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Abstract

With the rise of generative AI models, especially text-to-
image models, in recent years, establishing methods for de-
tecting whether an image is AI-generated, protecting copy-
righted materials, and tracing the origin of AI-generated
content have gotten significant attention. Most of the pro-
posed ideas focus on training detectors implemented as
deep classifiers to detect whether an image is AI-generated.
Yet, the trained models struggle to generalize to new gener-
ative models, which makes them impractical. Accordingly,
watermarking has emerged as the prevailing approach for
detecting and tracing AI-generated images recently. How-
ever, the proposed watermarking methods are prone to ad-
versarial attacks that can ‘wash away’ the watermark. In
this paper, we propose two ideas to recognize whether an
image is AI-generated while aiming to address the limita-
tions of the previous approaches: a) not training a model at
all, and b) designing them to be less prone to adversarial
attacks compared to watermark detection methods. In the
first approach, we take an off-the-shelf pretrained diffusion
model and employ it to reconstruct two noisy versions of
images that are perturbed with different strengths. Our in-
tuition is that the reconstruction error for the real and fake
images should have different distributions. In our second
idea, we propose a new watermarking technique in which
we guide the sampling process of the diffusion model us-
ing a randomly initialized classifier. The hope is that the
resulting watermarking method be resilient to adversarial
attacks as the classifier is a randomly initialized one. While
each variant excels in its setting, preliminary results show
that both can be utilized for the recognition AI-images. Our
code is available here.

1. Introduction

The recent surge in generative AI models has provided un-
precedented opportunities in different applications. For ex-
ample, powerful text-to-image generative models like Sta-
ble Diffusion [13], DALL.E3 [3], Midjourney, Imagen [17],
and Adobe Firefly can enable users to edit images or create
new ones with only using text prompts.

However, the widespread deployment of these models

raises several challenges. First, as these models are usually
trained on very large-scale datasets gathered from the in-
ternal data of the companies and/or from the internet, their
training data may contain copyrighted materials. This can
lead to cases in which the models re-generate the copy-
righted material in their inference [19, 20]. Second, as these
models may have been trained on sensitive contents, ma-
licious users may employ them to generate harmful con-
tents. Therefore, there is a need for a method to determine
whether an image is AI-generated and to trace which model
has generated an image and who has done so. We mainly
focus on the former research question to determine whether
an image is AI-generated.

The proposed methods in the literature to detect AI-
generated images can be categorized into two groups: 1)
classifier-based approaches, and 2) watermarking methods.
Classifier-based methods usually train a deep classifier us-
ing a dataset containing real images and images generated
by one or various generative AI model[s]. However, they
mainly struggle to generalize to images that are generated
by generative models other than their training data. This
problem makes them impractical because of the rapid de-
velopment in the generative AI area where a new model
is introduced every few weeks and months, which requires
training the classifier again for the new model. In another
direction, watermarking methods have recently gained at-
tention to detect AI-generated images. They embed an in-
visible signal into the generated images after [6, 15, 18] or
during [24] the generation process. However, it has been
shown that [16] these methods are vulnerable to adversarial
attacks such that a malicious user can use adversarial at-
tacks to ‘wash away’ the watermark included in the images,
making them undetectable.

In this paper, we aim to propose new techniques to detect
AI-generated images while trying to alleviate the shortcom-
ings of the previous methods. In our first idea, We consider
two main characteristics of our techniques: a) not training
a new model to detect AI-generated images, and b) mak-
ing our method more robust to adversarial attacks by design
(at least intuitively). In more details, in our first idea, we
perturb an image (real or generated) with two noise levels
and employ an off-the-shelf diffusion model to reconstruct
the noisy versions. Inspired by the binoculars paper [1], our
intuition is that the difference between reconstruction errors
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for these two cases should be different for real vs. generated
images. In our second idea, we propose a new watermark-
ing technique in which we guide the generation process of
a diffusion model using a classifier that is randomly initial-
ized. The intuition is that as the guidance is coming from
a random classifier that is unknown to the users, it will be
hard for malicious users to adversarially attack it.

In summary, we propose two new techniques to detect
whether an image is AI-generated and perform experiments
to gauge how good they can perform to do so.

