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Abstract
This paper presents a method for topologically simplifying large

triangle meshes using Apache Spark for parallel computation of For-

man gradient and critical net. Actual simplification is performed on

a single machine with an edge-collapse algorithm working against

low-persistence arcs. The goal is to reduce topological data size

with preservation of critical structure and lowered memory and

compute requirements. Four datasets were used to evaluate the

approach under threshold-based and percentage-based simplifica-

tion. 24 experiments were done measuring time, memory usage,

and Critical Net preservation. This paper demonstrates that a hy-

brid approach, distributed pre-processing with a single machine

simplification, is able to do topological simplification to a certain

extent, and outlines the requirements for further research in fully

distributed simplification algorithms.
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1 Introduction
1.1 Purpose
Topological simplification is a well-studied approach to decreasing

the size of a mesh while avoiding removal or merging of significant

topology features (e.g., ridges and valleys). This technique is im-

portant for reducing the complexity of topological structures while

maintaining essential topographic features and fixing data issues

such as filling in holes and filtering noise. This paper will not dis-

cuss the background of topological simplification but rather directs

the reader to a number of papers that deeply analyze this topic. [1, 2]

When exploring the topological simplification, there is a desire

to calculate a simple topology as quickly as possible. However, as

datasets grow in size and complexity, maintaining computational

efficiency becomes increasingly difficult. While researchers are con-

stantly exploring ways to find more efficient algorithms, the only

other area that can improve computing speeds is increasing com-

puting power. Adding more computing power on a single machine
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can only offer marginal gains beyond a certain point. To achieve

substantial reductions in processing time, it is necessary to leverage

multiple machines to make a significant difference on computation

time.

Distributing computations across multiple machines offers several

key advantages, including a faster computation, increased toler-

ance to faults, and an ability to handle much larger data sets than

a single machine can handle. If the goal of the simplification is to

compute the result as quickly as possible, the limit is simply the

number of machines that are brought into the cluster. By utilizing

parallelization and load balancing, computations can be completed

exponentially quicker than it being done on a single machine. Sim-

ilarly, if the computation is done on a single machine and there

is an issue with the calculation, there is a high risk of the entire

computation failing. When working on multiple machines there is a

lower risk in this case as one machine failing does not have a large

impact on other machines in the cluster. Furthermore, by leveraging

multiple machines, it is possible to process large datasets within

timeframes comparable to those required for smaller datasets on a

single machine, which can be quite helpful for large-scale projects.

1.2 Motivation
We investigate topological simplification for large triangulated ter-

rains, aiming to enhance the efficiency of terrain analysis while

preserving topologically significant features. To improve scalability,

the simplification process is not performed entirely on a single

machine. Instead, we employ an Apache Spark-based framework

[10747680] to first compute the discrete gradient and extract the

critical net of large triangulated terrains in a distributed manner.

Subsequently, topological simplification is applied to the extracted

critical nets on a single machine, significantly accelerating the pro-

cess and improving overall scalability. This advancement brings

us closer to efficient iceberg analysis by enabling faster computa-

tion of surface area and volume—key metrics for tracking iceberg

dynamics and assessing their potential impact on global warming.

2 Background
To understand topological simplification, there are a number of

concepts that need to be understood before simplifying terrain.

Some key topics include Triangulated Irregular Networks, critical

nets, and Discrete Morse Theory.

2.1 Triangulated Irregular Networks
Triangulated Irregular Networks (TINs) are a commonly used repre-

sentation of 3D surfaces in a number of real-world applications such
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as terrain modeling, computational geometry, and geospatial analyt-

ics. Unlike other models that are raster-based, TINs are vector-based

which make them quite helpful in displaying important terrain fea-

tures. This is important because since they are irregular, they are

able to show features that regular grid representations could not

show. A disadvantage of TINs however is that if not stored effi-

ciently, they can require significant amounts of storage to maintain

the precise level of detail they hold.

There are a number of connectivity relations that need to be

understood for TINs such as boundary, co-boundary, and adjacency

relations. These boundaries are made of simplexes and facets. A

k-simplexes is a convex hull of k + 1 independent points. As an

example, a 0-simplex is a vertex whereas a 1-simplex is an edge

and a 2-simplex is a triangle. Facets on the other hand is based on

the vertices of a simplex. An h-facet is made up of h + 1 vertices

of the simplex. For example, the vertices of a triangle are 0-facets

and the edges of a triangle are 1-facets. When looking at these

particular connectivity relations, they each play their own role in

TINs. Boundary relations are defined as the relationship between a

simplex and its facets. Co-boundary relations show the connection

between a particular simplex within all of the simplexes and a facet.

