
 1

An Empirical Comparison of Fault-Detection Effectiveness and

Cost of Exhaustive and Pair-Wise Testing

Shashvat A Thakor

Department of Computer Science

University of Maryland

College Park, MD 20742

shash@cs.umd.edu

August 11, 2008

Abstract

Graphical User Interface (GUI) is an integral part of the contemporary software. Testing

GUI poses different challenges compared to those applications not involving GUI. The

main reason is that GUI involves interactive input, where as the output produced is often

graphical. One of the approaches in testing GUI is functional testing. The goal is to find

the difference between the actual behavior and desired behavior mentioned in

specification. A standard method of generating specification based functional tests is to

partition the input space, and then select test data from each partition. One such

systematic approach, the category partition method, is however exhaustive in nature. In

order to reduce the number of test cases generated by the category partition method, pair-

wise sampling can be used. Pair-wise sampling is based on the observation that most of

the errors occur because of interaction of at the most two factors. In this paper we

empirically compare fault-detection ability and the cost of applying category partition

method (exhaustive) and pair-wise sampling. Our results, based on the subject

applications, show that pair-wise sampling can be used at much lower cost and without

losing much of the fault-finding ability.

Keywords:

Software testing, GUI testing, functional testing, category partition method, pair-wise

sampling, empirical studies

1 Introduction

 In recent times, most of the software applications are developed and maintained by

several programmers, who are not only geographically distributed, but work on different

 2

parts of the application code. This scenario inadvertently introduces bugs, as the software

is designed and constructed. As Glen Myers has stated in his book, “Testing is the

process of executing a program with the intent of finding errors” [10].

 Let us assume that we make sure there are five faults in a thousand lines of code

(LOC), i.e. defect rate is 5 faults/ 1000 lines. Then also, a program with a million LOC

will have approximately 5000 faults. Going by this analogy, Windows XP, having 45

million LOC, has 225,000 faults.

Software is being used everywhere, ranging from digital flight control systems in

space shuttles to sonar system submarines, from radiation-therapy machine in medicine to

Apple iPods. Hence, Software Quality Assurance (SQA) has become an integral and

critical phase of any software development project [4].

Software testing is an important part of SQA, which involves evaluating the

results generated under controlled conditions of system operation. The controlled

conditions should include both normal and abnormal conditions. Software testing is

governed towards ‘detection’ of anomalous software behavior. It is useful in improving

correctness, reliability, usability, robustness and performance of the software.

 Most of the contemporary software consists of Graphical User Interface (GUI).

Testing issues in GUI are different than those of other software development. Interactive

input and graphical output makes GUI testing difficult [16].

 There are many approaches towards software testing, one of them being unit

testing. A unit is considered to be the smallest testable part of the application. The goal is

to verify whether the individual units of the entire source code are working properly.

Another is functional testing, in which the goal is to find the discrepancies between the

actual behavior of the implemented system’s functions and the desired behavior as

described in the system’s functional specification.

 A standard approach of generating specification based functional tests is first to

partition the input domain of a function being tested, and then to select test data from

each class of the partition. Category-partition method is one such systematic,

specification-based method that uses partitioning to generate functional tests for complex

software systems [2]. However, it is resource-intensive in nature. There is always the

 3

problem of combinatorial explosion when dealing with category partition method. A

solution is to change the sampling strategy.

One general observation is that most of the faults are caused by interactions of at

most two factors. An effective test case generation testing based on this observation is

pair-wise (all-pairs) sampling. Pair-wise-generated test suites cover all combinations of

two and therefore are much smaller than exhaustive ones yet still very effective in finding

defects.

The purpose of this paper is to empirically compare fault-detection effectiveness

and cost of testing based on category partition method (exhaustive) and pair-wise

sampling. In Section 2, we discuss background and related work. Section 3 describes the

design and the implementation of the empirical study. In Section 4, we interpret the

results. Conclusion is presented in Section 5.