2. Related Work

Digital Watermarks Techniques to imprint watermarks
on digital content have been widely used since the late
1990s [6, 15, 18]. The main technique that was used was to
imprint the watermark in the frequency decomposition of
the image. Some examples include DCT (Discrete Cosine
Transform), DWT (Discrete Wavelet Transform), and the
Fourier-Mellin transform . The main benefit to this class
of transform techniques was that these transformations
was invariant to simple manipulations like translations and
rotations [24].

Adversarial Attacks on AI detector A recent paper
[16] was published that demonstrated two techniques for
removing watermarks based on the size of the perturba-
tion it caused to the image. In dealing with low-budget
watermarks (watermarks that introduce subtle image
perturbations), a diffusion purification attack was used
that noised, and then subsequentely denoised the image.
As purification attacks were only effective for low-budget
watermarks, a different technique was engineered to
address high-budget watermarks. A model substitution
adversarial attack was used, where the substitute classifier
was adversarially attack in order to deceive the watermark
detector. Since the two techniques lead to a positive
relationship between False Positive Rate (FPR) and True
Positive Rate (TPR), choosing too low of a FPR can lead
to these methods becoming impractical. However, with
low time step value, these methods are quite efficient in
attacking watermarks.

Integrated Watermarking in Generative Models
With the advent of deep learning, the watermarking
community has had a shift in perspective. As opposed to
post-hoc modification techniques (where a watermark was
imprinted into he image after it was available), generative
AI models have popularized the idea of ”deep” watermark-
ing. In this technique, the watermark encoder and decoder
are embedded into the generative model as learned models
themselves. Examples of such watermarks include theThe
Stable Signature [9] and the Tree-Ring watermark [24].

3. Approach
3.1. Detecting Diffusion Images

Diffusion models for image generation [10] are latent vari-
able models of the form pθ (x0) :=

∫
pθ (x0:T ) dx1:T ,

where x1, . . . ,xT are latents of the same dimensionality
as the data x0 ∼ q (x0). The joint distribution pθ (x0:T )
is called the reverse process, and it is defined as a Markov
chain with learned Gaussian transitions starting at p (xT ) =
N (xT ;0, I) :

pθ (x0:T ) := p (xT )

T∏
t=1

pθ (xt−1 | xt) ,

where pθ (xt−1 | xt) := N (xt−1;µθ (xt, t) ,Σθ (xt, t))

The mean and the variance of the Gaussian transitions are
learned by denoising the following forward process

q (xt | xt−1) = N
(
xt;

√
1− βtxt−1, βtI

)
,

with the loss function being the variational negative log
likelihood:

L := Eq

[
− log p (xT )−

∑
t>1

log
pθ (xt−1 | xt)
q (xt | xt−1)

]

Importantly, the forward process allows for sampling xt,
given x0, at arbitrary timestep t

q(xt | x0) = N
(
xt;

√
ᾱtx0, (1− ᾱt)I

)
,

where αt = 1 − βt, ᾱt =
∏t
s=1 αs. Given a pre-

trained model θ, the original image can be then approxi-
mately restored using t applications of the reverse process:
pθ (xt−1 | xt). Let x0(θ, t) denote the result of the reverse
process started at the timestep t using model θ. Our model
assesses the likelihood of the image x0 being generated by
a diffusion model θ′ by calculating the proportion

||x0(θ, t1)− x0||2F
||x0(θ, t2)− x0||2F

,

where t1 < t2 are different timestesps in the domain of all
timesteps of the model θ. The obtained proportion is is a
number in R+ where larger values give more likelihood of
an image being from a real source while lower values give
more likelihood of an image being generated by the other
diffusion model θ′.
Other metrics. It is possible to avoid the inherently sequen-
tial and slow reverse process by parametrizing the diffusion
model [21]. In this approach, the diffusion process is de-
signed to preserve the marginal distribution

q(xt | x0) = N
(
xt;

√
ᾱtx0, (1− ᾱt)I

)
,



at every timestep t, however, the diffusion is no longer
Markovian. A model is then trained to predict x′

0 given xt
at a single shot

f
(t)
θ (xt) :=

(
xt −

√
1− αt · ϵ(t)θ (xt)

)
/
√
αt.