Finally, adjacency relations are the set of simplexes that share a

facet. [2]

2.2 Discrete Morse Theory
As stated by Stephen Smale, the Morse-Smale complex is a topo-

logical data structure that shows the gradient of a scalar area. [13,

12] The Discrete Morse Theory states that a Morse-Smale Complex

could be created by essentially applying a combinatorial adaptation

of Morse Theory. By simplifying the classical Morse Theory, Dis-

crete Morse Theory continues to maintain topological properties by

assigning values to cells according to specific rules. An important

aspect of Discrete Morse Theory is the idea of Forman gradients

which show discrete gradient vector fields that are connected to

a Morse function. Forman gradients are defined as the set of sim-

plex pairs where a k-simplex of the triangle mesh is matched to a

(k-1)-simplex or a (k+1)-simplex. It is also important to note that

every simplex is only connected to one pair. [2] The pairs of these

simplexes can be viewed as an arrow denoting the direction of

the gradient. Simplexes that are not part of a pair are defined as a

critical simplex. These unpaired simplexes are shown in the form

of critical triangles (maxima), critical edges (saddles), and critical

vertices (minima). These critical points and the gradient simplex

pairs create the critical net.

Critical nets are a crucial part of the entire simplification process

as all of the data and important characteristics of the topology are

held within the critical net. Parts of the critical nets include three

types of critical points. These critical points are minima, saddles,
and maxima.

(1) Minima - A point where all surrounding terrain have a higher

elevation.

(2) Saddle - A point where some surrounding terrain have a

higher elevation and some surrounding terrain have a lower

elevation. Typically, two opposite cardinal directions have

increasing elevation and the other two opposite cardinal

directions have decreasing elevation.

(3) Maxima - A point where all surrounding terrain have a lower

elevation.

In a critical net,maxima only directly connect to saddles andminima
only directly connect to saddles. Maxima never connect directly to

minima. Connecting all of these critical points creates the critical

net.

Looking at the critical net, there are natural "regions" that form
between the critical edges of the critical net. These regions can

be categorized into two different kinds of "manifolds" depending
on the type of critical points particular regions are connected to.

A set of regions could be called an "ascending manifold" if they
surround a minima. On the flip side a set of regions could be called

a "descending manifold" if they surround a maxima.

2.3 Distributed Systems
A distributed system is a network of connected computers that work

together to solve a problem. Unlike typical single-machine systems,

distributed systems split up workloads between multiple computers

which allow for faster processing, higher ability to manage faults

(should they occur), and an increased ability to scale. The basis, and

many applications of, distributed systems can be found in the paper

by L. Kleinrock. [5]

Apache Spark is a tool used for running processes on a cluster of

distributed systems. According to the Apache Spark website, the

tool can be used for a number of different applications that fall

under the categories of data science, machine learning, analytics,

and storage/infrastructure. Some features of Apache Spark that

help it stand up are it’s ability to do real-time data streaming, get

quick analytics on SQL queries, and train machine learning models

on a single machine which can scale to many fault-tolerant clusters.

This tool was chosen because of its familiarity to researchers and

previous work was done using this tool.

Within Apache Spark, Resilient Data Structures (RDDs) are an

important data structure that show collections of immutable objects

that are processed in a parallel fashion. RDDs allow users to create

data transformations such as map, filter, and count. As stated in the

name, this data structure is resilient because of its fault tolerance

since it can reconstruct lost data through lineage. This data structure

is not well optimized so it is important to manage it well.

This management can be done through another Apache Spark

tool called DataFrames. DataFrames are similar to RDDs except they

are stored more efficiently, have named columns, and an execution

engine to optimize queries. Separately, DataFrames can handle SQL

queries which allows users to easily process large data tasks. A key

part of DataFrames too is that they easily distribute across nodes

in a cluster which is important for the work done in this project.

Building off of DataFrames are GraphFrames. By taking graph

algorithms and combining them with SQL optimizations, they find

key patterns and allow new kinds of queries to be run. Users can use

GraphFrames to find relationships in graph data through algorithms

like shortest path and PageRank. At a high level, GraphFrames are

represented as two DataFrames: one for the nodes of the graph (ver-

tices) and another for the connections between the nodes (edges).

