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Abstract
Rapid emergency response time is critical in mitigating the severity
of traffic accidents, reducing fatalities, and ensuring timely aid for
injured individuals. We utilized machine learning models to analyze
high-risk areas for accidents and strategically place ambulances.
The framework was designed to improve emergency response time,
reduce fatalities, and enhance the efficiency of resource distribu-
tion, particularly in Washington, D.C. This study demonstrates
how machine learning and geospatial analysis can be applied to
dynamically adjust emergency response strategies. Spatial analy-
sis techniques, such as Grid-Based Density Analysis and Kernel
Density Estimation, were used to generate visualizations to high-
light high-risk areas requiring readily available medical attention.
K-Means Clustering was employed to identify optimal ambulance
placements based on the accident distribution patterns. To enhance
realism, Network Analysis with Dijkstra’s algorithm was applied
to incorporate road constraints and estimated travel times to offer
a more dynamic model for ambulance routing. We evaluated the
success of our framework by comparing ambulance arrival times,
average, median, and maximum, as well as the percentage of acci-
dents reached within predefined response time thresholds, between
the current and proposed ambulance configurations. By minimiz-
ing this response time, the framework aims to ensure the quickest
possible aid for all traffic accidents, prioritizing efficiency in emer-
gency interventions. Our results revealed a discrepancy between
current ambulance locations and areas with the highest need, sug-
gesting opportunities for improvement for resource allocation. This
research highlights the potential of geographic information science
and data-driven methods to enhance public safety infrastructure
and demonstrates adaptability to other urban environments facing
similar challenges.

1 Introduction
Road traffic accidents are a significant threat to public safety and
health in the United States. Each year, there are approximately 6
million crashes and over 40,000 casualties, along with hundreds of
thousands of injuries. Traffic-related injuries are a leading cause
of death in the United States. Motor vehicle crashes are especially
devastating for individuals between the ages of 1 and 54, where
they remain the leading cause of death [8]. In Washington, D.C.,
traffic fatalities have been rising in more recent years despite ef-
forts to reduce accidents through infrastructure improvements and
stricter traffic regulations. Although the United States accounts
for a significant portion of global traffic-related fatalities, urban
centers such as Washington, D.C., face the compounded challenges

of dense populations, complex traffic patterns, and aging infrastruc-
ture. These factors make efficient emergency response time even
more critical.

Reducing the consequences of traffic accidents depends on how
quickly emergency services can reach the scene and provide medi-
cal assistance. In urban environments like Washington, D.C., traf-
fic density fluctuates throughout the day, leading to delays and
unpredictability in emergency routing. These delays significantly
impact public safety. Despite established emergency response pro-
tocols, current systems often suffer from inefficiencies in dispatch
coordination and routing, leading to suboptimal arrival times. A
data-driven approach that accounts for various factors that affect
response time can enable rapid and effective emergency interven-
tions. In this study, we develop a data-driven framework to optimize
ambulance placement and routing by employing geospatial analysis
and machine learning techniques.

While data-driven methods can improve emergency response
times, prior research has explored several strategies for optimizing
emergency response systems. For example, studies have empha-
sized machine learning techniques to evaluate the placement of
healthcare facilities [10, 15]. Additionally, there are studies on re-
source allocation during natural disasters, which typically involve
ambulances. Although the circumstances are different, they provide
valuable insights on optimizing emergency response under time-
sensitive conditions [7]. Some researchers apply machine learning
techniques like Random Forest for predicting demand [1], while
others have used clustering methods, such as hierarchical cluster-
ing, to group accident hotspots [12]. While these methods offer
important insights, our approach enhances clustering by incorpo-
rating geospatial analysis and machine learning to create a dynamic,
adaptable model for identifying high-need zones in real time.

In this study, we propose a data-driven framework to optimize
emergency response times in Washington, D.C. by placing the am-
bulances in high-risk areas. Using historical traffic accident data,
we apply geospatial analysis and machine learning techniques to
identify high-risk zones. First, we implement Nearest Neighbor
Analysis to determine the spatial distribution of the traffic acci-
dents. The results of this influenced our methodology of proposing
a cluster-based approach to improve the placement of ambulances
around Washington, D.C. Our approach integrates spatial analysis
methods, such as Grid-Based Density Analysis and Kernel Density
Estimation, to visualize accident hotspots. By analyzing past acci-
dents, emergency service locations, and coverage areas, we identify
bottlenecks and frequent accident zones to redistribute teams and
optimize travel paths to incident sites. Then, K-Means Clustering
is used to determine optimal ambulance placements. Lastly, we in-
corporate Network Analysis with Dijkstra’s algorithm to simulate
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realistic routing based on the city’s road network for the current
and proposed configurations. We compare the performance of these
setups by evaluating the response times and coverage. For response
times, we examine the average, median, and maximum response
times. For coverage, we compute the percentage of accidents that
can be reached within 1, 2, 3, 5, and 10 minutes. This integrated
approach offers actionable insights for first responders and policy-
makers, ultimately enhancing public safety in Washington, D.C.

