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ABSTRACT

Due to the growing availability of geospatial data from a
wide variety of sources, there is a pressing need for robust,
accurate and automatic merging and matching techniques.
Geospatial Entity Resolution is the process of determining,
from a collection of database sources referring to geospa-
tial locations, a single consolidated collection of ’true’ lo-
cations. At the heart of this process is the problem of de-
termining when two locations references match—i.e., when
they refer to the same underlying location. In this paper,
we introduce a novel method for resolving location entities
in geospatial data. A typical geospatial database contains
heterogeneous features such as location name, spatial coor-
dinates, location type and demographic information. We
also construct features using neighbors of a location. We
investigate the use of all of these features in algorithms
for geospatial entity resolution. Entity resolution is further
complicated by the fact that the different sources may use
different vocabularies for describing the location types and a
semantic mapping is required. We propose a novel approach
which learns how to combine the different features to per-
form accurate resolutions. We present experimental results
showing that methods combining spatial, non-spatial (e.g.,
location-name, location-type, etc.) tand neighbor informa-
tion ogether outperform methods based on spatial or name
information alone.
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1. INTRODUCTION

The rapid growth of geospatial data has fueled signifi-
cant interest in mining relevant information from them. The
availability of geospatial data from multiple sources requires
the integration of this information before using it effectively.
An important part of integration involves finding matching
locations across datasets. In other words, we need to recon-
cile location references corresponding to the same real-world
location entity. Previous work on entity resolution has pri-
marily focused on non-spatial data, such as medical data
[12], census data [16], bibliographic data [6, 2], natural lan-
guage [7, 9] and relational data [13].

The presence of a continuous spatial component in geospa-
tial data makes the problem hard, as the data captured from
the spatial domain is often noisy and imprecise. Also, dif-
ferent organizations may record spatial properties of entities
using different scale and structure [1]. For example, one or-
ganization might represent mountains as points, while an-
other could represent them as regions. In recent work, Beeri
et al. [1] use only spatial features to find matches between
datasets. Their results show that entity resolution is non-
trivial even while using only spatial information as features.

The presence of non-spatial information can be very valu-
able in improving entity resolution. A typical dataset con-
tains information such as location name, spatial coordinates
(i.e., latitude and longitude), location type (e.g. dune, city,
river, airport, etc.) and demographic information (e.g. pop-
ulation, etc.). The confidence in matching two locations
from different datasets with similar coordinates should in-
crease if non-spatial information such as location name and
location type are also similar. The use of non-spatial in-
formation may improve performance by identifying match-
ing locations which would otherwise be rejected by tradi-
tional spatial-only approaches. This impacts the recall of the
entity resolution algorithm. Similarly, two locations with
similar coordinates but with dissimilar non-spatial features
should have a reduced chance of being labeled as matches.
This can impact the precision of the entity resolution algo-
rithm. In our experiments, we find that using spatial and
non-spatial together improves both recall and precision.

In this paper, we develop methods to use both spatial
and non-spatial features for entity resolution. Integrating
these feature types is non-trivial because of the need to de-
fine a similarity metric which combines semantically distinct
features. The use of non-spatial data itself is further compli-
cated by the fact that certain features such as location-type
may be represented differently in the datasets. For exam-

ple, one dataset might label a real-world location as an “is-



land”, while the other might classify it as a “hypsographic”
location with “hydrographic” locations as neighbors. In ad-
dition to mapping feature values between datasets, we also
need to find corresponding weights for these feature types
to construct a final similarity measure. The choice of the
similarity metric and the corresponding weights strongly in-
fluence the accuracy of entity resolution. One can design
a similarity metric manually, but given the complex rela-
tions between different features (e.g. location type with co-
ordinates, etc.), such a naive approach may not be able to
model the data well. In this paper, we learn the weights and
also the similarity metric from ground truth data describing
’true’ matches.

Unfortunately, learning is impeded by the fact that the
ground truth data contains only positive examples. We can
construct a training set consisting of both positive instances
(matches) and negatives instances (non-matches) from the
ground truth data by including as non-matches all pairs of
locations not included in the ground truth data. However
this naive approach results in a training set overwhelmingly
containing negative instances (i.e. pairs of locations which
do not match). This skew not only impacts the usefulness
(the accuracy of an approach would remain high even if it
classifies all pairs of locations as non-duplicates), but it also
makes learning highly inefficient due to the large number
of negative instances. We explore ways of effectively choos-
ing negative instances for training. Results of our extensive
experimentation show how the size and choice of negative
instances impact the accuracy in entity resolution.