Because of the flexibility of GraphFrames, they are an ideal choice

for graph analytics in large datasets.
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3 Related Work
There is a lot of previous work on topological simplification. The

process of topological simplification itself can be done in a num-

ber of different ways. This paper chooses to do a version of edge

collapse whereas other papers choose vertex clustering or vertex

decimation.

Vertex clustering looks to provide a 3D approximation that accu-

rately represents the original object but only has a fraction of the

original faces, edges, and vertices. Because vertices are combined,

faces are lost and a level of error is introduced. This is limited

however by the user’s control. According to the paper written by

Rossignac and Borrel, this technique creates different "levels of

detail" because of the number of 3D approximations that are made.

[10]

The process of vertex decimation essentially looks at each vertex in

a triangle mesh. At a high level, each vertex in the mesh is examined

one at a time. While looking at a particular vertex, if the vertex

meets particular criteria then it is deleted. Examples of the criteria

are vertices that are more than a particular distance from another

or have a particular angle. From there, if the vertex is removed then

the remaining hold is filed using a local triangulation technique.[11]

When simplifying a mesh, choosing to do an edge collapse as the

means of simplification is quiet simple as a concept however there

are a number of conditions that must be satisfied in order for it to be

a legal collapse. First, definitions of a boundary vertex and bound-

ary edges must be set. A boundary edge is an edge that is a subset

of only one face. A boundary vertex exists for a given vertex if that

vertex is part of a boundary edge. Looking at the conditions for

edge collapse, the first condition is that all adjacent vertices make

a face with the edge in question and that face must be contained

within the simplicial complex. The second condition is that both

vertices in the edge must be boundary vertices. The third and final

condition is that the simplicial complex must contain more than 4

vertices if neither vertex in the edge are boundary vertices or more

than 3 vertices if either vertex in the edge are boundary vertices.

Assuming all of these conditions are met, the edge collapse is a

legal operation within the simplicial complex. This simple process

of combining the two vertices (one edge) into one vertex (collapsed

edge) is the basis for the topological simplification described in the

following section. [4]

Another paper that focuses on topological simplification but is a

bit outside the scope of what is covered in this paper is Gyulassy

et al. [3] Gyulassy’s team chose to focus on topological simplifica-

tion for 3D scalar functions. The concepts required for this type of

simplification are very similar to the concepts mentioned in this

paper. In the paper by Gyulassy et al., it presents a new concept of

saddle-saddle cancellation that simultaneously removes to saddles

from the topology. This saddle-saddle technique is not used in our

paper however it is something that could be researched further to

determine its effectiveness for 2D triangular mesh. In this paper, all

edge collapses are done on on maximum-saddle or minimum-saddle

pairs.

4 Method
4.1 Computing Forman gradient and Critical

Net using Apache Spark
In order to get to a polished and simplified topology, researchers

must first start with a large raw dataset that is progressively sim-

plified and reformatted. The steps taken to ultimately simplify a

critical net are described in the section below however, we must

first explain how we got there.

To improve the scalability of our methods of topological simpli-

fication on a single machine, in our work, the input is not the raw

mesh triangulated from point clouds. Instead, we perform topologi-

cal simplification over the critical net of huge triangle meshes. The

critical nets are extracted through a distributed framework, Apache

Spark, for mesh processing [8]. In this section, we explain how we

compute the critical net of a triangle mesh by using the proposed

Spark framework.

In the context of discrete Morse theory, the critical net is identi-

fied by tracing the gradient paths that link critical simplices—namely,

critical vertices (local minima), critical edges (saddles), and critical

triangles (maxima). To construct the Forman gradient, an estab-

lished method grounded in homotopy expansion [9] was utilized

and adapted for parallel execution using Apache Spark. The core

mechanism of the algorithm involves imposing a total ordering 𝐼 on

the vertices of a triangle mesh Σ. This ordering serves as the basis

for partitioning Σ into manageable sub-components, facilitating

parallel gradient computation.

The total order is derived by arranging the vertices of the mesh

according to the elevation. The order is extended from vertices to

higher-dimensional simplices—edges and triangles—by defining

𝐼 (𝜎) := max𝑣∈𝜎 𝐼 (𝑣), where 𝜎 represents a simplex and 𝑣 is a vertex

on its boundary. Based on this ordering, the complex is symbolically

decomposed into units known as lower stars.

The lower star of a vertex 𝑣 encompasses all simplices in the

star of 𝑣 that share the same index 𝐼 (𝑣). Within each lower star,

simplices are paired through the homotopy expansion process [9].