2 Related Work
Optimizing response time is crucial since delays can significantly
impact people’s lives and emergency response system performance.
Researchers have proposed various approaches to improve response
time. These strategies include identifying common trends in car
accident data, using geospatial techniques for ambulance place-
ment, optimizing ambulance routing, forecasting accidents, and
maximizing ambulance coverage.

2.1 Identification and Clustering
Dai [4] investigated pedestrian crash records from the early 2000s
in the urban region of Atlanta, Georgia. Using spatial clustering,
the author examined the factors that contributed to the clusters.
Rather than just looking at the traffic volumes, the study explored
personal and environmental factors. For example, the personal
factors included sex, age, and intoxication levels of drivers and
pedestrians. The environmental factors included weather, light,
and surface conditions. This study presented preliminary results
of factors that affect accidents. In our study, we examined time of
day and seasonal patterns, but explored other techniques to help
injured people in the aftermath of crashes.

This paper [12] introduced the generation of accident groups,
then identified the locations to place ambulances in the center of
the group of accidents. The authors developed a double standard
model to maximize the coverage of a limited number of ambulances
over the accident clusters. Although we do not incorporate this
algorithm into the work, it is important to note their methodology
of limited ambulances for many accident clusters and allocating the
resources efficiently. In our study, we are limited to utilizing a total
of 43 public ambulances for the large region of Washington, D.C.

2.2 Resource Allocation
Yunus and Abdulkarim [15] introduced utilizing Nearest Neighbor
Analysis to calculate the distribution pattern of emergency health-
care facilities, ambulances, and road traffic crash incident places.
Additionally, they used Network Analysis to calculate the shortest
and closest route between ambulances and road traffic crashes in
terms of time and distance. However, the authors did not modify
the placement of the ambulances. In our study, we similarly utilize
Nearest Neighbor Analysis for high-level analysis and Network
Analysis for computing the travel time of the ambulances. Unlike
their approach, we propose a method to optimize the placement of
the ambulances, building upon their work.

This paper [13] examined a query model that allocates emer-
gency resources using real-time traffic and accident rate data. This
improved the efficiency of response operations and reduced the im-
pact of traffic accidents. In contrast, our approach utilizes machine

learning algorithms to understand the high-risk areas of traffic
accidents to give a stronger data-driven approach to allocating
ambulances.

This study [1] introduced predicting the demand for emergency
services without historical demand data and utilizingmachine learn-
ing models to predict travel time. They used a random forest model
and found a 43.3% to 64.2% improvement in prediction accuracy
over baseline approaches. Our approach utilizes multiple machine
learning techniques to compare our algorithms to the current sys-
tem. With Network Analysis, we can compare the travel times of
the ambulances to a given traffic accident.

The authors of this paper [7] introduced an integer linear pro-
gramming model for the dynamic allocation of emergency services
using linear constraints. The primary objective was to prove that
their heuristic consistently improves the efficacy of emergency ser-
vices. This paper is more related to natural disaster events, but it
uses a similar methodology in optimizing response to an emergency.
In our approach, we use different algorithms but prove that there
are methods to enhance emergency services’ efficiency.

2.3 Forecasting and Coverage
In their study, the authors [11] examined the importance of inci-
dent forecasting to understand the future demand of emergency
resources for a given area to proactively allocate resources to the
community. Additionally, they used policies to create a general
mapping from states of the environment to actions that should be
taken to allocate and dispatch resources. In our approach, we follow
similar ideologies by optimizing the placement of ambulances in the
region with K-Means Clustering. We incorporate different machine
learning algorithms, like Nearest Neighbor Analysis.

This study [10] introduced multiple models, such as the Location
Set Covering Problem and the Maximal Covering Location Prob-
lem. These algorithms focus on selecting facility locations to cover
demand points and maximize coverage within a specified time. Our
approach uses a similar methodology by computing the demand
points and maximizing coverage, but utilizes a variety of techniques
to do so. Also, we use a realistic approach of moving ambulances
to be in a better position to arrive on the scene quickly.

