
Equal-area Breaks: A Classification Scheme for Data to
Obtain an Evenly-colored Choropleth Map

Anis Abboud Hanan Samet Marco D. Adelfio

Department of Computer Science, University of Maryland
College Park, MD 20742, USA
{anis, hjs, marco}@cs.umd.edu

ABSTRACT
A classification scheme for choropleth maps for a spatially
varying property called equal area is introduced that aims to
obtain a coloring for the map such that the screen area as-
sociated with each color is equal. As some regions are larger
than others (e.g., Russia vs. Switzerland in a choropleth
country map), naively assigning an equal number of regions
with a particular property value to each color could result
in the map being dominated by one or a few colors, and
with the possibility that the other colors barely discernible.
The goal is to assign the ranges of the property values to
colors so that the total area of the regions associated with
each color is roughly equal thereby rendering a more sym-
metric and appealing visualization. A number of algorithms
to achieve an equal-area assignment to regions are presented
and evaluated from both a visual, via the aid of a user study,
and a computational complexity perspective. They include
greedy algorithms, as well as an optimal algorithm based
on dynamic programming, and are compared with other ap-
proaches for assigning colors to regions, such as the Jenks
natural breaks optimization algorithm. The final algorithm
is a modified approach which tries to simultaneously balance
the goal of equal area for each color with that of assigning
an equal number of regions to each color with the result
that works well for both properties corresponding to abso-
lute data and area-normalized data such as densities.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation (e.g.,
HCI)]: User Interfaces—map visualization; I.1.2 [Symbolic
and Algebraic Manipulation]: Algorithms—sequence par-
titioning

General Terms
Algorithms, Maps

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WOODSTOCK ’97 El Paso, Texas USA
Copyright 2014 ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Keywords
Data classification, natural breaks, map visualization, se-
quence partitioning

1. INTRODUCTION
Maps are used primarily for navigation and to visualize

how measurements (whether they are nominals, ordinals,
ranges, or ratios) vary across a geographic area. In this
paper we are concerned with the visualization of spatially-
varying ratio measurements (i.e., numbers such as popu-
lation, population density, per capita income, etc.). Such
maps are known as choropleth maps [1] (e.g., [17]). The re-
gion boundaries are predefined although they can vary in
size and scope (e.g., city, county, country, continent, world,
etc.). This is in contrast with regions whose boundaries are
defined by the data values.

Choropleth maps are used to represent two types of data:
spatially extensive and spatially intensive [1]. Spatially ex-
tensive data are cumulative data such as population. On the
other hand, spatially intensive data are concepts like rates,
densities, and proportions which reflect the application of a
normalization process over an area such as an average.

One of the keys to understanding a choropleth map is the
classification process/method used to differentiate between
the data values. The data values can be broken up into
classes depending on the ranges of the data values so that
they correspond to intervals that are equal in magnitude
(e.g., five classes of one million each for data ranging between
0 and five million), equal in cardinality or length (e.g., five
classes of 40 each for data corresponding to a total of 200
countries) also known as quantiles, as well as equal in area
(e.g., five classes of 10,000 square miles each for data ranging
between 0 and 50,000 square miles).

The equal-area classification method, which represents our
contribution, is designed to overcome the general drawback
of the other classification processes, which, by not taking the
area into account, can result in the map being dominated
by one or a few colors, with the other colors being barely
visible. For example, consider Table 1 which contains the
countries/territories in South America, and their population
as of July 2009 [7] We use three colors - yellow, orange, and
red, where the darker color indicates a larger population.
One way to assign the colors is to use yellow for the first
five regions, orange for the next five, and red for the last
five, and shown in Figure 1a, which correspond to quantiles.
The problem is that the five countries colored yellow have a
much smaller area than the five countries colored red, and

therefore the map does not look very evenly colored.
The equal-area method assigns the colors so that the screen

areas spanned by each color are roughly the same and shown
in Figure 1b. This is achieved by computing the areas of
all regions and finding the “breaks” (where to split between
colors) that achieve this coloring. In this paper we show
that this can be achieved by a number of algorithms of
varying complexity and visual effect. Of course, an alterna-
tive approach to avoid the uniform coloring is to use area-
normalized data values such as a density (recall the distinc-
tion made above between spatially extensive and spatially
intensive data).

Country/Territory Population
1. South Georgia and the South Sandwich

Islands (UK)
20

2. Falkland Islands (UK) 3140
3. French Guiana (France) 221500
4. Suriname 472000
5. Guyana 772298
6. Uruguay 3477780
7. Paraguay 6831306
8. Bolivia 9863000
9. Ecuador 14573101
10. Chile 16928873
11. Peru 29132013
12. Venezuela 31648930
13. Argentina 40482000
14. Colombia 45928970
15. Brazil 191241714

Table 1: Population of countries/territories in South
America as of July 2009

Figure 1: Visualizing the data in Table 1 on the map
with equal-length/quantiles (a), and equal-area (b).

The simple classification methods that we mentioned (equal-
intervals/equal-steps and equal-length/quantiles) have ma-
jor drawbacks. In particular, in the equal-intervals process,
while being the only deterministic method, the intervals that
are used can be completely unrelated to the actual data val-
ues possibly resulting in having very few, if any, members in
the class. The equal-length method attempts to overcome
this by making sure that there is an equal number of regions

in each class. However, as we mentioned earlier, by ignoring
the nature of the data, this simple approach is not always
adequate.