This pairing is performed incrementally by simplex dimension.

Specifically, a k-simplex 𝜎 is paired with a (𝑘 + 1)-simplex 𝜏 if 𝜎 has

no unmatched faces and 𝜏 contains exactly one unmatched face,

which must be 𝜎 . For an in-depth explanation of the methodology,

the reader is referred to the foundational work by Robins et al. [9].

Once the Forman gradient is computed, we extract the critical net

from the calculated gradient. The critical net forms a graph whose

nodes correspond to critical simplices, and whose edges (or arcs)

represent gradient paths linking critical simplices of successive

indices. More precisely, a𝑉1-path associated with a critical edge 𝑒 is

formed by following a sequence of gradient pairs that connect 𝑒 to

nearby critical vertices. A𝑉2-path of a critical edge 𝑒 is constructed

by aggregating gradient-connected edges that link 𝑒 to adjacent

critical triangles.

Within the Spark framework, the resulting critical net is stored in

two separate data files: the vertex-edge file and the edge-triangle file.

The vertex-edge file encodes all critical simplex pairings between

critical vertices and critical edges (i.e., minima to saddles), while

the edge-triangle file captures the pairings between critical edges

and critical triangles (i.e., saddles to maxima).
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(a) minimum-saddle
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Figure 1: a) minimum-saddle depicts the removal of a critical
edge to critical vertex arc and then the resulting critical con-
nections that are created in the process. b) saddle-maximum
depicts the removal of a critical triangle to critical edge arc
and then the resulting critical connections that are created
in the process.

4.2 Topological Simplification on a single
machine

The data used to compute the single machine topological simplifica-

tion were given as two files, one containing all of the connections

between critical vertices and critical edges and the other file con-

taining all of the connections between critical edges and critical

triangles. These connections are known as critical arcs. The critical
arcs in both files were inevitably combined into one file to more

easily compute the total amount of data. It is important to note the

difference in how a critical arc containing a critical vertex and criti-

cal edge (also known as a "minimum-saddle") is simplified versus

a critical arc containing a critical edge and critical triangle (also

known as a "saddle-maximum") is simplified. See Figure 1[7] for a

visual of the specific simplification for each minimum-saddle and

saddle-maximum.

To actually simplify the topology, there are several common

operators such as vertex clustering, vertex decimation, and edge

collapse. A more detailed version of each operator is described in

section 3, related work. Vertex clustering is the process of removing

points that are packed tightly together or points that are on top of

one another so that there is only one remaining point in the nearby

area. An example of this would be having multiple points that all

map to one particular pixel in an image. It would be impossible

to visualize all of the points that are on that one pixel so all but

one of them are deleted. [6] Vertex decimation is the process of

examining each vertex in a triangle mesh and determining if it is

a candidate for removal based on a set of specific criteria. Once a

point is removed, the hole that is now in the mesh is filled using

local triangulation techniques. This continues until a certain level

of simplification is achieved. [11] Edge collapse is the process of

taking an edge and bringing both of its vertices together to make a

single vertex. A certain set of conditions must be met for this to be

a legal edge collapse. Those specific conditions are mentioned and

proven in Hoppe et al. [4]

For this paper, we have chosen to focus on edge collapse as the

simplification operator of choice. Edge collapse was chosen due to

its adaptability for unique and varying topologies. At a high level,

the simplification in this paper is done in a manner that focuses on

collapsing arcs that have the lowest persistence value in the criti-

cal net. This simplification continues until either the persistence

threshold is met or a certain number of arcs have been collapsed

depending on the experiment being run. More information about

experiments can be found in the next section.

In the following section of this paper, we present and discuss the

pseudocode for the simplification algorithm step-by-step. It should

be noted that the inputs and outputs are clearly specified to main-

tain reproducibility and transparency. The major steps of the pseu-

docode are as follows. First, the arc with the lowest persistence is

popped from the priority queue. Once the current edge’s persis-

tence is found, the vertices adjacent to each vertex in the chosen

edge are determined. After that, the edge in question is removed

from the triangle mesh. Following that step, the critical arcs in the

critical net are updated. The update process for this step focuses on

matching minima with saddles and maxima with saddles. Minima

and maxima cannot be directly connected so minima and maxima

must be connected with saddles. Once each critical simplex pair has

been matched, the persistence values for each of those critical arcs

are determined and all of that information is added to the priority

queue. Finally, all references of the simplified nodes and arcs are

removed from the original lists. This entire simplification process

is continued for each subsequent arc with the lowest persistence

value until the threshold has been reached.