3 Preliminaries
In order to optimize emergency response strategies, we utilized a
combination of spatial analysis techniques and machine learning
algorithms. Each algorithm contributes uniquely to understanding
the distribution of traffic accidents and improving the placement
and routing of ambulances. The following algorithms form the core
of our analytical framework:

• Nearest Network Analysis: Understand the spatial distri-
bution of traffic accidents.

• K-Means Clustering: Identify potential ambulance loca-
tions based on traffic accident clusters.

• Grid-Based Density Analysis: Visualize traffic accident
frequency in a uniform grid format.

• Kernel Density Estimation: Identify traffic accident clus-
ters using a smooth version of grid analysis to highlight
high-risk areas.
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• Network Analysis with Dijkstra’s Algorithm: Model
realistic ambulance travel times. Evaluate the dispatch per-
formance by using a road network by selecting the best
candidate locations from K-Means Clustering.

3.1 Nearest Neighbor Analysis
Nearest Neighbor Analysis (NNA) [15] is a spatial statistics tech-
nique that analyzes the distribution pattern of point events across
a geographic area. This technique helps determine whether acci-
dent locations are clustered, randomly distributed, or uniformly
distributed. The observed mean distance is denoted as:

𝑂 =

∑𝑛
𝑖=1 𝑑𝑖

𝑛

where 𝑑𝑖 is the distance from point 𝑖 to its nearest neighboring
accident and 𝑛 is the total number of accidents.

Additionally, the expected mean distance is calculated on the
assumption that the accidents were randomly distributed. The ex-
pected mean distance is denoted as:

𝐸 = 0.5 ×
√︂
𝐴

𝑛

where 𝐴 is the total study area (in km2) and 𝑛 is the total number
of accidents.

Lastly, the Nearest Neighbor Index (NNI) is the ratio between
observed and expected mean distance, calculated using the formula:

𝑁𝑁𝐼 = 𝑂/𝐸
The resulting NNI value indicates whether accident locations ex-
hibit clustering, randomness, or uniformity in their spatial distribu-
tion.

• NNI < 1: Indicates clustering of accidents.
• NNI = 1: Suggests a random spatial distribution.
• NNI > 1: Suggests a uniform distribution.

3.2 K-Means Clustering
K-Means Clustering [14], an unsupervised machine learning algo-
rithm, identifies spatial patterns in traffic accidents. The algorithm
begins by selecting 𝑘 random points as initial cluster centers, which
are iteratively optimized to represent the best potential ambulance
locations. Each accident is assigned to the closest centroid, forming
𝑘 groups. The centroid of each cluster is then recalculated as the
mean position of all positions within the cluster, and this process
repeats until the clusters stabilize. One metric that can be used to
evaluate the quality of the clustering is the silhouette score. This
metric quantifies howwell each point fits within its assigned cluster
compared to the other clusters. The score ranges from -1 to 1, where
a score close to 1 indicates well-matched clustering for its cluster
and poorly matched clustering to neighboring clusters. A score of
0 indicates that the clusters are overlapping. A score closer to -1
suggests potential misclassifications of points to a cluster.

This approach is not nearly as computationally expensive as
approaches that utilize geospatial techniques. K-Means Clustering
offers a practical balance between scalability and effectiveness, en-
abling rapid identification of high-priority zones without significant
computational overhead.

There are a few limitations to this approach. K-Means Clustering

calculates the Euclidean distance between two points, the straight-
line distance between points, rather than accounting for the actual
road network. Furthermore, K-Means Clustering assumes that the
clusters are isotropic and of similar size, which may not hold in
the real-world traffic accidents distribution. Therefore, this could
lead to skewed centroid placements, especially if the region has
complex road layouts.

Algorithm 1 K-Means Clustering
Require: Coordinates 𝐶 , number of clusters (ambulances) 𝑘
1: Randomly select 𝑘 coordinates from 𝐶 as initial centroids
2: repeat
3: for each coordinate 𝑐 in 𝐶 do
4: Compute Euclidean distance from 𝑐 to each centroid
5: Assign 𝑐 to the nearest centroid
6: end for
7: for each cluster do
8: Update centroid: Compute mean of assigned points
9: end for
10: until centroids do not change significantly
11: return centroids

3.3 Grid-Based Density Analysis
Grid-Based Density Analysis [2] divides a geographic area into
equal-sized cells and counts the number of traffic accidents in each
cell. Unlike K-Means Clustering, it does not require a predefined
number of clusters. Additionally, this approach is better at detecting
local anomalies that may not be apparent with K-Means Clustering.
Since K-Means is designed to assign every point to a cluster, it can
obscure outliers and localized variations. The choice of grid cell
size significantly affects the resolution of the analysis: smaller cells
yield finer granularity, but may introduce noise, while larger cells
smooth the data but may obscure localized hotspots.