In our discussion of the equal-area method we pointed out
the need for considering all the possible “breaks” combina-
tions which is a problem of exponential complexity. There-
fore, we have to devise smart algorithms to find the breaks
in which we are interested. Besides the above classification
methods there is a range of other data classification methods
for statistical mapping, such as geometric progressions, stan-
dard deviation and Jenks natural breaks [10, 12, 14], that are
used for finding “breaks”. The Jenks natural breaks method
is used to classify data values into different classes according
to the breaks or gaps that naturally exist in the data. An-
other alternative is the head/tail break method [15] which
is designed to deal with distributions that have a heavy tail
such as power laws. In other words, it recognizes the fact
that there are far more objects of small magnitude than ob-
jects of large magnitude. The Jenks and head/tail breaks
methods focus on clustering the values associated with the
regions into similarly-valued chunks, which are visualized
with the same color.

In this paper, we focus on clustering the areas correspond-
ing to the regions into chunks with roughly equal total area,
aiming to achieve an evenly-colored choropleth map. We
derive a number of algorithms for its computation paying
close heed to their complexity. We show that the equal-
area method serves as a reasonable compromise between the
drawbacks of the other methods both visually and via the
aid of a user study. In particular, our results for both abso-
lute raw data values (spatially-extensive data) and density
data (spatially-intensive data) show that it works quite well
for both.

We note that some variant on the equal-area data classifi-
cation was available in the Esri ArcView 3.x commercial GIS
software, but for unknown reasons it was later dropped in
the successor software ArcMap. No public details are known
about the algorithm used in ArcView 3.x.

It is interesting to note that the equal-area classification
process is related to the Cartogram method [19] in the sense
that the equal-area method (as well as the other meth-
ods that we present) reflect the relative values of the data
by varying the colors of the regions, while the Cartogram
method does this by varying their displayed area while pre-
serving their shape, hence they do not need the aid of color.

The contributions of our paper are:

1. Equal-area classification method for coloring a choro-
pleth map that overcomes the drawbacks of the equal-
length method and the various algorithms for its com-
putation including an optimal one that makes use of
dynamic programming.

2. A new classification method for coloring a choropleth
map that enables users to combine the benefits of the
equal-area and equal-length methods using a parame-
ter analogous to the f-score from information retrieval
that combines precision and recall [18]. In our problem
domain this parameter, termed a W-score, enables the
method to yield results that are in sync with those of
a user study for both spatially extensive and spatially
intensive data.

The rest of this paper is organized as follows. Section 2
describes a number of algorithms to compute the equal-area

classification method. Section 3 contains the result of an
evaluation of the algorithms from a visual perspective as well
as the results of a user study. Section 4 uses the results of the
user study to devise an optimized algorithm that is a blend
between the equal-length and equal-area methods. Section 5
contains concluding remarks and directions for future work.
It is worthy to note that this paper was motivated by our
development of a tool that enables users to create map vi-
sualizations out of a data tables that they provide [8]. In
particular, one component of this system automatically gen-
erates a legend and assigns colors to regions of choropleth
maps.

The paper contains a number of maps all of which were
rendered using the D3 JavaScript library [3]. In addition,
we used its capability to compute a region’s area in order
to find the area in pixels that each country occupies on the
screen (as opposed to the actual area in km2 on the spher-
ical surface of the Earth) because the areas change under
the various projections. We use the Winkel-Tripel [9] pro-
jection in world our maps, as it is regarded as one of the best
world projections [11], but it’s important to note that the
projection used makes no difference in what we present, and
Mercator projection would have fulfilled the same purpose
in conveying the ideas.

Our examples make use of color progression to depict the
data. There are many possible types available (e.g., [17]).
These include single hue, bipolar hue, complimentary hue,
blended hue, partial spectral, full spectral, and value (for
monochromatic which means white to black). We use the
blended hue color progression which blends two endpoint
hues (yellow and brown in our case) to obtain related hues.
The colors that we used were selected using the ColorBrewer [2]
system as shown in Figure 2.

Figure 2: Blended hue progression for the yellow-
brown color pair used in our maps - from Color-
Brewer [2].

2. ALGORITHMS

2.1 Problem Definition
Given a sequence of N numbers (the areas of the regions,

sorted by the values corresponding to the property associ-
ated with the regions–e.g., population), and a number K (of
ranges/colors), the goal is to partition the sequence into K
parts, so that the sum of the areas of each part is roughly
equal.

2.2 Simple Example
Given the numbers [11, 30, 84, 146, 251, 214, 256, 476,

1255, 930, 1192, 1149, 1338, 4307, 8994] (the areas in pix-
els on the screen of the N=15 countries/territories in South

America from the example in the introduction), and K=3
colors (yellow, orange, and red), we aim to partition the se-
quence into 3 chunks, with sums that are as close as possible
to each other. The sum of all 15 numbers above is 20634, and
therefore the sum of an average chunk is 20634/3 = 6878.
Our goal is to partition the sequence into chunks whose sum
is as close as possible to this average, as can be seen in Figure
3.

Figure 3: Simple chunks example.

2.3 Greedy Algorithms
The simplest algorithm that comes to mind is to build the

chunks one-by-one while traversing the sequence of numbers
from left to right. We start inserting numbers into the chunk
until the sum of the elements in the chunk exceeds the tar-
get/average chunk sum, at which time we close it and start
a new chunk.

2.3.1 Pseudocode

Algorithm 1 Greedy algorithm for partitioning a sequence
of N numbers into K chunks with roughly an equal sum.
Complexity: O(N).

1: function GreedySplit(numbers, K)

2: average chunk ← sum(numbers)

K
3: chunks ← <empty list of chunks>
4: new chunk ← <empty list of numbers>
5: for number in numbers do
6: Append number to new chunk.
7: if sum(new chunk) ≥ average chunk then
8: Append new chunk to chunks.
9: new chunk ← <empty list of numbers>

10: Append new chunk to chunks. . The last chunk.
11: return chunks

2.3.2 Observation
Since the above greedy algorithm always overestimates the

chunks (i.e., keeps inserting in the chunks until the sum of
the elements in the chunk exceeds the average chunk sum),
the last chunk (the “leftovers”) will be significantly smaller
than the others. To mitigate this issue, we can consider
the total sum so far in order to decide when to start a new
chunk.