5 Designing the Implementation for
Topological Simplification

When developing code for this project, a program was written for

topological simplification carried out on a single machine. This

program reads in the critical net, the vertex-edge file (mentioned

above 4.1.2), and the edge-triangle file (mentioned above 4.1.2). The

persistence of each critical edge is determined by calculating the

difference in height for each element within each critical edge. This

calculation can vary according to the elements within the critical

edge. If the element is a minimum, it will simply be a single vertex.

If the element is a saddle, there will be two vertices and the maxi-

mum elevation of the two vertices will be selected. If the element

is a maximum, there will be three vertices and the maximum ele-

vation of the three vertices will be selected. After the persistence

is determined for all critical edges, the topological simplification

algorithm is run as shown in Algorithm 1. Ultimately, these results

are output into the final simplified form.

When looking specifically at single-machine simplification, there

are a number of major steps that take place. Beginning with the

vertex-edge and edge-triangle files, a priority queue is initialized



Enabling Single Machine Topological Simplification with Distributed Preprocessing of Large Datasets XXX’25, April 2025, XXX, XXX

Algorithm 1 Single Machine Simplification

Input
𝐴: Array of critical arcs;𝑄 : Priority queue of critical arcs and

their respective persistence values; 𝑡 : Simplification threshold

Output
𝐴: List of critical arcs

1: removedNodes = set()

2: connectedArcs = {arc : True for arc in A}
3: adjacency = defaultdict(set)

4: for arc in connectedArcs do
5: for point in arc do
6: adjacency[point].add(arc)
7: for count of t do
8: persistence, currentArc = Q.pop()
9: criticalPoint1 = currentArc[0]
10: criticalPoint2 = currentArc[1]
11: if criticalPoint1 in removedNodes or criticalPoint2 in re-

movedNodes then
12: continue
13: removedNodes.update([criticalPoint1, criticalPoint2])
14: secondConnections = []

15: relatedArcs = set()

16: relatedArcs.update(adjacency[criticalPoint1])
17: relatedArcs.update(adjacency[criticalPoint2])
18: for arc in relatedArcs do
19: if arc not in connectedArcs or arc == currentArc then
20: continue
21: a0, a1 = arc
22: if a0 in (criticalPoint1, criticalPoint2) or a1 in (criticalPoint1,

criticalPoint2) then
23: target = a1 if a0 in (criticalPoint1, criticalPoint2) else a0
24: secondConnections.append(target)
25: del connectedArcs[arc]
26: adjacency[a0].discard(arc)
27: adjacency[a1].discard(arc)
28: newArcs = []

29: if len(secondConnections) > 1 then
30: for each ele in secondConnections do
31: if len(ele) == 1 or len(ele) == 3 then
32: for each secondEle in secondConnections do
33: if ele != secondEle and len(secondEle) == 2 then
34: persistence = abs(max(ele) - max(secondEle))
35: newArcs.append((persistence, (ele, secondEle)))
36: for each pair in newArcs do
37: Q.append(pair)
38: for pt in pair do
39: adjacency[pt].add(pair)
40: return A

to manage all critical simplex pairs, ordered by their persistence

values. The algorithm proceeds by repeatedly removing the arc with

the lowest persistence from the queue. Then, the current lowest

persistence arc is popped from this priority queue. For each selected

arc, the algorithm identifies all critical simplices directly adjacent to

it. Once these neighboring simplices are located, the arc is removed

from the critical net. Subsequently, the set of critical simplex pairs

is updated to reflect this change, and the priority queue is reordered

to maintain the correct prioritization based on updated persistence

values. This iterative process continues until a specified threshold is

reached. The threshold can either be a particular persistence value

between a critical simplex pair or a certain percentage of arcs that

are removed. This variable is tested in the experimental section

below.

6 Experimental Evaluation
6.1 Experimental Datasets
This section dives into the specific datasets that were used for this

paper’s evaluation. Four large datasets were selected that initially

exceeded the memory capacity and/or computational limits of a

single machine which is the motivating factor for switching certain

computations to distributed systems as mentioned in earlier sec-

tions. The critical nets of each of these large datasets were computed

in a distributed system.

6.2 Evaluation Metrics
When running our experiments to simplify the critical nets, there

are a number of metrics that were important to determine the

effectiveness of the topological simplification algorithm. These

metrics are defined below:

(1) Number of Removed Critical Nodes - The total number of

critical vertices, edges, and triangles eliminated during the

simplification process.