Algorithm 2 Grid-Based Density Analysis
Require: Coordinates 𝐶 , grid cell size 𝑠 , density threshold 𝑡
1: Divide spatial region into a uniform grid of cells of size 𝑠
2: Initialize an empty map GridDensity
3: for each coordinate 𝑐 in 𝐶 do
4: Determine the grid cell 𝑔 containing 𝑐
5: Increment GridDensity[𝑔] by 1
6: end for
7: for each cell 𝑔 in GridDensity do
8: if GridDensity[𝑔] ≥ 𝑡 then
9: Mark cell 𝑔 as a dense region
10: else
11: Mark cell 𝑔 as sparse or discard
12: end if
13: end for
14: *Optional: merge adjacent dense cells into clusters
15: return List of dense cells or merged regions

3.4 Kernel Density Estimation
Kernel Density Estimation (KDE) [3] is primarily utilized for iden-
tifying where accidents are most concentrated without artificial
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cluster boundaries. In contrast to K-Means Clustering, it does not
require assumptions about fixed groupings and equal-sized regions.
While similar to Grid-Based Density Analysis, the output is contin-
uous rather than discrete. It returns a smooth kernel function over
each point and these values are aggregated to generate a smooth sur-
face to highlight the densely packed regions. KDE places a smooth
kernel, typically Gaussian, over each data point and sums the over-
lapping values to generate a continuous surface. This algorithm is
effective at revealing spatial patterns in dense urban environments.
KDE’s output is a valuable visualization to understand relative
clusters throughout the region.

Algorithm 3 Kernel Density Estimation
Require: Coordinates 𝐶 , bandwidth parameter ℎ
1: for each coordinate 𝑐 in 𝐶 do
2: Compute the kernel function 𝐾

(
𝑐−𝑐𝑖
ℎ

)
3: Sum the kernel values to get 𝑓 (𝑐):
4: 𝑓 (𝑐) = 1

𝑛ℎ

∑𝑛
𝑖=1 𝐾

(
𝑐−𝑐𝑖
ℎ

)
5: end for
6: return 𝑓 (𝑐) for all coordinates 𝑐

3.5 Network Analysis with Dijkstra’s Algorithm
While the previous algorithms are useful for understanding the
clustering of traffic accidents, this algorithm realistically models
ambulance travel from Point A to Point B.

Network Analysis [9] provides a more realistic model of ur-
ban movement by incorporating road connectivity, directionality,
and estimated travel times. In this model, the road network is rep-
resented as a directed, weighted graph, where intersections are
nodes and roads are edges, each weighted by estimated travel time.
In order to find the most efficient ambulance routes, a shortest
path algorithm is used, Dijkstra’s Algorithm. Dijkstra’s Algorithm
finds the shortest path from a starting node to all other nodes in a
weighted graph by iteratively selecting the node with the lowest
known cost and updating its neighboring nodes. This allows for
rapid and realistic estimation of emergency response times.

Algorithm 4 Network Analysis with Dijkstra’s
Require: Dataset 𝐷 , Ambulance Placements 𝐴
1: Load Road Network
2: for each edge in the network do
3: Add travel time as edge weight based on road length and

speed limit
4: end for
5: Select nearest ambulance in 𝐴 for each accident location
6: for each ambulance node do
7: Calculate travel times to all accident nodes using Dijkstra’s
8: Store ambulance that is closest
9: Store estimated time to arrive on scene
10: end for

4 Method
Our approach aimed to optimize emergency response times in
Washington, D.C., using geospatial analysis and machine learning

models. After preprocessing the data, we utilized traffic accident
data to visualize high-risk regions for traffic accidents and optimize
the placement of ambulances. Then, we computed the travel time
for ambulances to arrive at the accident scenes. Afterward, we com-
pared metrics of the response time for the ambulances between the
current setup and our proposed design. Additionally, we provided
statistics about ambulance coverage within specific response time
thresholds.

Washington, D.C. spans approximately 176.99 square kilometers
and operates 43 public ambulances at any given time. These am-
bulances are stationed at local fire stations. In addition, 25 private
ambulances provided by AMR are available between 7 AM and 1
AM and are dynamically deployed across the city based on real-time
demand and specific emergencies. However, this analysis excludes
private ambulances, which are not consistently dispatched to traffic-
related incidents. While incorporating private ambulances would
reduce average response times, they are typically reserved for a
broader range of emergency medical calls beyond traffic accidents.