2 Background and Related Work

In this section we review software testing, testing GUI, category partition method, JUnit

and pair-wise sampling, which form the basis of our work.

2.1 Software Testing

Software testing has become an ever growing field with the advent of various types of

software used in modern times. Whether it is object-oriented, component based,

concurrent, distributed, GUI or web based, each of them requires testing in order to

uncover and correct the defects. Software testing can be exploited to improve usability,

security, correctness and performance of software. It is a fact that testing takes more than

50% of the total cost of software development. However, the question “does a program P,

obey specification S” is undecidable. It is theoretically impossible to develop a

completely accurate technique. Two types of verification are associated with software

testing [12]:

(1) Execution based verification

(2) Non-execution based verification.

Execution based verification deals with generating and executing test cases on the

software. Testing to specification is black-box testing and testing to code is white-box

 4

testing. The key difference is only in the test case generation. In both the cases,

specifications are used for verification of correctness.

Non-execution based verification is basically reviews by a team of experts. Code

reading, walkthroughs (manual simulation by team leader) and inspections (narration by

the developer) are also used.

2.2 Graphical User Interface (GUI)

Definition: A Graphical User Interface (GUI) is a hierarchical, graphical front-end to a

software system that accepts as input user-generated and system-generated events, from a

fixed set of events and produces deterministic graphical output. A GUI contains graphical

objects; each object has a fixed set of properties. At any time during the execution of the

GUI, these properties have discrete values, the set of which constitutes the state of the

GUI [8].

 Above definition should be extended to include other types of GUI, such as web-

user interfaces having synchronization constraints among objects, non-deterministic

GUIs etc.

 There are several approaches while testing GUI software. The most popular

approach is to perform no GUI testing at all [5]. But, this approach is not governed

towards improving software quality. Another approach is to “bypass” the GUI and test

the methods of the underlying business logic as if they were invoked by the GUI. It

follows the idea of having “light” GUI software and incorporating important decisions in

the business logic [6]. However, this approach requires major architectural changes and

does not test the end-user software. Third approach is to do limited testing using manual

GUI testing tools [1], [14]. Some examples are JFCUnit (an extension of JUnit) [20],

capture/replay tools [3], which provide very little automation. DART [9] framework

automates the GUI smoke testing by using model based testing technique.

2.3 JUnit

JUnit is a unit testing framework for Java programming language [17]. It is a simple,

open source framework to write and run repeatable tests. Prominent features of JUnit are:

(1) Assertions to test the expected results

 5

(2) Text fixtures in order to share common test data

(3) Test runners to run the tests

Figure 1 shows a sample JUnit test case.

 Figure 1: An example of a JUnit test case

2.4 Category Partition Method

 Figure 2: Steps of Category Partition method

1 Decompose the functional specification into functional units

a. Characteristics of functional units

• They can be tested independently

• Examples

• A top level user command

• Function

2 Examine each functional unit

3 Identify parameters

• Explicit input to functional unit

 and Environmental conditions

• Characteristic of the system’s state

4 Test Cases

a. Specific values of parameters and environmental conditions

b. Maximize the chances of finding errors

5 For each parameter and environmental condition

 6 Find categories

• Major property or characteristics

 7 For each Category

 8 Find choices

9 Develop “formal test specification for each functional unit

a. List of Categories

b. Lists of choices within each category

10 Find Constraints

11 Produce a set of “test-frames”

public class HelloWord extends TestCase{

 public void testMultiplication(){

 //testing if 5*2 = 10

 assertEquals(10, 5*2);

 }

}

 6

The Category Partition test-cases are generated using Cartesian products of the possible

input values for each of the parameters. In Cartesian product every unit of a group is

paired with every unit of every other group. Thus, all combinations of the inputs across

all groups are obtained.

The category partition method results in the generation of large number of test

cases. For a method having four parameters, and four different values for each of the

parameters, 256 (4^4) number of test cases are generated.

According to [11], the main characteristics of category-partition method are:

(1) Test specification is a succinct and uniform representation of the test information

of a function.