(2) Number of Removed Critical Arcs - The number of critical

simplex pairs removed, specifically those linking critical ver-

tices to critical edges and critical edges to critical triangles.

(3) Node Connectivity Preservation - Measured as the percent

of unique total critical vertices, critical edges, and critical

triangles that exist after topological simplification.

(4) Critical Arc Preservation - Measured as the percent of origi-

nal arcs that still exist in the simplified critical net. Calculated

as the number of critical arcs before simplification minus the

number of critical arcs removed then divided by the original

number of critical arcs in the critical net.

(5) Max Memory Usage (MB) - The max amount of memory

used for a given experiment measured in Megabytes.

(6) Time for Simplification - Time required to run the sequential

topological simplification on a single machine measured.

6.3 Experimental Results
All four datasets underwent six experiments each resulting in a total

of 24 experiments. The experiments were split between percentage-

based and threshold-based tests. Tables 2 through 7 show the sim-

plification experiments on the datasets. Each of these experiments

depict the results for the number of removed critical arcs, number

of removed nodes, number of total critical arcs after simplification,

number of new arcs, number of critical vertices after simplification,

number of critical edges after simplification, number of critical

triangles after simplification, the node connectivity preservation,

arc connectivity preservation, max memory usage (MB) during the

computation, and time to compute the simplification (in seconds
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and minutes). For the node connectivity preservation computation,

this is based on the sum of the total critical vertices, critical edges,

and critical triangles that exist after simplification compared to the

sum of total critical vertices, critical edges, and critical triangles

that existed before simplification. The preservation of arc connec-

tivity is a percentage of the original arcs that remained after the

topological simplification process.

Looking specifically at Tables 2 through 4, these tables showpercentage-

based simplification experiments. Table 2 shows the results of a 1%

critical arc simplification, Table 3 shows 10%, and Table 4 shows

25%. In each of these tables, a set number of critical arcs was re-

moved that represents its respective percentage of total critical

arcs present in the dataset before topological simplification. It is

important to note that despite these experiments only removing

a set percentage of critical arcs in the dataset, the arc connectiv-
ity preservation metric does not perfectly match the experiment’s

respective removal percentage because when one arc is removed,

multiple new arcs can be created.

When examining tables 5 through 7, these tables display threshold-

based simplification experiments. Table 5 are the results of removing

any persistence values ≤ 10, table 6 shows the removal of persis-

tence values ≤ 50, and table 7 depicts the removal of persistence

values ≤ 100. For these threshold-based simplifications, a slight

modification of the algorithmwas needed to account for a continual

simplification until all critical arcs under a certain persistence value

were removed.

For each experiment, it should be noted that a relatively small per-

centage of critical vertices, critical edges, and critical triangles are

removed from the overall critical net. This outcome arises because

the simplification threshold is defined based on the percentage of

critical arcs targeted for removal, not critical nodes. During each

application of the edge collapse operator, significantly more critical

arcs are eliminated compared to critical nodes. Figure 1 shows for

each critical arc that is being removed, it originally has six adjacent

critical arcs that connect to other critical vertices, critical edges,

and critical triangles. When the critical arc in question is removed

and new critical arcs are created to fill the void, there are now

three new critical arcs. Including the critical arc that was removed,

there were originally seven total arcs before simplification and after

simplification there were only three. This example results in a net

loss of four critical arcs and only two critical nodes (one critical

vertex or critical triangle and one critical saddle). For each critical

arc simplification, a similar result is seen with a larger number of

critical arcs being removed than critical nodes.

Another observation found in this research is that for most datasets,

there is a lower percentage of critical vertices after simplification

compared to the percentage of critical triangles after simplification.

We believe this is due to the datasets containing more critical edge

to critical vertex (minimum-saddle) pairs than critical triangle to

critical edge (saddle-maximum) pairs. Because of this imbalance of

minimum-saddle to saddle-maximum arcs, it can be seen in Tables

2 through 7 that as more arcs are removed in the simplification

process, they tended to be minimum-saddle arcs.