4.1 Dataset Overview
Two datasets were used for our analysis. First, the traffic accident
data in Washington, D.C. was provided by Open Data D.C. [5] and
includes historical records of traffic accidents and emergencies. This
dataset contains information for each traffic accident from 1900
to February 2025. There are a total of 323,555 reported accidents.
However, only 358 records fall between 1900 and 2007, making
them insufficient for analysis. As a result, we limited our analysis
to the 323,197 accidents recorded from 2008 to 2025.

Figure 1: Bar chart of car accident counts per year in Wash-
ington, D.C. from January 2008 to February 2025.

This dataset contains a total of 66 attributes. The most promi-
nent ones include the report date, latitude, longitude, address, and
several fields related to injuries and fatalities. We cleaned the data
by removing incomplete records. Then, we normalized the times-
tamp, making it easier to find records using the time and date. This
preprocessing step enables more effective temporal analysis and
supports the extraction of features, such as time of day, day of week,
and seasonality, which may correlate with accident frequency and
severity.

To ensure relevance and computational feasibility, we focused on
recent data subsets for specific analyses: Nearest Neighbor Analysis
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used data from 2022 to 2024, while clustering methods were applied
to the period from 2020 to 2024.

Additionally, we utilized an Open Data D.C. dataset [6] that
details information about the locations of fire stations, which are
where the ambulances are located. Here is the current ambulance
setup across Washington, D.C.:

Figure 2: Ambulance placements of the current configuration
based on the fire station locations.

4.2 Approach
After preprocessing, we used Nearest Neighbor Analysis to de-
termine the spatial distribution of traffic accident locations. This
method identified high-risk clusters where incidents occur fre-
quently. With this information, we had a better understanding of
whether the accidents are typically clustered, uniformly distributed,
or randomly distributed. In order to calculate the sum of distances
for the observed mean distance, we computed the pairwise distance
matrix using the Haversine distance, the great-circle distance be-
tween two geographic coordinates on Earth’s surface. This ensures
accuracy when analyzing geographic coordinates.

Next, we utilized Grid-Based Density Analysis and Kernel Den-
sity Estimation to visualize accident hotspots and better understand
their spatial distribution and identify areas that have high quanti-
ties of accidents. Grid-Based Density Analysis partitioned the data
into uniform grid cells, facilitating the identification of localized
patterns and variations that would have been overlooked in the
aggregated data. The study area was divided into a grid of square
cells approximately 1.02 km in size. Each cell was assigned a density
value representing the number of accidents that occurred within
its boundaries. KDE was beneficial for identifying high-level trends
by smoothing the data and producing a continuous surface of ac-
cident density. Grid-Based Density Analysis emphasized discrete

differences, while KDE highlighted broader zones of concentrated
risk.

After, we utilized K-Means Clustering to determine the place-
ment of our ambulances within Washington, D.C. Due to the large
region size of Washington, D.C. and the high quantity of traffic
accidents, K-Means Clustering offered a practical balance between
scalability and effectiveness, enabling rapid identification of high-
priority zones without significant computational overhead. Using
these findings, we proposed improved ambulance locations based
on proximity to accident clusters.

Finally, we constructed a road network graph of Washington,
D.C., where nodes represent intersections and edges represent road
segments. Edge weights are calculated based on distance and es-
timated travel time. We utilize Network Analysis with Dijkstra’s
algorithm to simulate ambulance routing, prioritizing time effi-
ciency over geometric distance.

4.3 Baseline
We evaluated our approach by comparing the travel times from
existing ambulance stations with those from our proposed place-
ments based on Network Analysis. For each historical accident, we
computed the shortest estimated response time from both current
and optimized ambulance locations using Dijkstra’s algorithm on
the road network graph.

This comparison enabled us to assess whether the proposed
placements lead to statistically significant reductions in response
time and improvement in coverage within time thresholds. By align-
ing ambulance coverage with accident clusters, we can enhance
emergency service accessibility and improve patient outcomes
across Washington, D.C. We reported statistical results to analyze
the difference in average, median, and maximum response times.
Additionally, we calculated the percentage of accidents reached
within specific time intervals: 1, 2, 3, 4, 5, and 10 minutes.

5 Results
5.1 Preliminary Nearest Neighbor Analysis
We conducted Nearest Neighbor Analysis (NNA) to assess the spa-
tial distribution of traffic accidents across Washington, D.C. from
2022 to 2024. The goal was to determine whether accident locations
exhibit a random, dispersed, or clustered pattern.