Given the marginal distribution of the diffusion process let
us define the model us

p
(t)
θ (xt−1 | xt) =

N
(
f
(1)
θ (x1) , σ

2
1I

)
if t = 1

q
(
xt−1 | xt, f (t)

θ (xt)
)

otherwise,

for some constant σ2
1 . Therefore, at timestep t the model θ is

trained to optimize the variational lower bound between dis-
tribution q(xt−1 | xt) and p

(t)
θ (xt−1 | xt). Regardless, the

model allows to approximate x0 at a single shot from any
timestep t. Under the hypothesis that for a small timestep t
the quality of this approximation is similar to the full-step
reverse process, we propose another metric for detecting
diffusion images

KL
(
∇f

(t)
θ (xt) ;∇x0

)
.

Here, the operator ∇ denotes the set of coordinate-wise dif-
ferences in the pixel space of an image. Then, the Kullback-
Leibler divergence is applied to the obtained set of differ-
ences treated as distributions on the real axis. We expect
real images to have sharper edges and thus be harder to pre-
dict for the reverse process. Thus we associate a higher
value of this metric with real images while a lower should
correspond to images originating from a diffusion model.

3.2. Guided Watermarking

Watermarking within a diffusion model involves embedding
information while ensuring its imperceptibility to maintain
data integrity. Our approach employs guided diffusion [2,
8], utilizing a frozen watermarking model fψ(.) randomly
initialized. During the denoising process, the noisy latent
in each timestep zt is used to estimate the initial denoised
latents z0 according to DDIM:

zt0 =
zt −

√
1− αtϵ√
αt

(1)

Then we get the final image using the VQVAE decoder:

xt0 = Decoder(zt0) (2)

The image is input to the regressor, and the resuting gra-
dients obtained from the regressor are utilized as guiding
signals to modulate the diffusion steps:

ϵ̃θ(zt) = ϵθ(zt)− ω∇zt log(fψ(x0)) (3)

zt−1 =
√
ᾱt−1

zt −
√
1− αtϵ̃√
αt

+
√
1− ᾱt−1ϵ̃ (4)

Our approach aims to confuse the watermarking technique
by adopting a gradient-based adversarial strategy, inducing
significant discrepancies between the output distributions
of the watermarking model for generated images and au-
thentic ones. To distinguish watermarked images from non-
watermarked ones, a straightforward method involves set-
ting a threshold τ and categorizing images where the model
output surpasses τ as watermarked, while labeling other im-
ages as non-watermarked.

4. Results
4.1. Detecting Diffusion Images

Datasets. We used three datasets to evaluate our model.
Each dataset consists of two sets: a set images generated
by a diffusion model and a set of real images from some
domain. The detailed description of each dataset is given
below.
• Dataset A. It comprises: 1000 real images of quality

256×256 pixels presenting churches [11]; 1000 images
generated by Dalle 3 model of quality 512×512 pixels
[7].

• Dataset B. It comprises: 400 real images of quality
768×768 pixels presenting churches [5]. These images
were chosen from the Wikipedia webpages [4]; 400
images generated by Stable Diffusion 2.1v of quality
768×768 pixels. [22],

• Dataset C. It comprises: 400 real personal images of qual-
ity at least 768×768 pixels presenting variety of things
(landscapes, animals, food, etc.) [12]; 400 images gener-
ated by Stable Diffusion 2.1v of quality 768×768 pixels.
Prompts were generated randomly by ChatGPT. [23],

Experiments. We tested both approaches on each of the
datasets A, B, and C. We performed a grid search for decid-
ing the best pair of timesteps, trying every pair of timestep
t1, t2 ∈ {5, 20, 25, 75, 100, 200}. For an image x0 the pro-
portions

||x0(θ, t1)− x0||2F
||x0(θ, t2)− x0||2F

and
KL

(
∇f

(t)
θ (xt) ;∇x0

)
were calculated using Stable-Diffusion v2.1-base as the pre-
trained model θ. This model has been natively trained on
512 × 512 images and for meaningful results, all images
were transformed to this resolution before processing by
our model. To avoid upscaling the input image, which
might affect the signal of the image, we preferred center-
cropping if possible. Following this approach, images from
datasets B,C were only cropped before processing by the
model. The real images from dataset A were additionally



pre-processed by bilinear interpolation to match the model
512× 512 resolution.