Despite these critical net datasets being smaller than the raw data,

they were still quite large as seen by the size of the files in table
1. These large files required a significant amount of time and a

powerful machine to compute the results. In order to process these

files, a virtual machine was setup on Google Cloud Platform (GCP)

with 768 GB of memory and 8 virtual N2D CPUs. At this size, this

machine cost $6.55 per hour to run on Google’s platform. This large

amount of memory and CPUs were required to store the supple-

mental data structures needed to compute the simplification. Even

with a large amount of memory and a computationally powerful

CPUs, the simplification process still took a considerable amount

of time to complete each experiment. Averaging data from all 24

experiments, the average time to complete topological simplifica-

tion was 1,688 seconds (28.13 minutes) with an average memory

usage of 131,300 MB.

7 Concluding remarks
To review, this paper presents the process of sequential topologi-

cal simplification and highlights the need to perform topological

simplification on a set of distributed systems. As described in the

methods section of this paper, the Forman gradient and critical net

are computed from the original dataset using Apache Spark. Sub-

sequently, the critical net is simplified on a single machine using

the algorithm described in Algorithm 1. The results of the single
machine topological simplification process as mentioned above

showed that these computations as computationally intense for a

single machine as seen by the significant amount of memory and

time needed. This paper’s contribution to this domain is proven

in the results of the 24 experiments that show how infeasible it

is to host these computations on a single machine because of the

resources needed and the associated cost to access a machine of

the caliber needed for these calculations.

There were a number of limitations that were faced in this pro-

cess of completing this research project. The largest limitation that

was faced was getting access to a single machine powerful enough

to run the simplification experiments. Luckily Google Cloud Plat-

form (GCP) offered a comprehensive solution that allowed us to

complete the experiments. Another limitation of this process was

that it was difficult to get small enough datasets for the experi-

ments. Although these datasets are multiple gigabytes in size, they

are quite small compared to other datasets available. If a signifi-

cantly larger dataset needed to be simplified, the process would

likely take multiple hours or days if done on a single machine.

When looking at future work, researchers could focus on creating

a topological simplification algorithm that can be supported in a

distributed set of systems. By creating an algorithm that can suc-

cessfully spread out the topological simplification problem onto

multiple machines, these calculations can be completed in a signifi-

cantly shorter amount of time.
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Canyon Dragons Idaho Big Creek
Number of Vertices in Original Dataset 48,988,726 91,034,766 113,060,804 151,339,499

Number of Triangles in Original Dataset 97,977,344 182,069,460 226,121,529 302,678,963

Number of Critical Vertices 6,196,532 6,239,171 9,092,496 16,294,855

Number of Critical Edges 11,785,078 12,697,682 16,919,056 32,065,780

Number of Critical Triangles 5,588,547 6,457,516 7,826,561 15,770,926

Number of Total Critical Nodes 23,570,157 25,394,369 33,838,113 64,131,561

Number of Critical Arcs 46,536,448 50,383,368 67,151,291 126,879,162

Size of Critical Net File 2.49 GB 2.67 GB 3.7 GB 7.17 GB

Table 1: Basic information about the size of each dataset and its respective critical net before any topological simplification.
The critical net is only encapsulated by the critical nodes and critical arcs. The critical nodes are the sum of critical vertices,
critical edges, and critical triangles, while critical arcs refer to the critical simplex pairs connecting critical vertices and critical
edges, and those connecting critical edges and critical triangles. It is important to note that the first two rows in the dataset
show how large the original datasets are and how much smaller they become when looking solely at the critical net.

Canyon Dragon Idaho BigCreek
Number of critical arcs before 46,536,448 50,383,368 67,151,291 126,879,162

Number of removed critical arcs 465,364 503,833 671,512 1,268,791

Number of removed nodes 592,274 770,790 1,034,267 1,817,385

Percent of critical vertices after 94.71% 96.33% 96.46% 95.15%

Percent of critical edges after 97.86% 97.27% 97.24% 97.52%

Percent of critical triangles after 99.70% 99.67% 99.66% 99.65%

Node Connectivity Preservation 97.47% 97.65% 97.59% 97.45%

Arc Connectivity Preservation 99.00% 99.00% 99.00% 99.00%

Max Memory Usage (MB) 39,007 41,618 57,074 103,434

Time for simplification (sec) 349 373 592 896

Time for simplification (min) 6 6 10 15

Table 2: Results of 1% critical arc simplification for each dataset.