2.3.3 Modified Pseudocode

Algorithm 2 Modified greedy algorithm for partitioning a
sequence of N numbers into K chunks with roughly equal
sum. Complexity: O(N).

1: function GreedySplit2(numbers, K)

2: average chunk ← sum(numbers)

K
3: chunks ← <empty list of chunks>
4: new chunk ← <empty list of numbers>

5: num chunks ← 1
6: for number in numbers do
7: Append number to new chunk.
8: if sum(numbers up to number) ≥
9: average chunk × num chunks then
10: Append new chunk to chunks.
11: new chunk ← <empty list of numbers>
12: num chunks++

13: Append new chunk to chunks. . The last chunk.
14: return chunks

2.4 Optimal Dynamic Programming Algorithm
Before we present an optimal algorithm, let us define the

criterion which we are using to measure the performance of
an algorithm that returns a set of K chunks that partition
the sequence of numbers:

ERROR (breaks) =
1

K
·

K∑
i=1

|sum (chunki)−AV G|

whereAV G =
sum (numbers)

K
is the sum of the average/optimal

chunk, and sum(chunki) is the sum of the numbers in the
ith chunk of the partitioning.
In other words, the formula computes the average distance
between the sum of a chunk in the given partitioning, and
the optimal chunk sum. An optimal algorithm would find a
set of breaks to partition the list with the minimal ERROR.

2.4.1 Key Idea 1
The first key idea in the algorithm, is that we can find

an optimal position for the last break with a linear pass on
the numbers. We can start traversing the list from right to
left and summing up the numbers, until they add up to at
least AVG (let the last number we include be x). Since the
numbers are arbitrary, it’s unlikely that they will add up to
AVG exactly, so the sum will be slightly greater than AVG
if we include x in the last chunk and slightly less than AVG
if we do not include x in the last chunk.

Figure 4: Two candidates for an optimal position of
the last break

Observation There is an optimal partitioning in which
the last break is around x – either before it or after it.

Proof
Given an optimal partitioning of the list, if the last break

is around x, then we are done. Otherwise, there are two
options for the last break:

1. The last break is before candidate 1. In this case, we
argue that moving it to where candidate 1 is can only
improve the error. Notice that moving the last break to
the right modifies only the last two chunks, call them A

and B. The sum of chunk A will increase by some δ (the
sum of the numbers between the current break and
candidate 1), and the sum of chunk B will decrease by
the same δ. Since the sum of chunk A was greater than
AV G and is still greater, but now is δ closer to AV G,
the error stemming from it will decrease by exactly
1
K
· δ. Since the sum of chunk B changed by δ, the

error stemming from it can increase by at most 1
K
· δ.

Therefore, the error in the new partitioning can only
decrease. Hence, the new partitioning is also optimal.

2. The last break is after candidate 2. In this case, we
argue that moving it to where candidate 2 is can only
reduce the error. Similarly to the other case, the error
from the last chunk will decrease by exactly 1

K
·δ. The

only caveat here is that in the given optimal partition-
ing, there might be multiple breaks after candidate 2.
In this case, we will move them one by one to where
candidate 2 is, starting from the leftmost one. Every
time we shift a breaki to the left, the error from the
chunk on its right will decrease by some 1

K
· δi, and

the error from the chunk on its left can increase by at
most 1

K
· δi. Therefore, the total error cannot grow.

Hence, the new partitioning is also optimal.

�

The pseudocode for a procedure to find the two candidates
described above is given below.

1: function FindLastBreakCandidates(numbers)
2: s ← 0 . Sum of the numbers so far.
3: for i = N − 1 until 0 do
4: s ← s+ numbers[i]
5: if s > AV G then
6: return (i, i+ 1)

2.4.2 Key Idea 2
Let BestError(m, b) be the minimum error we can get for

placing b breaks to partition the first m elements of the list
(which has N total numbers), and Breaks(m, b) be the set of
corresponding breaks. We are interested in Breaks(N,K −
1).

Building on top of Key Idea 1, we can define the following
recursive relation/function:
BestError (m, p) =

1. Find the two candidate locations for the last pivot, call
them loc1, loc2.

2. Compare

• BestError(loc1, p− 1)
+|sum(numbers between loc1 and m)−AV G|

• BestError(loc2, p− 1)
+|sum(numbers between loc2 and m)−AV G|

and choose the break with the smaller error.

In other words, for each of the two candidates for the loca-
tion of the last break, we recursively find the other breaks,
and then we compare the error from the two options and
choose the better candidate. Calculating this recursively will

have a high computation cost, as we might repeat many com-
putations. Therefore, we will compute it using dynamic pro-
gramming. In particular, we allocate a two dimensional ar-
ray to store the values of Breaks(m, b) for all m ∈ [0, N], b ∈
[0,K − 1], and compute them column-by-column so that
whenever we need a value for Breaks(loc1 or 2, b−1) we can
look it up in the table in constant time.

2.4.3 Key Idea 3
As described in Key Idea 1, finding the candidates for

the last break takes linear time, as we need to traverse the
list from right to left. However, as we are using dynamic
programming to compute all the values for Breaks(m, b)
(for all values of m and b), we can save on some computa-
tions. Notice that if the candidates for the rightmost break
in Breaks(m, b) were around position x, then the candidates
for the rightmost break in Breaks(m − 1, b) have to be on
the left of x (they can’t be on the right), because the list
is shrinking from the right, so the rightmost chunk needs
to grow from the left to remain close to the average. Thus
the break needs to move left. Therefore, we can compute
the Breaks(m, b) in a loop where we move m and the can-
didates backward simultaneously... until they hit index 0.
This way we compute N cells in the Breaks(m, p) array in
O(N) time.