(2) Test specification is easily changeable depending upon requirement of more test

cases and changes or errors in the original specification.

(3) Logical control over the test volume is provided.

(4) Generator tool provides enough tests for each function in an automated fashion

taking into consideration improbable environment.

(5) Coverage and error detection are given importance.

Figure 2 describes the steps of the category partition method.

2.5 Pair-wise Sampling

The number of test cases is reduced by making use of a pair-wise sampling technique. It

is a method of intelligently choosing a small number of combinations of values from a

potentially astronomically large number of test cases, which satisfies the pair wise

criterion, converting into a manageable set that still makes for an effective test suite in

most situations [13].

Satisfying the pair-wise criterion means that for any two parameters p1 and p2 and

any valid values v1 for p1 and v2 for p2, there is a test in which p1 has the value v1 and p2

has the value v2.

Essentially, pair-wise sampling is an effective test case generation technique that

is based on the observation that most faults are caused by interactions of at the most two

factors. Pair wise-generated test suites cover all combinations of the two factors and

therefore are much smaller than exhaustive ones yet are still very effective in finding

 7

defects [18]. The necessary condition is that for each pair of input parameters, every

combination of valid values of these two parameters should be covered.

Two growth terms associated with pair-wise sampling are:

(1) Horizontal growth: Let T be a pair-wise test set for parameters p1, p2, …., pn-1.

Horizontal growth of T for parameter pi is to extend each test in T by adding the value

of pi. (figure 3)

(2) Vertical growth: After applying horizontal growth, let T be a test set for p1, p2, …., pi.

Let π be the set of tests not covered by T. The vertical growth of T according to π is

to construct new tests for pairs in π and add them to T. (figure 4)

 Figure 3: Algorithm IPO_H (T, Pi) for horizontal growth

However, there exists a problem with pair wise testing. If the domain of the input

parameter is large, we get a very large number of tests. Suppose all the parameters have d

values then we have to consider at least d
2
. Thus, if each variable has 100 values, we have

to consider 10,000 tests for pair wise testing, which is indeed a large number. One

solution of this test explosion problem can be to consider partitions of the input domains,

and selecting a representative value for each of them [13].

Input

Test set: T (a list having elements in arbitrary order)

Parameter: pi

Procedure

1 Assume that the domain of pi contains valued v1, v2... and vq;

2 π = {pairs between values pi and valued p1, p2... and pi-1};

3 if (|T| < q) {

4 for 1≤ j ≤|T|, extend the j
th

 test in T by adding value vj and remove

from π pairs covered by the extended test;

 5 } else {

6 for 1 ≤ j ≤ q, extend the j
th

 test in T by adding value vj and remove

from π pairs covered by the extended test;

7 for q < j ≤ |T|, extend the j
th

 test in T by adding one value of pi such

that the resulting test covers the most number of pairs in π, and

remove from π pairs covered by the extended test;

 }

 8

 Figure 4: Algorithm IPO_V (T, π) for vertical growth

3 Empirical Study

The goal of the study is to determine whether pair-wise sampling method, with its

reduced number of test cases, is as effective as exhaustive method, with its large number

of test cases generated using category partition method. The following steps have been

performed:

(1) For each subject application, select relatively complex methods (say having 5

parameters); create JUnit test cases for these methods using the category-partition

method. Reduce the number of test cases using pair-wise sampling.

(2) Examine each JUnit test cases and the method source code. Obtain a set of source-

code changes that will cause each test case to fail [9].

(3) Use fault-seeding technique to artificially seed faults in the applications.

(4) Execute pair-wise and exhaustive test cases on the subject application. Compare the

number of faults found and the cost of applying each method.

3.1 Subject Applications

We took into consideration several requirements while choosing the subject application.

We wanted to have access to the source code, CVS development history, and bug reports.