In the next section, we introduce the problem in more
detail. In Section 3, we describe previous approaches. In
Section 4, we discuss our approach. Section 6 covers our
extensive experimentation. Finally, we end with conclusions
and future work.

2. THE GEOSPATIAL ENTITY
RESOLUTION PROBLEM

In this paper, we explore a framework where we have
two geospatial datasets A and B developed by independent
sources. Each dataset is a collection of location references,
each of which corresponds to some real-world location entity.
The target of entity resolution is to find pairs of locations
{li,1;}, such that l; € Aand; € B, and l; and [; correspond
to the same real-world location entity. As mentioned earlier,
each location reference l; is described by a set of features
l; = [location name, spatial coordinates, location type].
The spatial coordinates are defined as the latitude and lon-
gitude of the location. The location type is a categorical
feature with a relatively small domain size. Figure 1 shows a
simple example containing two matching location references
obtained from two different data-sources. The first loca-
tion, Qaryat an Nu‘aymiyah, is from the US Board on Geo-
graphic Names - Geographic Namespace Database (GNDB)
and the second location, Qaryat an Na‘imiyah, is from the
2005 Iraq Atlas published by the National Geospatial In-
telligence Agency (NGADB). The matching locations have
non-identical names (though they sound quite similar), co-
ordinates and location types.

3. PREVIOUS APPROACHES

Commercial geographic-information systems [11] use spa-
tial coordinates to join location references. One-sided near-

est join is the most common approach, where locations ref-
erences I; € A and l; € B are labeled as duplicates, if [;
is closest to Il; given all locations in B. The asymmetry in
the above approach is addressed by Beeri et al. [1]. They
modify the definition by adding an extra condition that [;
is also closest to I; given all locations in A. They show that
addition of this condition may help improve precision of re-
sults, though the strong conditions may compromise recall.
Another recent approach [10] integrates heterogeneous geo-
referenced data available from the web. Here, they match
geospatial objects by comapring their attributes using a tun-
able string matching algorithm. Other methods in the do-
main of geospatial data integration such as [4, 8, 14, 15,
3] integrate digital maps. Image processing techniques [8]
have also been also applied in merging digital image maps.
Satellite imagery has been the most popular information
used for integrating maps. Though these methods help in a
global alignment of geospatial database, the efficacy of these
methods strongly depends upon the quality and richness of
the satellite image. Also, these methods require that both
the datasets have complete information about the region.
Since many real-life geospatial integration tasks require in-
tegrating a small set of locations recently collected, it is
critical to find alternate approaches using incomplete infor-
mation. Efficiency and scalability are other issues with these
approaches.

4. FEATURE-BASED MATCHING

In this section, we define matching approaches using each
location feature (namely spatial coordinates, location name
and location type) independently. Each approach first de-
fines a similarity (or distance) measure and then use it to
find matches across datasets.

4.1 Location Name Matching

As defined earlier, our problem is to find matching pairs
of locations from two different datasets. Here a match is
defined as the location /; with the most ”similar” name.
We found that matching locations often had their names
slightly misspelled. The similarity between two names can
be defined using a variety of string similarity measures. One
common measure is the Levenstein edit distance algorithm,
where the distance is defined as the number of edit opera-
tions (e.g. addition, deletion and change of character) re-
quired to convert one string to another. We will refer to this
measure as simply “Edit Distance” denoted as edit(S1,52).
Here the string similarity measures we used give equal cost
to each operation. It would be interesting to refine the cost
to make them region and language specific. Another pop-
ular sting similarity measure is the Jaccard similarity. For
two strings S and S, let common be the set of characters
which are present in both S; and S and let total be the set
of characters which are present in either of the strings, then
the Jaccard similarity is defined as a ratio between common
to the total characters.

Jace(Sy, Ss) = |Unique common characters|

|Total unique characters|

A final string similarity measure that we use is the Jaro-
Winkler measure which defines the distance between two
strings by taking into account the spelling deviations. Let
S1 be the characters in S that are “common with” S, and



Figure 1: Potential duplicate entries in separate gazetteer files for Iraq, with similar but not identical feature
information. Location A’s (extracted from Geographic Namespace Database - GNDB) name attribute is
“Qaryat an Nu‘aymiyah”, and its geospatial feature type is "Populated Place’. Location B’s (extracted from
National Geospatial Intelligence database - NGADB) name attribute is “Qaryat an Na‘imiyah”, and its

geospatial feature type is 'Pop. Place’.