For each quarter, we calculated the Observed Mean Distance
between accident points, the Expected Mean Distance assuming
a random distribution, and the Nearest Neighbor Index (NNI), the
ratio between the two.

Table 1 shows the quarterly results. Across all 12 periods, the
Nearest Neighbor Index remained below 1.0, consistently falling
between the range of 0.49 and 0.52 across all 3-month spans. These
low values suggested that these traffic accidents exhibit signifi-
cant spatial clustering throughout the city and are not randomly
distributed.

The least clustering occurred in 2024 Q2 with an NNI score of
0.4942. This period also had one of the highest accident counts,
indicating a potential link between volume and spatial concentra-
tion. In contrast, the highest NNI was observed in 2024 Q1 with an
NNI score of 0.5173. This suggested relatively less dense clustering
during that period. Both 2024 Q1 and Q4 showed slightly more
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Quarter # Accidents Obs Dist Exp Dist NNI
2022 Q1 4476 0.0511 0.0994 0.5138
2022 Q2 5025 0.0471 0.0938 0.5015
2022 Q3 4717 0.0494 0.0969 0.5103
2022 Q4 4669 0.0491 0.0974 0.5048
2023 Q1 4877 0.0482 0.0953 0.5058
2023 Q2 5313 0.0461 0.0913 0.5054
2023 Q3 5531 0.0448 0.0894 0.5009
2023 Q4 5058 0.0468 0.0935 0.5006
2024 Q1 4751 0.0499 0.0965 0.5173
2024 Q2 5454 0.0445 0.0901 0.4942
2024 Q3 5083 0.0470 0.0933 0.504
2024 Q4 4875 0.0490 0.0953 0.5142

Table 1: Quarterly Nearest Neighbor Index (NNI) results for
traffic accidents in Washington, D.C. from 2022 to 2024, in-
cluding the number of reported accidents.

spatial dispersion compared to other quarters, while mid-year quar-
ters generally had denser clustering. The patterns from 2022 and
2023 were relatively stable, with NNIs consistently hovering around
0.50–0.51. This consistency suggested the presence of persistent
high-risk zones that may benefit from targeted resource allocation.

Overall, segmenting the data into quarters allowed us to de-
tect seasonal fluctuations in clustering intensity and supported
the development of more dynamic and responsive strategies for
optimizing emergency service placement.

5.2 Visualizations of the Traffic Accidents
Our next step involved applying density estimation techniques
to reveal underlying spatial patterns in the accident data, utiliz-
ing Grid-Based Density Analysis and Kernel Density Estimation.
We overlayed the results from K-Means Clustering, which is dis-
cussed later, in the figures in this section to provide a compara-
tive view of how different methods capture spatial concentration
and identify hotspots. This comparison was useful in evaluating
whether the ambulance placements suggested by K-Means Clus-
tering were consistent with high-density accident areas identified
by the other methods, assessing the validity of K-Means-based
deployment strategies.

5.2.1 Grid-Based Density Analysis. We investigated the traffic acci-
dents by implementing a grid-based approach, overlaying a uniform
spatial grid over Washington, D.C. For each cell, we counted the
number of accidents occurring within that region. This approach
allowed us to detect micro-clusters and high-density zones. This
was useful later for identifying if there were high-risk areas that did
not conform to the centroid-based clustering in K-Means Clustering.
Additionally, we created a visualization in the form of a heatmap,
labeled Figure 3.

Figure 4 revealed a higher concentration of accidents in down-
townWashington, D.C. This patternwas reflected in the correspond-
ing ambulance placements, which were more densely distributed
in that area to account for the elevated risk. This further illustrated
the clustering of accidents and the necessity of strategically placing
ambulances to address demand.

Figure 3: Grid-Based Density Analysis with ambulances from
K-Means Clustering.

Figure 4: Zoomed-inGrid-BasedDensityAnalysis frommajor
high-risk area in downtown Washington, D.C. with ambu-
lances from K-Means Clustering.

Across all cells, a total of 99,392 accidents were recorded. The
maximum cell density reached 2,375 accidents, indicating areas with
recurrent accidents. The average cell density was 248.48 accidents
during the 2020 to 2024 period. This analysis highlighted specific
urban zones where accident rates were consistently high, which
can serve as key candidates for increased emergency coverage.
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5.2.2 Kernel Density Estimation. We applied Kernel Density Es-
timation to visualize the continuous spatial distribution of traffic
accidents across Washington, D.C. to complement the clustering
and grid-based approaches. KDE produces a smoothed surface that
highlights regions with higher accident concentrations without
being constrained by predefined grid boundaries or cluster assign-
ments.