Input

Test set: T (a list having elements in arbitrary order)

Set of tests not covered by T: π

Procedure

1 Let T’ = { };

2 for each pair in π

3 assume that the pair contains values w of pk, 1<k<i, and value u of pi

4 if (T’ contains a test with “-“ as the value of pk and u as the value of i)

5 notify this test by replacing the “-“ with w;

 6 } else {

7 add a new test to T’ that has w as the value of pk, u as the value of pi,

and “-“ as the value of every other parameter;

 };

8 T = T U T’

 9

We also wanted applications that were “GUI-intensive,” i.e., ones without complex back-

end code. The GUIs of such applications are typically static, i.e., not generated

dynamically from back-end data. Finally, we wanted non-trivial applications, consisting

of several windows and widgets.

The subject applications for our experiment are part of an open-source office suite

developed at the Department of Computer Science of the University of Maryland by

undergraduate students of the senior Software Engineering course [7, 9]. It is called

TerpOffice and includes the applications TerpCalc, TerpWord, TerpPresent, TerpPaint

and TerpSpreadSheet. TerpCalc is a scientific calculator with graphing capability;

TerpWord is a word-processor with drawing capability; TerpPresent is used to prepare

slides and present them online; TerpPaint is an imaging tool; TerpSpreadSheet is a

compact spreadsheet program. They have been implemented using Java. Table 1

summarizes the characteristics (lines of code, number of classes, windows, widgets,

methods and branches) of these applications. The widget counts shown include only

those widgets on which events can be performed. Most of the code written for the

implementation of each application is for the GUI. None of the applications have

complex underlying “business logic”, which makes seeding GUI faults (discussed later)

easier because almost the entire code is for GUI and there is no need to distinguish it

from the business-logic-code.

Subject Application LOC Classes Windows Widgets Methods Branches

TerpCalc 9916 141 4 82 446 1306

TerpPaint 18376 219 10 200 644 1277

TerpPresent 44591 230 12 294 230 3099

TerpSpreadSheet 12791 125 9 145 579 1521

TerpWord 4893 104 11 112 236 452

TOTAL 90567 819 46 833 3549 7655

Table 1: Subject Applications

3.2 Generating test cases

The Category Partition test-cases were generated using Cartesian products of the possible

input values for each of the parameters. The Pair wise test cases with combinatorial

 10

approach are generated using the ‘AllPairs’ tool [19]. ‘AllPairs’ is a test design tool

tailored for Windows but portable to a wide variety of platforms with some minor tweaks

to the script file. It automates the "all pairs" test design technique.

3.3 Fault Seeding

Fault seeding is a well known technique to measure the ability of different methods to

find faults. In fault seeding, subject applications are artificially introduced to several

types of fault classes. The artificially seeded faults should be as close as possible to

naturally occurring faults by the software developers. There should be adequate number

of test cases that cover the faults. An adequate number of instances of each fault type

should be seeded. The following fault classes were chosen for this study:

(1) Modify relational operator (>, <, >=, <=, ==, !=)

(2) Invert the condition statement

(3) Modify arithmetic operator (+, -, *, /, =, ++, -, +=, -=,*=, /=)

(4) Modify logical operator (&&, jj)

(5) Set/return different Boolean value (true, false)

(6) Invoke different (syntactically similar) method

(7) Set/return different attributes

(8) Modify bit operator (&, j, ^, &=, !=, ^=)

(9) Set/return different variable name

(10) Set/return different integer value

(11) Exchange two parameters in a method and

(12) Set/return different string value.

The parts, in which the faults should be induced, were examined manually. Let fj

and F be the number of opportunities to seed fault of class j and the sum of all the

opportunities of all the fault classes respectively. Since a total of 20 faults were seeded in

each application, for each fault class j, we had introduced ((fj/ F) * 20) instances of faults,

because of which there were more instances of one fault class over the others. e.g. there

were a lot of relational operators in the subject applications, hence a total of 47 instances

of fault type 1 (modify relational operator) were seeded. Figure 5 shows the distribution

 11

of the 100 faults that were seeded in the applications. The x-axis shows the class (type) of

the fault and the height of the columns shows the number of faults seeded.