let S5 be the characters in S that are “common with” Si;
roughly speaking, a character a in S1 is “common with” S
if the same character appears in about the same place in Ss.
Let T1,> measure the number of transpositions of characters
in §] relative to S5, then the Jaro similarity is defined as
follows:

1(@ 153] |Si|_T1’2)
3781 |Se] 2|51 ]

and the JaroWinkler similarity is defined as:

J(81,8:2) =

Jw(S1, S2) = J(S1, S2)+C x Pre fiz Lengthx (1—J(S1, S2))

Here C is a constant and PrefizLength is the length of
the longest common prefix. For our experiments, we use C
= 0.1. It has been shown to work well with person names.
We refer to this measure as “Jw”.

4.2 Coordinate Matching

Assuming each location is a point reference, we define the
spatial component for the location as latitude and longitude
of the point. A naive approach to find the best match for a
location I; € A in dataset B is to find the location I; € B
with the closest latitude and longitude. Coordinate simi-
larity is defined as the inverse of the coordinate distance
denoted dist(l;,l;)

_ 1
= dist(l;, l;)

In this approach, locations /; and l; are mapped to each
other if the coordinate simmilarity is above a threshold.
Note that here locations in A are mapped to locations in
B while the reverse is not guaranteed. We refer to this ap-
proach as NN.

CoordSym(l;, 1;)

1

CoordSym(l;,1;) = cord(ls, ;)
23 %7

4.3 Location Type Matching

Location type can also aid us in finding matches by reject-
ing those pairs of locations where the types are not similar.
Because location types have some underlying semantics, ide-
ally we would like to make use of this to define for example
a 'river’ type to be more similar to a ’stream’ type than to
a ’desert’ type. Another interesting challenge here is that
the location types may be described using different vocabu-
laries, so that not only do we need to be able to compute a
semantically meaningful distance, but we must map between
two potentially different vocabularies.

In this work, we do not assume that we are given any
additional semantic information and we compute the loca-
tion type similarity based on co-occurrence. First we build
a positive training set containing pairs of location refer-
ences which are matches. Similarly, we construct a negative
training set containing all pairs of locations which are not
matches. Now let ¢; and t; be the location types for loca-
tions I; and I; respectively, then the similarity between them
is defined as

TypeSym(li,lj) = ne;.t;/(ne; + nay)

where Nt 8 is equal to the number of positive training
samples where types ¢; and t; co-occurred, while n;; and ny,
are the total number of instances (both positive and nega-
tive) containing these types respectively. Intuitively, this
definition captures the co-occurrence probability between
any two location-types. If two locations are duplicates they
are likely to have similar location types, but the same argu-
ment cannot be applied in the complimentary case. Hence,
the similarity value between two location types is not re-
duced if they are seen together in negative instances.



S. INTEGRATING SPATIAL AND
NON-SPATIAL FEATURES

Integration of location name and coordinates is compli-
cated by the need of different similarity measures for the
different feature types. One way to combine the similar-
ity obtained from these two sets of features is by putting a
threshold on one, while using the other as a secondary fil-
ter. Thus, a match for a location I; € A in dataset B is
defined as the location /; € B with the most similar name
and with coordinate similarity above some threshold. A
similar definition can be made for the complimentary case
where matches are found using coordinates and the name
similarity is above some threshold. The extra information,
for example coordinate similarity in the first case, helps us
in rejecting those locations which have similar names but
are too spatially distant to be considered matches. This can
help in improving precision of the result set with minimal
effect on the recall.

5.1 Learning a Combined Similarity Measure

Unfortunately, the above approach does not capture matches

which are neither "most” similar in names or coordinates.
In these cases, one needs to have a similarity measure which
combines both spatial and non-spatial features. A naive
choice of such a similarity measure can be a function that
is the weighted mean of similarity between coordinates and
names, where the weights are chosen manually in an ad-
hoc manner. Since domain knowledge is not available for
combining the features, deciding on the weights can be very
difficult. Also for a more robust similarity measure, the
measure should account for the relation between spatial and
non-spatial features.

Here, we learn the weights from ground-truth data con-
sisting of matching locations. From this ground-truth set of
matches, we can construct a training set in which the pos-
itive instances correspond to those pairs of locations that
are matches, while the negative instances consist of combi-
nations of places that are not matches. Assuming there are
no duplicates in the datasets themselves, two datasets A and
B can have at most min(|A|, |B|) matches. If we consider
all non-matches, the number of negative instances is often
very large (of the order |A| x |B|). This potential skew in
training data may affect recall by misleading the classifier
to always classify a location pair as a non-match. Also, the
large size of negative instances set can make the training
process inefficient.