2.4.4 Key Idea 4
In the ideas above, we use the “sum” function, which if

implemented naively, would take linear time to compute.
However, by preprocessing the sequence of numbers and
building the “cumulative sum” array, known as the “prefix
sum” (i.e., given the list of numbers: [a, b, c, d, e], we build:
[0, a, a+ b, a+ b+ c, a+ b+ c+ d, a+ b+ c+ d+ e]), we can
build a function that returns the sum of any subsequence
between indices i and j in constant time:

Algorithm 3 Prefix sum array calculation. Prepro-
cess(numbers) is invoked once on the original array, to
compute the prefix sum array in O(N) time. After that,
PSum(i, j) can be invoked to compute the sum of the num-
bers between any two indices i (inclusive) and j (exclusive)
in the original array in O(1) time.

1: function Preprocess(numbers)
2: sums array ← [0]
3: s ← 0
4: for x in numbers do
5: s ← s+ x
6: Append s to sums array.

7: return sums array

1: function PSum(i, j)
2: return sums array[j]− sums array[i]

It is important to note that from now on, when we invoke
PSum(i, j) in the pseudocodes, we assume that the prepro-
cessing above has been performed, and we call PSum(i, j) to
calculate the sum of the numbers between indices i (inclu-
sive) and j (exclusive) in constant time. Indices are 0-based.

2.4.5 Pseudocode for the Dynamic Programming Op-
timal Algorithm

Using the above ideas, Algorithm 4 is the pseudocode for
the optimal algorithm to find breaks that partition a se-
quence of N numbers into K chunks with a roughly equal
sum:

Algorithm 4 Dynamic Programming optimal algorithm for
finding the breaks (i.e., the indices at which to split the
sequence) for partitioning a sequence of N numbers into K
chunks with a roughly-equal sum. This algorithm returns
the “breaks” (the indices at which the sequence should be
split). Complexity: O(N ·K).

1: function DPOptimalEqualAreaBreaks(numbers)
2: AV G ← sum(numbers) / K . Average chunk sum.
3: best error← <2D array with N + 1 rows (from 0 to

N) for the “end index”m,
and K columns (from 0 to K − 1) for
the number of ”breaks” b.>

4: best breaks← <2D array like above, for the breaks>

5: for m in 0..N do . Fill the first column (column 0).
6: best error[m][0] ← |PSum(0, m)−AV G|
7: best breaks[m][0] ← []

8: for b in 1..K − 1 do . Loop over breaks.
9: m ← N

10: break ← N . The position of the last break.
11: while m ≥ 0 do
12: if break > m then
13: break ← m

14: . Go back until reaching the candidate positions
for the last break:

15: while (PSum(break, m)< AV G AND
break > 0) do

16: break ← break − 1

17: . Choose between the two candidates for the last
break:

18: if best error[break + 1][b− 1]
+ |PSum(break + 1, m)−AV G| <
best error[break][b− 1]
+ |PSum(break, m)−AV G| then

19: break ← break + 1

20: . After choosing the better break, add it to the
arrays.

21: best error[m][b] ← best error[break][b− 1]
+ |PSum(break, m)−AV G|

22: best breaks[m][b] ← best breaks[break][b− 1]
+ [break]

23: m ← m− 1

24: return best breaks[N][K − 1]

2.4.6 Computational Complexity
Algorithm 4 fills a table withO(N) rows andO(K) columns,

and takes constant time to fill each cell. Therefore, the to-
tal space and time complexity is O(N ·K), which is almost
linear, as K is usually low (3-10 colors on the map).

Note that filling each column (with N cells) takes O(N)
time, because as explained in Key Idea 3, the variables m
and break which control the nested loops in lines 12 and 17
of the pseudocode, start from N and go backwards together

until reaching 0. In other words, these two nested while
loops run in linear time.

Technical note: As written in the pseudocode, the algo-
rithm requires O(N · K2) space, because best breaks[m][b]
stores b breaks. However, this can be easily optimized such
that best breaks[m][b] would store only the last break and
a pointer to the list of the other breaks (stored in a differ-
ent cell), etc., and recursively looking up all the b optimal
breaks in the end. This way the space complexity will be
O(N ·K) as promised.

2.4.7 Caveat - Using a Different “Optimization Cri-
teria"

At the start of this section, we defined the criterion for
optimality to be the difference in absolute value from the
average chunk sum. An alternative criterion could be the
sum of squares of the differences. In this case, key idea 1 will
no longer hold, as shifting the breaks has a different effect
on the squared errors. Therefore, we cannot only consider
two candidate locations for the last break. Instead, we will
need to consider all the possible locations. That will require
linear time for computing every cell in the two-dimensional
array, leading to a total complexity of O(N2 ·K). However,
in the case of map coloring, we do not think that the user
will notice any difference when using a different criteria for
optimality.

3. EVALUATION

3.1 Equal-area algorithms performance eval-
uation

To evaluate the performance of the above algorithms above
and compare them with the naive approach of partitioning
the list into equal-length chunks, we took the areas of 190
countries (area in pixels on the screen using the Winkel-
Tripel projection [9]), in increasing order of their correspond-
ing population.