Figure 5: Kernel Density Estimation with ambulances from
K-Means Clustering

The KDE heatmap revealed clear density peaks in the downtown
core and surrounding high-traffic areas, aligning with findings from
both K-Means and grid-based density analysis. Additionally, this
approach highlighted high-risk areas that were not apparent with
Grid-Based Density Analysis. In the eastern corner of Washington,
D.C., we observed a high concentration of traffic accidents. Its high
density made it a candidate for prioritized ambulance placement
using K-Means Clustering. This method was particularly effective
in identifying subtle variations in accident density that may not
have been apparent through discrete clustering techniques.

KDE yielded some interesting metrics. The model had a mean
density of 0.001685 and a standard deviation of 0.02109. These met-
rics indicate a highly skewed distribution, where a few areas exhibit
extremely high accident density while the majority of the city has
comparatively low values. This reinforces the notion of spatial
clustering and further justifies the need for targeted emergency
response strategies in high-risk zones.

5.3 Ambulance Placement using K-Means
Clustering

We used K-Means Clustering to identify high-risk areas where traf-
fic accidents tended to concentrate. This unsupervised machine
learning algorithm was used to divide the accident data from 2020
to 2024 into 43 regions, matching the number of public ambulances
currently deployed in Washington, D.C. The clustering was based

solely on accident locations, using the latitude and longitude coor-
dinates, to approximate optimal ambulance coverage zones.

Figure 6: Ambulance placements based on results from K-
Means Clustering

The clustering algorithm returned an average distance of 0.01
km from any accident point to its nearest ambulance location, with
a maximum distance of 0.03 km. This suggested a good spatial fit
between cluster centroids and accident locations. The silhouette
score of 0.399 indicates a moderate level of separation between clus-
ters, reflecting meaningful spatial divisions while acknowledging
some overlap near region boundaries.

The number of accidents per region varied significantly. Regions
11, 12, and 28 handled over 4,000 accidents each. Other regions had
fewer than 1,000 accidents, such as Regions 20, 22, and 34, high-
lighting imbalances in accident volume that could inform dynamic
resource reallocation strategies.

This approach provided a data-driven foundation for assess-
ing whether current ambulance deployment aligns with historical
accident concentrations and where adjustments could reduce emer-
gency response times. This approach determined our ambulance
placements used in the subsequent Network Analysis.

5.4 Network Analysis
Lastly, we employed a network-based approach to better align am-
bulance deploymentwith real-world travel constraints. Thismethod
modeled the actual road network of Washington, D.C. and incorpo-
rated travel time as the primary metric for evaluating emergency
response efficiency.

We began by projecting all accident locations onto the nearest
road network nodes. To account for travel-based accessibility rather
than simple Euclidean distance, we calculated shortest travel-time
paths across the road graph using Dijkstra’s algorithm. Using our
results from K-Means Clustering, we initialized the placement of 43



Sambit Sahoo

ambulances for the proposed ambulance locations. From the second
dataset, we initialized the placement of the ambulances from the
baseline setup.

We compared our proposed ambulance locations against the
baseline:

Metric Baseline Optimized

Average response time (minutes) 1.45 1.08
Median response time (minutes) 1.36 1.18
Maximum response time (minutes) 5.86 6.05
Coverage within 1 minute (%) 31.4 43.1
Coverage within 2 minutes (%) 79.1 90.7
Coverage within 3 minutes (%) 94.5 98.0
Coverage within 4 minutes (%) 99.5 99.2
Coverage within 5 minutes (%) 99.9 99.9
Coverage within 10 minutes (%) 100.0 100.0

Table 2: Emergency response time statistics, comparing base-
line and optimized ambulance placements

The results from Network Analysis, provided in Table 2, indi-
cated that the proposed network-optimized placement significantly
improves early-stage response times. Ambulances are able to arrive
at the scene within 1 minute for approximately 43.1% of accidents,
compared to 31.4% under the current setup. Within 2 minutes, the
optimized configuration also achieves over 90% coverage, over 10%
better than the current setup. This highlighted its superior ability to
deliver rapid response in high-density accident zones. For coverage
within 3, 4, 5, and 10 minutes, the results are fairly comparable.
For a given traffic accident, the ambulance response time for the
optimized approach was faster by about 22.2 seconds. Furthermore,
the median response time was better, faster than the baseline by
10.8 seconds.