To solve this problem, we select a smaller set of negative
instances from the negative training set. Since misclassifica-
tion of location pairs is more likely when they have similar
features, it may prove beneficial to choose as negative in-
stances those pairs of non-matching locations which have
similar features. So we modify our negative instance selec-
tion policy to take the above into account. The negative in-
stance set consists of both randomly selected non-matching
locations and non-matching locations that have similar fea-
tures (also referred as “near misses”). In general, the pro-
cess of finding near misses is non-trivial because of presence
of inter-related features. We construct the set of near-miss
negative instances by choosing negative instances for every
location l; € A as pairs (l;,1;), where l; € B is not a true
match for I; and is part of the top & most similar locations
in B to l; using the similarity measure (i.e. Euclidean for
spatial coordinates and string similarity for location names)

Table 1: Description of the two real-world dataset
used for experimentation.

DATASET LOCATIONS LoOcC-TYPES
NGA 151101 9
PCGN 2096 49

for one of the features. In our experiments, we calculate neg-
ative instances using both spatial and non-spatial features
independently. Here, the value of k£ controls the number
of negative instances created using a particular feature and
thus affects performance of the training process. Choosing
an ideal k£ can be tricky given lack of domain knowledge and
arbitrary complexity of the training method used. In case
one of the features is known to be highly ambiguous in sep-
arating negative and positive instances, it might be helpful
to choose a higher value of k for this feature to get a well-
defined classification boundary. In our experiments, we vary
the value of k£ to obtain an optimal set of negative training
data.

Once the training data is constructed, each location pair
(1;,l;) from the training data is converted into the following
feature vector. The feature vector contains a list of spatial
and non-spatial similarity values between the two locations
l; and [; is:

(CoordSym(li,1;), Jacc(li,ly), Jw(ls,l;),
Spatial Sym(l;,1;), TypeSym(l;,1;))

Here, edit;,j, jacci,j, jaro;,; correspond to the Levenstein
edit, Jaccard, Jaro-Winkler distance between the names for
location I; and I; respectively. SpatialSyms;,; corresponds
to the coordinate similarity. TypeSym;,; is equal to the
similarity of the location types as described earlier.

The final similarity metric is learned using the training
data. For our experiments, we use a variety of classifiers
including logistic regression, voted perceptron (Neural Net-
work) and support vector machines (SVMs) using SMO [5]
for learning the similarity function. Each of these classi-
fier models the similarity measure with varying complexity.
For example, a simple logistic regression tries to fit a hyper-
plane on the training data. A more complex function may
be able to model the training data well, but might not per-
form well on the test data (i.e. over-fitting). On the other
hand, a function like logistic regression might be too simple
to model the data correctly.

6. EXPERIMENTS AND RESULTS
6.1 Datasets

Two real-world datasets were used for the experiments
reported below. The first dataset A, labeled 'NGA’, repre-
sents all names of locations in Afghanistan taken from the
Geographic Names Database of the United States Board on
Geographic Names maintained by the National Geospatial-
Intelligence Agency. The Geographic Names Database is
the official standard for spelling of foreign place names for
use throughout the United States Government. The second
database B, labeled 'PCGN’, was prepared by the United
Kingdom Permanent Committee on Geographic Names. It
contains 2,096 records of locations in Helmand Province,
Afghanistan.
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Each location has a name (in the BGN-style Romanization
format), spatial coordinates (latitude and longitude) and lo-
cation type. The location types are semantically similar but
use different terminologies across datasets. A location type
in one dataset can correspond to more than one location
type in the other dataset. In total, dataset B has 49 loca-
tion types, while dataset A has just 9 location types. The
location types in dataset B are more specific and thus give
richer information about the region; examples of locations
types are cemetery, airfield, etc. On the other hand, dataset
A uses general location types which classify locations into
broad categories like hydrographic, hypsographic, underwa-
ter and so on. The ground truth data covering the actual
mappings between A and B is prepared by the US BGN and
UK Permanent Committee on Geographic Names, and it
covers most of the locations in dataset A. The ground-truth
data contains a total of 2006 pairs of matching locations.
Table 1 provides a summary of the datasets used.