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11 12

Fault Type

N
u

m
b

e
r

o
f

F
a
u

lt
s

 Figure 5: Classes of faults seeded

3.4 Implementation

We first used category partition method, in order to generate exhaustive test cases.

For example, one of the classes of TerpCalc was TCGraph having the constructor

TCGraph(). It sets the settings of the graph such as axis and checks for validity. TCGraph

class continues the implementation of the graph window by implementing its actual

graphing capability, in both setting appropriate values and painting the graph within its

corresponding frame. This class also implements the saving feature of the graph, along

with its copy mechanism to the clipboard.

 We used category partition method on the constructor as shown in Figure 6.

Using Cartesian product of input values, 4102 test cases were created, taking into

consideration the environmental conditions. This set was reduced using ‘Allpairs’ tool. It

took a text file of tab separated input values, and used pair-wise sampling, generating 34

test cases.

In order to seed faults, a comment /*FAULT## FAILURE INDUCING CODE */

at line N was inserted in the method. The idea was to replace string of line N with

“FAILURE INDUCING CODE”, which would cause the JUnit test case to fail. If the

change required changes to multiple lines, then we replaced ## with an integer; used the

same value of the integer for all lines that were related to one failure. A Perl script was

written to perform the string replacement automatically to avoid fault interaction.

 12

 Figure 6: Category partition on TCGraph() constructor

TCGraph(expression, xmin, xmax, ymin, ymax, numGraphpts)

Parameter: expression

1. Type: String

2. Characteristics: length, blanks

3. Possible values: null, expression with one or more blanks, variable length

expression

4. Error: null

Parameter: xmin

1. Type: Integer

2. Possible values: Zero, Positive, Negative

3. Error: Any other type of value like float, char, string

Parameter: xmax

1. Type: Integer

2. Possible values: Zero, Positive, Negative

3. Error: Any other type of value like float, char, string

Parameter: ymin

1. Type: Integer

2. Possible values: Zero, Positive, Negative

3. Error: Any other type of value like float, char, string

Parameter: ymax

1. Type: Integer

2. Possible values: Zero, Positive, Negative

3. Error: Any other type of value like float, char, string

Parameter: numGraphpts

1. Type: Integer

2. Possible values: Zero, Positive, Negative

3. Error: Any other type of value like float, char, string

Environment Conditions:

1. xmin < xmax

2. xmin >= xmax then xmin= -10 and xmax=10

3. ymin < ymax

4. ymin >= ymax & ymax != 0 then ymin = ymax = 0

5. numGraphpts < 25 implies numGraphpts=25

Constraints:

1. None

Input values to test case generation:

Expression xmin xmax ymin ymax numGraphPts

y= x
2
+x+2 -8 -8 0 0 -100

y=x -4 -4 10 10 0

y=x
2
 0 40 40 40 12

y=x
3
+1 10 60 60 60 100

 13

A batch file was written in order to first run the Perl script to seed the faults in the

application, then execute the test cases with the fault-seeded applications and finally to

remove the seeded faults from the application to convert into original form.

3.5 Threats to Validity

Test validity can be considered as the degree of correlation between the test and a

criterion. We considered two types of threats – external and internal.

 Threats to external validity [15] are the conditions which restrict the ability to

generalize the results of the experiments to industrial practice. Several such threats are

identified in the study. Our subject applications and types of faults that we seed are the

biggest threats to external validity. First, we have used five applications, which are part

of TerpOffice suite developed by students, as our subject applications. These GUI

applications do not represent the various possible GUIs that are used today. As mentioned

previously, most of the code appearing in the application is written for GUI, i.e.

applications are more GUI-intensive and have less business logic. So the results will be

different from applications having complex business logic and simple GUI. Second, all

the applications were developed in Java; hence the results may vary for non-Java

applications. Third, the faults that were seeded represent a small subset of faults that are

present in applications developed by students.