The calculated proportions were treated as the likelihood
of this image being a real image. We assessed the quality
of our model by presenting the receiver operating charac-
teristic for each dataset and each model, see Figure 1 and
Figure 3. Note, that the images of the dataset A have been
affected by the upscaling operation which results in a much
large similarity between generated and real images (figures
(a) in the top and the bottom row).

4.2. Guided Watermarking

We use Stable Diffusion v2.1 [14]. We employ a ResNet-50
architecture as the core watermarking method. By replac-
ing its classification head with a 10-way linear layer, we
obtain fψ(.) : χ → Rn. To reduce variance, we aggre-
gate the outputs’ values by averaging them. In our experi-
mentation, we observed that a randomly initialized model
shows slightly superior performance compared to a pre-
trained model. As a result, we consistently utilize the ran-
domly initialized model across all our experiments. We ex-
plore various watermarking guidance scales denoted as (ω
in Equation (3)). Examples of generated images for each
guidance scale and the resulting watermarking model dis-
tribution are illustrated in Figure 4

5. Conclusion
In summary, our exploration into detecting AI-generated
images introduced two promising methods. The first lever-
aged pre-trained diffusion models, demonstrating poten-
tial in distinguishing between real and AI-generated im-
ages across various datasets. Meanwhile, our guided wa-
termarking technique, employing randomly initialized clas-
sifiers, displayed divergence between watermarked and au-
thentic images, offering a proactive approach to tracing AI-
generated content. These methods show promise, but fur-
ther refinement and broader evaluations are needed for prac-
tical application. Nonetheless, they could prove valuable
toward detecting and tracing AI-generated content, crucial
for combatting misinformation and protecting intellectual
property in the era of generative AI.
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(a) Dataset A (b) Dataset B (c) Datset C

(d) Dataset A (e) Dataset B (f) Dataset C

Figure 1. Receiver operating characteristic plots for three datasets A, B, C for different pairs of timesteps. Each dataset consists of 300
images of each category: generated and real. The metric FPR@TPR< 0.01 is given in right bottom corner of each plot. Top row: the
timesteps of the diffusion process applied to the input image are t1 = 5, t2 = 20 (possible timesteps are from the range [0, . . . , 1000]).
Bottom: the timesteps are set to t1 = 5, t2 = 50.
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(a) Dataset A (b) Dataset B (c) Datset C

(d) Dataset A (e) Dataset B (f) Dataset C

Figure 2. The confusion matrices for three datasets A, B, C for different pairs of timesteps. Each dataset consists of 300 images of each
category: AI-generated and real. Top row: the timesteps of the diffusion process applied to the input image are t1 = 5, t2 = 20 (possible
timesteps are from the range [0, . . . , 1000]). Bottom: the timesteps are set to t1 = 5, t2 = 50.



(a) Dataset A (b) Dataset B (c) Datset C

(d) Dataset A (e) Dataset B (f) Dataset C

Figure 3. Receiver operating characteristic plots (top row) and schematically plotted distributions (bottom row) of the gradient metric
evaluated on three datasets A, B, and C, for the timestep t = 50. Each dataset consists of 100 randomly chosen images of each category:
AI-generated and real. The metric FPR@TPR< 0.01 is given in right bottom corner of each plot.

(a) Guidance Scale = 1 (b) Guidance Scale = 2 (c) Guidance Scale = 5 (d) Guidance Scale = 10 (e) Guidance Scale = 50

(f) Guidance Scale = 1 (g) Guidance Scale = 2 (h) Guidance Scale = 5 (i) Guidance Scale = 10 (j) Guidance Scale = 50

Figure 4. The prompt is ’A peaceful village in the Swiss Alps.’ Top: Generated images obtained from 500 steps of DDIM across
varied watermarking guidance scales within our guided watermarking method. As the guidance scale increases, image quality diminishes.
Bottom: The histogram displaying averaged outputs from the watermarking model for watermaked generated images and unwatermarked
authentic images. Evidently, with an increase in guidance scale, the divergence between the distributions of the two sets of images grows,
aligning with expected outcomes.
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