However, the current setup is better than the proposed plan in
terms of maximum response time. It would take about 6.05 minutes
for the optimized setup, 11.4 seconds lower compared to the current
deployment. This suggests that while our optimization improves
average and early-stage responsiveness, it may leave some less-
accessible regions with slightly longer wait times.

Based on the results, there are some trade-offs between the two
approaches. While the optimized approach achieves faster response
times for the vast majority of accidents and increases coverage in
critical high-density urban cores, the current deployment is more
effective for arriving at more isolated areas faster.

Overall, Network Analysis highlighted the contrast in the two
possible configurations. For the proposed setup, we determined
that the ambulances would arrive at most accidents rapidly, but
accidents that are far from the center of the cluster centroids would
take longer for the ambulances to get to. For the current setup, it is
slower on average, but gets to edge cases slightly faster. There are
trade-offs between the two approaches, both efficient in their own
way.

6 Discussion
The observations from this study contribute to the broader discus-
sion of optimizing emergency response times through data-driven
spatial analysis.

First, we identified that the traffic accidents showed signs of
being clustered. Then, we identified traffic accident hotspots and
clusters of higher risk areas. Grid-Based Density Analysis and Ker-
nel Density Estimation were utilized to ensure that high-risk areas
were not overlooked. As a result, we applied machine learning tech-
niques such as K-Means Clustering to offer a data-driven method
for optimizing ambulance placement to reduce emergency response
times in high-risk areas. Furthermore, Network Analysis with Di-
jkstra’s introduced a dynamic component to ambulance deploy-
ment by incorporating road network constraints and travel time
estimates. These results aligned with existing literature that em-
phasized the importance of utilizing data for crucial decisions in
emergency services. This is particularly important in urban areas
where traffic congestion and population density present logistical
challenges. The discrepancy between current ambulance locations
and our optimized placements suggests room for resource allocation
improvement, potentially a hybrid approach. Overall, this study
highlights the potential of GIS-based analytics and machine learn-
ing techniques in optimizing public safety services, demonstrating
an approach that can be adapted and expanded to other cities to
improve emergency response times.

7 Future Work
Future work on this topic can address several limitations identified
in this study. One major constraint is the limited computational
power available and performing large-scale Network Analysis due
to the extensive accident data and complex routing graphs. With
greater computing resources, simulations could be conducted to
optimize ambulance placement.

Additionally, future work could expand the scope beyond traf-
fic accidents. Emergency medical services respond to a variety of
incidents and access to a more informed dataset could enable a
general-purpose optimization. However, broader implementations
present challenges, especially in situations where ambulances can-
not provide aid until police secure the scene.

Another direction for future work is incorporating predicative
modeling to deal with real-time traffic, weather, and other condi-
tions. This would enable more dynamic dispatching and routing
decisions that adapt to the current conditions. This would also fa-
cilitate situations where an ambulance is occupied with another
emergency and the remaining ambulances must temporarily cover
more area.

8 Conclusion
This paper presents a data-driven framework for optimizing emer-
gency response times for traffic accidents in Washington, D.C. By
combining geospatial analysis with machine learning techniques,
we developed models to identify accident hotspots and optimize
ambulance placement and routing. Our use of Nearest Neighbor
Analysis, Grid-Based Density Analysis, Kernel Density Estimation,
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K-Means Clustering, and Network Analysis with Dijkstra’s Algo-
rithm enabled a comprehensive understanding of spatial and tem-
poral trends in emergency incidents. Nearest Neighbor Analysis
provided information that the traffic accidents were more clustered
than randomly or uniformly distributed. Grid-Based Density Anal-
ysis and Kernel Density Estimation provided insight into specific
regions that had higher concentrations of traffic accidents. We were
able to optimize the ambulance placements with K-Means Cluster-
ing. Lastly, Network Analysis provided a road network graph to cal-
culate the estimated time for ambulances to get to accident scenes,
allowing us to compare the baseline and proposed approaches.

The quantitative evaluation from Network Analysis showed
that our optimized deployment significantly reduced average and
median response times, and increased early-stage coverage, partic-
ularly within high-density urban zones. However, the maximum
response time slightly increased, suggesting that while our ap-
proach improves overall efficiency, it may require refinement to
address accessibility in low-density or isolated regions. A potential
solution is to utilize a hybrid strategy, using data-driven optimiza-
tion as a baseline while selectively positioning a few ambulances
to cover outlier cases.

This integrated approach provides a framework that can be
adapted to other urban areas facing similar challenges. Ultimately,
our study highlights the value of combining geospatial analysis
with machine learning to strengthen public safety infrastructure
and emergency response resource allocation and strategy.
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