 Threats to internal validity are conditions which affect the dependent variables of

the experiment without the knowledge of the researcher. The biggest threats to internal

validity are related to the way we seed the faults. We made an effort to introduce faults

which were as close as possible to naturally occurring faults. Those faults which are not

obvious for the GUI will not be detectable.

4 Results and Discussion

One of the original goals of the study was to examine the classes (types) of faults

detected by category partition method and pair-wise sampling. Figure 7 summarizes the

results. The x-axis shows the type/class of fault and the total height of the columns shows

the number of faults seeded.

 14

Since the category partition method is exhaustive, and takes into consideration

every possible input values, it is able to find all the reachable faults of all the types.

Hence the total height of the column also describes the number of faults detected by the

category partition method for each class of fault. The part of the column, having wide

upward diagonal pattern, shows the faults detected by test cases generated using pair-

wise sampling. This result showed that the pair-wise sampling was able to detect all types

of faults that were seeded; except for the fault type 11 (exchange two parameters in a

method).

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11 12

Fault Type

N
u

m
b

e
r

o
f

F
a
u

lt
s

 Figure 7: Classes of fault detected by Category partition method and pair-wise sampling

To determine why fault-type 11 was missed, we examined the input values and

the seeded fault. In order to induce the fault of type 11, one method was modified as the

following:

 Figure 8: Seeding fault type 11 - exchange two parameters in a method

This fault was not detected due to the following scenario:

(1) Fault was replacing operation (argumentOne ^ argumentTwo) by the operation

(argumentOne ^ argumentOne)

 method (operator, valueRangeOne, valueRangeTwo)

 method (operator, valueRangeOne, valueRangeOne)

 15

(2) Pair-wise test-set = { (^, numOne, numOne), (^, numTwo, numTwo), (^, numThree,

numThree) }

0

5

10

15

20

25

TerpCalc TerpPaint TerpPresent TerpSpreadsheet TerpWord

Subject Application

#
 F

a
u

lt
s

 D
e

te
c

te
d

Exhaustive Pair-wise

 Figure 9: Fault-detection effectiveness of testing with exhaustive and pair-wise sampling

 Figure 9 compares the faults found by test cases generated by the category

partition and pair-wise sampling methods. The x-axis shows the subject applications and

the y-axis shows the number of faults detected by each of the methods. The figure shows,

that with the exception of TerpSpreadSheet, the pair-wise testing is as effective as

category partition method.

One important observation from the graph is that, both the methods were not able

to detect one fault in TerpCalc. As mentioned earlier, category partition method was able

to find all the reachable faults. This seeded fault was never detected by the category

partition method as well as pair-wise sampling, as it was not reachable. In TCGraph() of

TerpCalc application we induced fault type 1, by modifying the code as following:

Figure 10: Seeding fault type 1 – modify the relational operator in a method

 if (xMin >= xMax)

 if (xMin < xMax)

 16

However, the only caller method TCGraphFrame() always set xMin= ‐10 and xMax = 10

when creating new TCGraph object. Hence, the condition was never checked.

 We consider the cost as a linear function of the number of test cases executed in

order to detect faults. Figure 11 compares the number of test cases executed with

exhaustive and pair-wise sampling by subject application. The x-axis shows the subject

applications and y-axis shows the number of test cases executed in hundreds.

0
5

10
15
20
25
30
35
40
45

TerpCalc TerpPaint TerpPresent TerpSpreadsheet TerpWord

Subject Application

#
T

e
s
tC

a
s
e
s
 i

n

H
u

n
d

re
d

s

Exhaustive Pair-wise

 Figure 11: Test-suite size by subject application

Figure 12 shows the percentage reduction in the number of test cases when using

pair-wise sampling compared to the exhaustive one (category-partition method). It is

evident from the graph that we are able to achieve at least 70% of test-suite size reduction

for all the applications.