6.2 Evaluation

Each entity resolution approach as defined earlier pro-
duces a list of location pairs predicted as matches or non-
matches. Accuracy, which is defined as the percent of loca-
tion pairs correctly predicted, is one method for evaluating
approaches. The quality of results is also measured by com-
paring two standard performance measures, recall and preci-

sion. Recall is defined as the proportion of positive matches
which are correctly identified:

Positive instances predicted

recall = —
Total positive instances

Precision is defined as ratio between the number of correct
matches predicted to the total number of matches predicted:

True positive instances predicted

precision = Total instances predicted

One can increase recall by increasing the number of location
pairs predicted as matches, by relaxing the threshold crite-
ria. But this often decreases the precision of the results. In
general, there is an inverse relationship between recall and
precision. An ideal learning model has both high recall and
high precision. Sometimes recall and precision are combined
together into a single number called F1. F1 is defined as a
harmonic mean of recall and precision:

2 %X X 151
Fl = recall x precision

recall + precision

6.3 Name Matching

In this first set of experiments, we found matches for lo-
cations based on their name similarity. Since dataset B was
much smaller and covered a subset of the region described
by A (as dataset A covered the entire Afghanistan region),
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we mapped every location in B to a location with the most
“similar” name in A. Here similarity is defined using a va-
riety of string distance algorithms such as Levenstein Edit
distance, Jaccard similarity, and Jaro-Winkler similarity as
explained earlier. Figure 2(a) compares the performance for
these algorithms in terms of accuracy. Figures 2(b), 2(c)
and 2(d) compare the recall, precision and F1-values respec-
tively. Levenstein Edit distance is found to perform the best
both in terms accuracy and Fl-value. It can be also seen
that as the threshold increases (i.e., tightening the similarity
criteria), the recall decreases while the precision increases.
The highest Fl-value is achieved at a similarity threshold of
around 0.5 which corresponds to just 50% similarity. This
indicates that many matching locations have significant dif-
ferences in their names. Intuitively, location name is a weak
feature (as the names for matching locations tend to vary
a lot across datasets) and it may be beneficial to use it in
conjunction with other features.

6.4 Coordinate Matching

The next set of experiments use only the spatial compo-
nent for finding matches. In this case, a location in B was
mapped to the nearest location in A if the distance between
them is below a threshold. The threshold is varied to find
the best performance for this algorithm. Figure 3 shows the
performance for this method. The x-axis is in logarithmic

Table 2: Change in performance by integrating spa-
tial and non-spatial components. Here, duplicates
are found using location names while enforcing the
coordinate similarity above a threshold. Below, we
threshold the log of coordinate distance (inverse of
coordinate similarity) below a threshold. Notice,
the improvment in precision with stricter coordi-
nate distance threshold. On the other hand, recall
reduces.

THRESHOLD ACCURACY PRECISION RECALL F1
0 0.817 0.955 0.848 0.899
-1 0.818 0.957 0.847 0.899
-2 0.820 0.961 0.847 0.900
-5 0.813 0.991 0.812 0.893
-10 0.773 0.991 0.770 0.867
-16 0.585 0.999 0.567 0.724

scale as the actual coordinate distance tends to get arbitrar-
ily small. The performance remains constant for most of the
threshold values but tapers in the end when the similarity
criteria is made stricter. Figure 4 compares the results with
the best results achieved from name matching. One can see
that the best name matching algorithm (i.e., edit distance)
performs better than the coordinate matching algorithm.

6.5 Integrating Spatial and Non-Spatial
Components

As a first step towards integrating spatial and non-spatial
components, we use both location name and spatial coordi-
nates together. We start with the simple method, where two
locations I; € A and l; € B are defined as matches, if the
name of /; is most similar to /; as compared to all locations in
A and the coordinate distance is below a threshold. The dis-
tance is measured using the logarithmic scale. Table 2 shows
the performance improvement of this method with changing
threshold. Both the accuracy and the Fl-value increases
with decreasing distance threshold (or stricter distance sim-
ilarity criteria) reaching a maximum at around exp™?, after
which they again taper down. The results indicate that
using spatial and non-spatial component together leads to
better performance.