[0.32, 0.1, 0.02, 0.21, 0.26, 5669.01, 0.18, 0.92, 0.58, 0.26,
0.54, 0.91, 0.56, 0.3, 0.35, 0.62, 1.11, 0.7, 4.08, 15.74, 0.51,
0.09, 197.86, 28.36, 15.99, 7.16, 0.26, 3.93, 4.45, 172.82,
36.41, 1.78, 30.99, 51.64, 252.56, 7.41, 0.72, 26.81, 26.05,
19.41, 21.22, 2.34, 78.28, 6.02, 303.18, 38.02, 13.66, 12.18,
707.48, 35.07, 29.17, 37.98, 1005.61, 107.11, 13.57, 2309.15,
384.04, 22.12, 38.84, 40.5, 90.29, 104.97, 1254.43, 231.63,
111.66, 48.66, 403.85, 73.33, 13.35, 394.82, 77.1, 96.79, 108.4,
726.11, 63.14, 88.62, 828.12, 0.62, 642.31, 147.84, 637.83,
72.1, 69.51, 278.39, 159.72, 83.93, 25.55, 293.15, 499.13,
113.85, 2028.47, 66.61, 626.53, 194.11, 157.26, 28.58, 140.46,
60.05, 732.25, 123.15, 31.79, 118.72, 136.38, 559.54, 824.47,
327.59, 135.87, 1332.76, 33.22, 60.0, 29.66, 287.38, 203.66,
118.02, 122.7, 46.86, 137.26, 1513.36, 176.04, 470.62, 233.95,
896.86, 229.25, 309.11, 135.05, 1504.34, 142.56, 1416.97, 4036.51,
322.35, 57.32, 1009.8, 1474.3, 543.28, 80.46, 724.24, 339.77,
376.25, 244.48, 952.56, 10515.05, 174.86, 546.75, 280.03, 2388.55,
625.66, 413.73, 1097.49, 848.21, 1573.78, 190.92, 568.91, 736.63,
2228.51, 283.84, 17333.09, 2911.42, 485.94, 3719.94, 697.32,
1111.94, 1373.61, 892.46, 690.44, 136.01, 1541.35, 846.82,
419.43, 383.9, 651.52, 799.1, 2728.16, 1056.83, 2114.65, 1250.89,
1337.73, 546.0, 420.43, 377.64, 2548.07, 525.77, 29575.45,
174.0, 1069.13, 1130.23, 10211.55, 2399.84, 13672.46, 3993.44,
12925.08]

We partitioned this list into 5 chunks (assuming 5 col-
ors for example) using all the algorithms, and measured the

average error for each. Table 2 summarizes the results.

Algorithm Average Error
Naive equal-length (Quantiles) 34,928
Greedy algorithm 1 15,192
Greedy algorithm 2 5,572
Optimal dynamic programming 3,244

Table 2: Average error of different algorithms
(Average difference between the average/optimal chunk sum
and each chunk.)

We notice that in the given example, using the first greedy
algorithm to assign the colors almost halves the error, and
the second greedy algorithm shrinks it even more. In ad-
dition, using the optimal algorithm produces a significantly
better result than all the others. Since the complexity of the
optimal algorithm is good (almost linear), we would recom-
mend using it instead of the simpler algorithms.

3.2 Visual Comparison
In addition to the numerical evaluation above, we gener-

ated map visualizations for two datasets (corresponding to
two properties):

1. Population of countries

2. Population densities of countries

Note that the Wikipedia article on choropleth maps [1]
states that a common error in choropleths is the use of raw
data values (like population) to represent magnitude rather
than normalized values to produce a map of densities. Re-
gardless, we choose to test our algorithms on the popula-
tion map, and that is because we design our systems such
that any person can use (and not only experienced cartog-
raphers), and such mistakes are common in the viral maps
that are becoming very popular on the web. Therefore, it is
important for us to make sure that the coloring algorithm
produces a good result even if the data is not completely
suitable to be visualized on a choropleth map.

For each dataset, we compared three alternatives for as-
signing the colors to the regions:

1. Jenks: The popular Jenks natural breaks optimiza-
tion algorithm, which tries to cluster the regions into
similarly-valued chunks.

2. Equal-length (Quantiles): The naive algorithm that
assigns an equal number of regions to each color.

3. Equal-area: Our approach, which tries to obtain an
evenly-colored map by assigning the ranges so that
each color gets a roughly equal area on the screen.

Maps A, B, C, E, F, and G present every combination of
dataset (population and population density) and algorithm
(Jenks, equal-length, and equal-area).

3.2.1 Population Maps

Map A: Jenks Natural Breaks
(Tries to cluster the regions into similarly-valued chunks.)

Map B: Equal-length (Quantiles)
(Each color is used for the same number of regions.)

Map C: Equal-area
(Each color occupies roughly the same screen area.)

3.2.2 Population Density Maps

Map E: Jenks Natural Breaks
(Tries to cluster the regions into similarly-valued chunks.)

Map F: Equal-length (Quantiles)
(Each color is used for the same number of regions.)

Map G: Equal-area
(Each color occupies roughly the same screen area.)

3.2.3 Notes
From Maps A and E, we observe that the Jenks natu-

ral breaks algorithm does not differentiate well between the
countries. This is especially the case for the population den-
sity map. On the one hand it makes it easy to identify the
countries with a very high population density, and it has a
nice and useful property that the bounds of each range in
the legend are of the same order of magnitude. However, it
is noticeable that the population density map is mostly light
yellow, with some yellow, and barely any orange/red/brown,

making the map look somewhat odd. Therefore, using an
equal-area algorithm might be preferred in certain cases like
this one. In addition, the equal-area algorithm is more ef-
ficient than Jenks in terms of computational complexity as
we show below.