0

20

40

60

80

100

TerpCalc TerpPaint TerpPresent TerpSpreadsheet TerpWord

Subject Application

%
 R

e
d

u
c
ti

o
n

 Figure 12: Percentage reduction in the test-suite size by subject application

 17

5 Conclusion

We have explored the fault-detecting effectiveness of category partition (exhaustive)

method and pair-wise sampling. The entire process has been feasible in terms of

execution time, storage and the manual effort. We have empirically shown that, for the

subject applications, pair-wise sampling is almost as effective as category partition

method in finding seeded faults at much lower cost.

 However, what we have presented here is an application-code based approach.

While testing GUI one often wants to come up with an interaction (a sequence of events),

that reveals faults by producing an outcome that is different from the original code. Such

an interaction is not produced by a code-based empirical study. That is the reason we

believe capture/replay tools, DART framework are more effective than a procedure

involving generation of test cases using pair-wise sampling in detecting faults in GUI.

6 References

[1] M. Finsterwalder, “Automating Acceptance Tests for GUI Applications in an

Extreme Programming Environment,” Proceedings of Second International

Conference on eXtreme Programming and Flexible Processes in Software Eng.,

pp. 114-117, May 2001

[2] R. Hamlet, “Introduction to special section on software testing”, Communications

of the ACM June 1988, Volume 31 Issue 6

[3] J.H. Hicinbothom and W.W. Zachary, “A Tool for Automatically Generating

Transcripts of Human-Computer Interaction,” Proceedings of Human Factors and

Ergonomics Society 37th Annual Meeting, p. 1042, 1993

[4] Nancy G. Leveson, “Software safety: why, what, and how”, ACM Computing

Surveys (CSUR) June 1986, Volume 18 Issue 2.

[5] Brian Marick, “When should a test be automated?” In Proceedings of the 11th

International Software/Internet Quality Week, May 1998

[6] B. Marick, “Bypassing the GUI,” Software Testing and Quality Engineering

Magazine, pp. 41-47, Sept. 2002.

 18

[7] Scott McMaster, Atif Memon, "Call-Stack Coverage for GUI Test Suite

Reduction," IEEE Transactions on Software Engineering, vol. 34, no. 1, pp. 99-

115, Jan., 2008

[8] Atif Memon, “A Comprehensive Framework For Testing Graphical User

Interfaces”, PhD Thesis, 2001

[9] Atif M. Memon, Qing Xie, “Studying the Fault-Detection Effectiveness of GUI

Test Cases for Rapidly Evolving Software”, IEEE Transactions on Software

Engineering, vol. 31, no. 10, 2005, pp. 884-896

[10] G. Myers, “The art of software testing”, Wiley, 1979

[11] T. J. Ostrand, M. J. Balcer, “The category-partition method for specifying and

generating functional tests”, Communications of the ACM June 1988, Volume 31

Issue 6.

[12] Stephen R. Schach, “Testing: principles and practice”, ACM Computing Surveys,

(CSUR) March 1996, Volume 28 Issue 1.

[13] Kuo-Chung Tai; Yu Lei, “A test generation strategy for pair-wise testing”,

Software Engineering, IEEE Transactions on, Volume: 28 Issue: 1, Jan. 2002,

Page(s): 109 -111.

[14] L. White, H. AlMezen, and N. Alzeidi, “User-Based Testing of GUI Sequences

and Their Interactions,” Proceedings of 12th International Symposium on

Software Reliability Eng., pp. 54-63, 2001

[15] Wohlin, C., Runeson, P., Host, M., Ohlsson, M. C., Regnell, B., and Wesslen, A.

“Experimentation in software engineering: an introduction.” Kluwer Academic

Publishers, Norwell, MA, USA, 2000

[16] Qing Xie, Atif M. Memon, “Designing and comparing automated test oracles for

GUI-based software applications,” ACM Transactions on Software Engineering

and Methodology, vol. 16, no. 1, 2007

[17] http://junit.sourceforge.net/doc/faq/faq.htm

[18] http://www.pairwise.org

[19] http://www.satisfice.com/tools/pairs.zip

[20] “JUnit, Testing Resources for Extreme Programming,”

http://junit.org/news/extension/gui/index.htm , 2004.

