to take images and communicate its collected
data. For this evaluation 50 trials were performed for 40 problem sizes. A problem size of X means
there are X rovers, X objectives for imaging, X cameras, X goals, and X+5 waypoints. Similarly
to the Satellite domain modified IPyHOP outperformed base IPyhop in both mean time required
to plan and peak memory usage while producing similar plans.

5. Results and Discussion

This improvement to IPyHOP was inspired by SHOP3’s approach to storing states which makes
undoing actions less computationally expensive. SHOP3 stores the changes an action causes as
a tag which can be applied or removed from a state, but an iterative program like IPyHOP
which maintains a hierarchy of nodes can point to other nodes rather than store duplicate data.
This modification performed well in the Satellite Domain and Rover domain, especially for larger
problems. While the time required to plan still follows polynomial growth as problem size increases
for both Domains, but it is a slower polynomial growth.



5 RESULTS AND DISCUSSION 6

Figure 7. Mean time spent to plan by modified and unmodified IPyHOP in the Rover domain
on a semi-log scale. The error bars show the standard error.

Figure 8. Peak Memory usage of modified and unmodified IPyHOP in the Rover domain on a
semi-log scale. The error bars show the standard error.

Future work could further isolate changes to the state by tracking which items are added or
removed to the state. Instead of tracking which variables are modified and only copying those,
SHOP3 tracks the modifications and when its planner has to backtrack it recreates the state by
applying a list of tracked changes to an original state. Doing so in an iterative planner that stores
a hierarchy of nodes complicates backtracking to an arbitrary node, but it would further improve
efficiency. A future work which recreates SHOP3’s change tracking system could disassemble the
effects of actions listed in a PDDL file in a way that identifies which keys match modified data in
dictionary variables or which indices identify the modified elements of a list.

Acknowledgements

This paper would not have been possible without the guidance of Professor Dana Nau. We
would also like to thank Mark Roberts for assistance proof reading and providing feedback on this



REFERENCES 7

paper and Paul Zaidins for providing his insight into IPyhop and the Rover domain.

References

[1] Yash Bansod, Sunandita Patra, Dana Nau, and Mark Roberts. HTN replanning from the
middle. In FLAIRS, May 2022.

[2] Robert P Goldman and Ugur Kuter. Hierarchical task network planning in Common Lisp: the
case of SHOP3. In Proc. European Lisp Symposium, 2019.

[3] Dana Nau, Sunandita Patra, Mak Roberts, Yash Bansod, and Ruoxi Li. GTPyhop: A hi-
erarchical goal+task planner implemented in Python. In ICAPS Workshop on Hierarchical
Planning (HPlan), July 2021.


	CMSC_MS Scholarly Paper Approval Form_Tyler Kitts (3)
	Efficiently_Storing_States_for_HTN_Planner_Backtracking
	Introduction 
	Background: GTPyhop, IPyHOP and SHOP3
	Efficiently storing states
	Experiments 
	Satellite Domain 
	Rover Domain

	Results and Discussion 