3.2.4 Jenks Complexity
An O(K ×N × log(N)) algorithm is presented in [4], for

the classification of an array of N numeric values into K
classes such that the sum of the squared deviations from the
class means is minimal, known as Fisher’s Natural Breaks
Classification. This algorithm is an improvement of Jenks’
Natural Breaks Classification Method [14], which is a reim-
plementation of the algorithm described by Fisher [13] within
the context of choropleth maps, which has time complexity
O(K ×N2). We used a JavaScript implementation by Tom
MacWright [6, 16].

4. OPTIMIZED AGORITHMS
We noticed that in Map G (density, equal-area), too many

countries were colored in brown (more than half), covering
almost all of Europe and Asia, leading to a perception that
the map is not balanced even though the colors are equally
distributed in terms of area.

This prompted us to improve our approach further, by
taking into account the number of countries that each color
is assigned to. I.e., we are trying to strike a balance between
two things:

1. Each color covers roughly the same area (equal-area).

2. Each color is assigned to roughly the same number of
regions (equal-length / quantiles).

4.1 Optimized Greedy Algorithm
In the first greedy algorithm that we discussed earlier, we

kept adding to a chunk until it is“full” (i.e., its sum exceeded
AVG–the average chunk sum). At this point, we make a few
modifications to its so that we also try to achieve a balance of
the lengths of the chunks and not only the sum of the areas
of their elements. In particular, we keep inserting elements
into a chunk until one of the following conditions is satisfied:

1. The chunk is full in terms of area (like before), and its
length is at least half of average length (a new condi-
tion to ensure that a color is not associated with too
few countries).

2. The chunk is already of length 2 × average length (a
new condition to ensure that we don’t have too many
countries associated with the same color).

3. The chunk’s area reached 2 × AVG (it’s getting too
big).

Note: As the chunks are not necessarily evenly-balanced, if
we follow the conditions above naively, we might run out of
elements before we get to the last chunk. We mitigate this
issue by determining the breaks recursively. In particular,
each time we find a break, we invoke the algorithm on the
rest of the elements.

4.1.1 Pseudocode
The following pseudocode describes a recursive procedure

to find the greedy breaks as described above. We invoke

it using GetOptimizedGreedyBreaks(areas, 0, K) and it
returns the indices of the K breaks.

Algorithm 5 Greedy algorithm for partitioning a sequence
of N numbers into K chunks with roughly equal sum, while
simultaneously trying to balance the lengths of the chunks as
well. The result is something between equal-length (quan-
tiles) and equal-area. This algorithm returns the “breaks”
(the indices at which the sequence should be split). Com-
plexity: O(N).

1: U = 2 . Upper bound on the chunk length/sum ra-
tio. Chunk length and sum should not ex-
ceed twice those of the average chunk.

2: L = 1
2

. Lower bound on the chunk length ratio.
Chunk length should be at least half the
length of the average chunk.

3: function OptimizedGreedyBreaks(numbers,
start index, num chunks).

4: if num chunks == 1 then
5: return [] . One color - no breaks.

6: AV G ← sum(numbers)

num chunks

7: AV G LEN ← numbers.length− start index
num chunks

8: len ← 0 . The length of the new chunk.
9: s ← 0 . The sum of the new chunk.

10: for i = start index up to numbers.length do
11: len ← len+ 1
12: s ← s+ numbers[i]
13: if (s ≥ AV G AND . Condition 1

len ≥ L×AV G LEN) OR
(len ≥ U ×AV G LEN) OR . 2
(s ≥ U ×AV G) then . 3

14: . Chunk is “full”. Return the new break, plus the
recursively-found other breaks.

15: return [i + 1] + GetOptimizedGreedy-
Breaks(numbers, i+1, num chunks−1)

4.2 Optimized Optimal Algorithm
Recall that when we discussed equal-area, we optimized:

ERROR (breaks) = 1
K
·
K∑
i=1

|sum (chunki)−AV G|. We now

we modify this expression to account for the lengths of the
chunks as well. We aim to minimize the following formula.

(1−W)·
K∑
i=1

∣∣∣∣ sum(chunki)−AV G
K ·AV G

∣∣∣∣2+W ·
K∑
i=1

∣∣∣∣∣ len(chunki)− N
K

N

∣∣∣∣∣
2

where W is a user-defined constant specifying the weight to
be given to the lengths. We use the term W-score to describe
it on account of its similarity to the concept of an f-score used
in information retrieval to vary the importance of precision
and recall [18]. The left term corresponds to the normalized
average error in area, while the right term corresponds to the
normalized average error in length. Setting W = 0 would
result in equal-area, and setting W = 1 would result in
equal-length (quantiles). Setting W = 0.5 would result in
some balance between area and length, which is what we are
looking for.

4.2.1 Approach
Again, we use dynamic programming to optimize the new

criterion. However, the trick that we used to find only two
candidate locations for the last break will not work here, as
moving the break to the left or the right results not only in
changing the sums of the chunks, but also their lengths. To
overcome this, we consider all the locations for each break,
at the cost of a higher complexity: O(N2 ×K).

4.2.2 Pseudocode

Algorithm 6 Dynamic programming optimal algorithm
for partitioning a sequence of N numbers into K chunks
with roughly equal sum, while simultaneously balancing the
lengths of the chunks. The result is something between
equal-length (quantiles) and equal-area. W specifies the de-
sired weight to be given to the lengths in this optimization.
This algorithm returns the “breaks” (the indices at which
the sequence should be split). Complexity: O(N2 ·K).

1: function DPOptimizedOptimalBreaks(numbers).
2: AV G ← sum(numbers) / K . Average chunk sum.
3: AV G LEN ← N/K . Average chunk length.
4: best error← <2D array with N+1 rows (from 0 to N)

for the “end index” m,
and K columns (from 0 to K-1) for the
number of ”breaks” b.>

5: best breaks← <2D array like above, for the breaks>

6: for m in 0..N do . Fill the first column (column 0).