Canyon Dragon Idaho BigCreek
Number of critical arcs before 46,536,448 50,383,368 67,151,291 126,879,162

Number of removed critical arcs 4,653,644 5,038,336 6,715,129 12,687,916

Number of removed nodes 2,875,553 3,216,931 2,141,106 5,810,339

Percent of critical vertices after 93.11% 94.47% 96.01% 94.38%

Percent of critical edges after 90.75% 90.16% 94.41% 92.39%

Percent of critical triangles after 97.28% 97.27% 99.06% 98.28%

Node Connectivity Preservation 92.92% 93.03% 95.92% 94.35%

Arc Connectivity Preservation 90.00% 90.00% 90.00% 90.00%

Max Memory Usage (MB) 88,585 92,488 113,939 211,281

Time for simplification (sec) 1,137 1,237 1,691 2,364

Time for simplification (min) 19 21 28 39

Table 3: Results of 10% critical arc simplification for each dataset.
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Canyon Dragon Idaho BigCreek
Number of critical arcs before 46,536,448 50,383,368 67,151,291 126,879,162

Number of removed critical arcs 11,634,112 12,595,842 16,787,822 31,719,790

Number of removed nodes 3,222,310 3,705,792 2,190,094 5,862,902

Percent of critical vertices after 92.44% 93.74% 95.96% 94.37%

Percent of critical edges after 90.07% 89.16% 94.31% 92.33%

Percent of critical triangles after 96.55% 96.52% 99.01% 98.22%

Node Connectivity Preservation 92.23% 92.16% 95.84% 94.30%

Arc Connectivity Preservation 75.00% 75.00% 75.00% 75.00%

Max Memory Usage (MB) 129,456 153,322 169,555 461,338

Time for simplification (sec) 1,843 1,823 2,541 8,060

Time for simplification (min) 31 30 42 134

Table 4: Results of 25% critical arc simplification for each dataset.

Canyon Dragon Idaho BigCreek
Number of critical arcs before 46,536,448 50,383,368 67,151,291 126,879,162

Number of removed critical arcs 11,892,473 5,293,541 1,502,640 4,532,254

Number of removed nodes 3,229,046 3,299,535 2,069,505 5,581,517

Percent of critical vertices after 92.43% 94.38% 96.08% 94.50%

Percent of critical edges after 90.06% 89.94% 94.56% 92.63%

Percent of critical triangles after 96.55% 97.06% 99.12% 98.37%

Node Connectivity Preservation 92.22% 92.84% 96.02% 94.52%

Arc Connectivity Preservation 74.44% 89.49% 97.76% 96.43%

Max Memory Usage (MB) 127,789 93,647 71,978 154,047

Time for simplification (sec) 1,691 1,089 794 1,655

Time for simplification (min) 28 18 13 28

Table 5: Persistence values removed that are ≤ 10 for each dataset.

Canyon Dragon Idaho BigCreek
Number of critical arcs before 46,536,448 50,383,368 67,151,291 126,879,162

Number of removed critical arcs 24,849,203 7,542,754 1,564,987 4,624,351

Number of removed nodes 3,371,938 3,496,664 2,088,461 5,607,235

Percent of critical vertices after 92.06% 94.08% 96.07% 94.49%

Percent of critical edges after 89.83% 89.60% 94.52% 92.60%

Percent of critical triangles after 96.31% 96.80% 99.10% 98.36%

Node Connectivity Preservation 91.95% 92.53% 96.00% 94.50%

Arc Connectivity Preservation 46.60% 85.03% 97.67% 96.36%

Max Memory Usage (MB) 173,644 110,406 72,910 154,893

Time for simplification (sec) 2,347 1,305 653 1,515

Time for simplification (min) 39 22 11 25

Table 6: Persistence values removed that are ≤ 50 for each dataset.
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Canyon Dragon Idaho BigCreek
Number of critical arcs before 46,536,448 50,383,368 67,151,291 126,879,162

Number of removed critical arcs 28,967,408 8,316,202 1,703,202 4,787,232

Number of removed nodes 3,399,684 3,552,267 2,112,346 5,655,707

Percent of critical vertices after 91.99% 93.67% 96.05% 94.47%

Percent of critical edges after 89.79% 89.49% 94.47% 92.55%

Percent of critical triangles after 96.27% 96.72% 99.08% 98.34%

Node Connectivity Preservation 91.90% 92.36% 95.96% 94.46%

Arc Connectivity Preservation 37.75% 83.49% 97.46% 96.23%

Max Memory Usage (MB) 183,851 116,217 74,295 156,429

Time for simplification (sec) 2,832 1,472 729 1,523

Time for simplification (min) 47 25 12 25

Table 7: Persistence values removed that are ≤ 100 for each dataset.
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