A more sophisticated similarity metric is learned using
a variety of classifiers including logistic regression (Logis-
tic), support vector machines (SMO) and voted perceptron
(Neural Network). We perform two sets of experiments, one
where only location name and coordinates are integrated,
while in the second, location type is also integrated. Fig-
ures 5(a) and 5(b) compare the performance of these learning
methods using location name and coordinates with changing
ratio between negative and positive instances. As seen from
the graph, logistic regression is found to perform slightly
better than support vector machines, while the neural net-
work is found to perform the worst. The best performance
for both logistic regression and support vector machines is
achieved when the ratio between the number of negative
and positive training examples is 30:1. Logistic regression is
found to be the most robust against changing proportions
of negative examples. While the performance of support
vector machines reduces considerably after the propotion
is increased beyond 30, the performance of logistic regres-
sion remains mostly constant. This makes logistic regression
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scalable to larger datasets while using location name and co-
ordinates as features. The performance for the neural net-
work on the other hand is found to monotonically increase
with increasing propotion of negative instances.

Figure 6(a) and 6(b) compare the performance of these
training methods using all features with changing ratio be-
tween negative and positive instances. Here again, logistic
regression is found to perform the best with a ratio of 30:1
between negative and positive training examples. The sup-
port vector machine is found to perform comparable to lo-
gistic regression, while the neural network gives the worst
performance. In this case, the support vector machine was
found to be more robust with changing negative samples
ratio.

Table 3 compares the best performance between only-
name (NAME), only-coordinates (COORD), name and co-
ordinates (LOGNL), and name, coordinates and type
(LOGNLT). The training and test data are generated keep-
ing ratio between the negative and positive instances as 30
(as it was found to show the best performance). Note that

the performace measures for only-name and only-coordinate
methods were also computed using the same test data. The
results show that our approach outperforms the best per-
formances obtained for name and spatial features indepen-
dently. There is a marked increase in both the recall and
precision value. Specifically, there is a significant increase in
the recall from 0.4 to 0.921. As expected, our approach also
outperforms in terms of F1 value which is a combination of
recall and precision. In terms of accuracy too, our approach
was found to be more promising. Though both only-name
(NAME) and only-coordinates (COORD) performed with
a high accuracy (between 96-98%), it is important to note
that even an all-negative classifier (which classifies all test
instances as negative) will achieve a performance of 96.7%
accuracy for our test data (which contains negative instances
in the excess ratio of 30:1). This suggest that accuracy is
perhaps not the best indicator of the performance in this
setup. To conclude, our method using a machine learning
algorithms to weight all the three features is found to per-
form the best, indicating that using spatial and non-spatial



Table 3: Comparison performance between the best
method using only location name (NAME), only co-
ordinates (COORD), location name and coordinates
(LOGNL), and location name, coordinates and loca-
tion type (LOGNLT). The negative instance ratio of
30 was shown to give the best performance. From
this figure one can see that as more features are in-
tegrated the performance increases both in terms of
accuracy and fl-value.

STATS NAME COORD LoGgNL LogNLT
Accuracy 0.964 0.983 0.9935 0.994
PRECISION 0.79 0.95 0.966 0.962
RECALL 0.4 0.88 0.907 0.921
F1 0.531 0.91 0.936 0.941

features together renders better performance.

7. FUTURE WORK

In our experiments, we found that Levenstein edit dis-
tance was the best similarity metric for comparing location
names. As mentioned earlier, it would be interesting to make
our name similarity measures language specific. Currently,
we give equal cost for each operation corresponding to ad-
dition, deletion or change of a literal. For our Afghanistan
dataset, we found the names of the locations are in Arabic
and language specific information may be used to improve
performance. For examples, some river names had “wadi” as
suffix or prefix. “Al” was also found a very common prefix.
For a better string similarity measure, one might consider
ignoring these prefixes or give zero cost for their addition or
deletion. It would be interesting to learn language or region
dependencies directly from the training data.

There are also opportunities for improving the current
entity resolution method by including more semantic in-
formation and constructing more sophistivcated similarity
measures. Making use of additional semantic information in
comparing location types is one interesting possibility. Or,
a more complex similarity measure can be defined between
two locations references using their proximity to an “influ-
ential” site, like airport, capital city, etc. We plan to explore
these directions in future work.

8. CONCLUSION

In this paper, we introduced methods for resolving loca-
tion references across datasets using both spatial and non-
spatial features. We performed an extensive evaluation us-
ing spatial and non-spatial components independently and
showed how using combined information provides more ac-
curate results. The matching is complicated by the pres-
ence of features such as location type which has different
vocabularies for different data sources. We propose ways to
combine these features by learning a classifier from a sample
of resolved locations. Unfortunately, the process of building
a classifier using these features is hindered by skew in the
training data which contains many more negative examples
than positive examples. We have developed an approach
to effectively select negative examples which maximizes the
performance of the classifier. We show how using this com-
bination of techniques we can construct entity resolution
algorithms with both high precision and high recall.
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