7: best error[m][0]← (1−W) ·
∣∣∣∣PSum(0,m)−AV G

PSum(0, N)

∣∣∣∣2 +

W ·
∣∣∣∣m−AV G LEN

N

∣∣∣∣2
8: best breaks[m][0] ← []

9: for b in 1..K − 1 do . Loop over breaks.
10: for m in 0..N do . Loop over end-indices.
11: min error ← uninitialized
12: best break ← uninitialized
13: . Loop over candidate locations for break b.
14: for break in 0..m do
15: . Compute the error if we break at this index.
16: break error ← best error[break][b− 1]

+(1−W) ·
∣∣∣∣PSum(break,m)−AV G

PSum(0, N)

∣∣∣∣2
+W ·

∣∣∣∣ (m− break)−AV G LEN

N

∣∣∣∣2
17: . If this is the smallest error we have seen so

far, update min error and best break.
18: if (min error is uninitialized OR

break error < min error) then
19: min error ← break error
20: best break ← break
21: . After choosing the best break, add it to the

arrays.
22: best error[m][b] ← min error
23: best breaks[m][b]← best breaks[best break][b - 1]+

[best break]

24: return best breaks[N][K − 1]

4.2.3 Visual Result

Map D: Population using Optimized algorithm (W = 0.5)
Tries to balance between equal-area and equal-length.

Map H: Density using Optimized algorithm (W = 0.5)
Tries to balance between equal-area and equal-length.

4.2.4 User Study
To evaluate our approach, we created two surveys (one

for Population, comparing maps A, B, C, and D, and one
for Population Density, comparing maps E, F, G, and H).
Each survey presented the 4 maps, and after each map, two
questions to ensure that users take a thorough look at each
map:

1. How well do you think the color assignment on the
map reflects the different population [density] ranges?
Poorly / Average / Well

2. How well does the map represent the difference in pop-
ulation [density] of neighboring countries? Poorly /
Average / Well

Finally, we ask users to choose the best map, the second
best map, and the worst map. Using this information, we
are able to infer their ranking of the 4 maps.

We asked 20 arbitrary people on Amazon Mechanical Turk
to fill each survey. Tables 3 and 4 summarize the rankings.

#1 #2 #3 #4
Jenks 7 2 7 4
Equal-length 0 1 3 16
Equal-area 5 10 5 0
Optimized 8 7 5 0

Table 3: User study results for population

#1 #2 #3 #4
Jenks 2 1 2 15
Equal-length 7 5 8 0
Equal-area 5 2 10 3
Optimized 6 12 0 2

Table 4: User study results for population density

These results are fairly consistent with an earlier survey
we performed with 14 random friends, on similar maps but
using the Mercator projection (before we switched to the
Winkel-Tripel projection). Tables 5 and 6 summarize the
results from that survey.

#1 #2 #3 #4
Jenks 2 1 7 4
Equal-length 2 1 3 8
Equal-area 2 8 3 1
Optimized 8 4 1 1

Table 5: User study results for population in older
survey using Mercator projection

#1 #2 #3 #4
Jenks 1 1 1 11
Equal-length 2 9 2 1
Equal-area 2 3 7 2
Optimized 9 1 4 0

Table 6: User study results for population density
in older survey using Mercator projection

We can aggregate these results by giving an algorithm 3
points for ranking first, 2 points for ranking second, 1 point
for ranking third, and no points for ranking last. Table 7
shows the aggregate number of points each algorithm re-
ceives based on the user rankings in tables 3-6.

Winkel-Tripel Mercator Overall
Pop. Den. Pop. Den. Overall

Jenks 32 10 15 6 63
Equal-length 5 39 11 26 81
Equal-area 40 29 25 19 113
Optimized 43 42 33 33 151

Table 7: Aggregate user study results (total number
of points per algorithm) - 34 users total

From the results, we observe that the Optimized algorithm
was overall preferred more than the others. It collected the
largest number of points in the aggregate results for all 4 use-
cases, and was ranked #1 by 46% of the users (compared to
16-21% for the other algorithms).

We understand that this user study is fairly simple, fea-
turing only two datasets (population and population density
for countries), and a small number of users. In addition,
we understand that choropleth maps also have a competing
objective of conveying information and not merely to look
visually pleasing. However, both the visual quality and the
information content of a map are somewhat subjective mea-
sures, and different algorithms appeal to different people.
Nevertheless, we think that the equal-area and the Opti-
mized algorithms should be considered as strong candidates

when automatically assigning ranges to colors. When im-
plementing the Optimized algorithm, we suggest having a
slider that can be used to evaluate the effect of varying W .
We leave it to the map compilers to decide which algorithm
best fits their dataset.

5. CONCLUDING REMARKS AND FUTURE
WORK

5.1 Further User Studies
It is worth noting that generally-speaking, larger coun-

tries (area-wise) tend to have larger populations and lower
densities. Since the equal-length algorithm assigns the col-
ors such that there is an equal number of countries in each
bucket, many large countries fall into the darker buckets in
the population case, and many large countries fall into the
lighter buckets in the density case, resulting in a fairly dark
Population map (map B), and a fairly light Density map
(map F). Users seemed to like the lighter map, but not the
darker one, which leads us to think that people prefer maps
that are dominated by light colors rather than dark colors.
This theory needs to be tested in future studies. This could
be done by observing how users’ preferences change when
flipping the colors on the map, or using a different color set.
It is also interesting to research whether changing the color
of the borders between regions from black to white has any
effect on the results.

Also, instead of providing users with several maps, asking
to rank them, we can alternatively provide an interactive
map that is colored using the Optimized algorithm and offers
a dynamic slider to change the value of W . This would
compress, in one interactive map, the entire range of maps
from equal-area (with W = 0), to equal-length (with W =
1), passing through W = 0.5 we used in maps D and H. It
would be interesting to see how users choose to set the value
of W in each case.

5.2 New Algorithms
The feedback we received also revealed that some users

prefer more variability (contrast) between the colors of ad-
jacent countries in order to facilitate the easier discovery of
differences. This reinforces the motivation for the work on
the classical four color map labeling problem [5]. In particu-
lar, the criteria that we discussed in this paper could also be
modified to minimize the number of adjacent regions with
the same color.

We also have reason to believe that people like to be able
to easily identify the extremes on the map (e.g., “most dense
country”). To address that, we can come up with an algo-
rithm that assigns the colors on some kind of a bell curve,
such that fewer regions fall in the first and last color ranges.

Another direction is to find some middle ground between
the equal-area/equal-length algorithms that ignore the val-
ues when partitioning, and the clustering algorithms (like
Jenks) which focus on finding natural breaks in the values.

Finally, a number of users expressed a preference for nice
round numbers in the legend, rather than algorithmically-
chosen ones which were too specific, and thus once we de-
termine the break points, we could shift them slightly to
be more user-friendly. For example, users prefer the legend
in Figure 5b to the one in Figure 5a. Note however, that
simply shifting the numbers that were chosen by the algo-

rithm could result in changing the coloring of the map, so
this needs to be done carefully.

Figure 5: (a) Legend generated by our algorithms
versus (b) a more user-friendly legend.

6. REFERENCES
[1] Choropleth Map.

http://en.wikipedia.org/wiki/Choropleth_map.

[2] Color Brewer 2.0: Color Advice for Cartography.
http://colorbrewer2.org.

[3] D3 Javascript Library. http://d3js.org.

[4] Fisher’s Natural Breaks Classification.
http://wiki.objectvision.nl/index.php/Jenks_

Natural_Breaks_Classification.

[5] Four color theorem. http:
//en.wikipedia.org/wiki/Four_color_theorem.

[6] Implementation of Jenks Natural Breaks Algorithm.
https://gist.github.com/tmcw/4977508.

[7] South America.
http://en.wikipedia.org/wiki/South_America.

[8] VisuMaps - Visualize Data on Maps.
http://www.visumaps.com.

[9] Winkel tripel projection. http://en.wikipedia.org/
wiki/Winkel_tripel_projection.

[10] M. R. C. Coulson. In the matter of class intervals for
choropleth maps: with particular reference to the work
of George F. Jenks. Cartographica, 24(2):16–39, 1987.

[11] I. David M. Goldberg, J. Richard Gott. Flexion and
Skewness in Map Projections of the Earth.
Cartographica, 42(4):297–318, 2007.

[12] I. S. Evans. The selection of class intervals.
Transactions of the Institute of British Geographers,
2:98–124, 1977.

[13] W. D. Fisher. On grouping for maximum
homogeneity. American Statistical Association
Journal, 534:789–798, 1958.

[14] G. F. Jenks. Optimal data classification for choropleth
maps. Geography Department Occasional Paper No.
2 2, University of Kansas, Lawrence, KS, 1977.

[15] B. Jiang. Head/tail breaks: A new classification
scheme for data with a heavy-tailed distribution. The
Professional Geographer, 65(3):482–494, 2013.

[16] T. MacWright. Literate Jenks Natural Breaks and
How The Idea Of Code is Lost. http://www.
macwright.org/2013/02/18/literate-jenks.html.

[17] A. H. Robinson, J. L. Morrison, P. C. Muehrcke,
J. Kimerling, and S. C. Guptill. Elements of
Cartography. Wiley, New York, sixth edition, 1995.

[18] G. Salton. Automatic Text Processing: The
Transformation Analysis and Retrieval of Information
by Computer. Addison-Wesley, Reading, MA, 1989.

[19] W. Tobler. Thirty-five years of computer cartograms.
Annals of the Association of American Geographers,
94:58–73, 2004.

http://en.wikipedia.org/wiki/Choropleth_map
http://colorbrewer2.org
http://d3js.org
http://wiki.objectvision.nl/index.php/Jenks_Natural_Breaks_Classification
http://wiki.objectvision.nl/index.php/Jenks_Natural_Breaks_Classification
http://en.wikipedia.org/wiki/Four_color_theorem
http://en.wikipedia.org/wiki/Four_color_theorem
https://gist.github.com/tmcw/4977508
http://en.wikipedia.org/wiki/South_America
http://www.visumaps.com
http://en.wikipedia.org/wiki/Winkel_tripel_projection
http://en.wikipedia.org/wiki/Winkel_tripel_projection
http://www.macwright.org/2013/02/18/literate-jenks.html
http://www.macwright.org/2013/02/18/literate-jenks.html

	Introduction
	Algorithms
	Problem Definition
	Simple Example
	Greedy Algorithms
	Pseudocode
	Observation
	Modified Pseudocode

	Optimal Dynamic Programming Algorithm
	Key Idea 1
	Key Idea 2
	Key Idea 3
	Key Idea 4
	Pseudocode for the Dynamic Programming Optimal Algorithm
	Computational Complexity
	Caveat - Using a Different ``Optimization Criteria"

	Evaluation
	Equal-area algorithms performance evaluation
	Visual Comparison
	Population Maps
	Population Density Maps
	Notes
	Jenks Complexity

	Optimized Agorithms
	Optimized Greedy Algorithm
	Pseudocode

	Optimized Optimal Algorithm
	Approach
	Pseudocode
	Visual Result
	User Study

	Concluding Remarks and Future Work
	Further User Studies
	New Algorithms

	References

