
Evaluating and Tuning Predictors for Execution Classification

Charles Song
Department of Computer Science

University of Maryland
College Park, Maryland USA

csfalcon@cs.umd.edu

Abstract

Automated classification of executions is essential to a
successful Remote Analysis and Measurement of Software
System (RAMSS). However, most automated classification
techniques require large amount of data to be collected,
which cause the RAMSS to have a large performance over-
head. A technique called Association Tree addresses this
overhead issue, we extend on this work by constructing and
evaluating predictors to improve the performance of Asso-
ciation Tree. Our results show a few promising predictors
and a technique that produces predictors that can classify
more accurately with less collected data.

1 Introduction

Software systems are rarely deployed in the same envi-
ronments they are developed and tested in. The actual de-
ployment environments can differ greatly from the expected
environments, thus the behavior of the software systems can
differ greatly from the expected behavior. Recently, there
has been increasing interest in Remote Analysis and Mea-
surement of Software System (RAMSS) [4], [5], [8], [9],
[11]. Generally, RAMSS instrument numerous instances
of the software system and distribute the instrumented in-
stance to remote users. As the instances run, they collect
execution data and send them back to the developers for
analysis. These in-field execution data can provide better
understanding of the behavior of the software system in the
deployment environment.

RAMSS typically collect different kinds of data and use
different analysis to enable the developers to monitor and
model software behavior in the field. However, to effec-
tively use these in-field data, automated classification of
program executions is essential to most of the RAMSS tech-
niques. For example, when a developer is trying to ping
point a bug using information from the remote environment,
knowing whether the executions are successful or failed

is essential. Machine learning techniques can be used to
model software behavior that corresponds to different ex-
ecution outcomes; execution outcomes such as successful,
crashed or not responding.

Most existing techniques suffer from one major problem;
they impose significant overheads on the software systems.
These overheads include system slowdown due to code in-
strumentation and bandwidth occupation due to data collec-
tion. In Haran et als work [10], their novel classification
technique Association Tree greatly reduce the amount of
execution data needed to be collected in the remote envi-
ronment while maintaining the execution classification ac-
curacy.

This paper extends Haran et als work in two ways. First,
we apply their techniques on a Graphical User Interface
(GUI) application. Then, we improve their techniques by
evaluating and tuning different execution classification pre-
dictors. In Section 2, we describe how Association Trees
are constructed. Section 3 describes the software applica-
tion and data we used in our experiments. In Section 4,
we present experiments we conducted to evaluate and tune
Association Tree performance. In Section 5, we discuss fu-
ture work to further improve our approaches. And Section
6 presents our conclusions.

2 Background

In Haran et al, they found that from a large (thousands)
pool of potential predictors only a very small fraction (less
then one percent) were important for the classification. This
finding implies only small fraction of the software system
would need to be instrumented, thus reduce both runtime
overhead and data collection overhead. However, the data
set collected with such small amount of instrumentation
would greatly reduce the performance of tree-based clas-
sification techniques. To solve this problem the Association
Tree classification was developed.

The training set for the Association Tree is still a set of
labeled executions. Each data vector has one column for

1



each potential predictor. If a predictor is collected during a
given run, its value is recorded in the vector. Otherwise, a
special value (NA) is recorded. The output of the Associa-
tion Tree is a model that predicts the outcome of an execu-
tion based on the predictor vector. The models will predict
pass, fail and unknown, where unknown means the model
is unable to make a prediction due to lack of data.

The Association Tree is built in three stages:

1. transform the predictors into items that are present or
absent.

2. find association rules from these items.

3. construct a classification model based on these rules.

In the first stage, the algorithm first screens each pre-
dictor and checks that the Spearman rank correlation be-
tween the predictor and the observed outcomes exceeds a
minimum threshold (Spearmans rank correlation is similar
to the traditional Pearsons correlation). The goal of this step
is to discard predictors whose values are not correlated with
outcomes and, thus, are unlikely to be relevant for the clas-
sification. Next, the algorithm splits the distribution of each
remaining predictor into two parts. Ideally, after the split,
all executions with one outcome would have values above
the split, while all runs with the other outcome would have
values below it. Neither item is present if the corresponding
predictor was not being measured during the run.

After the algorithm completes the first stage, the origi-
nal set of training data has been transformed into a set of
observations, one per run, where each observation is the set
of items considered present for that run. The goal of the
second stage of the algorithm is to determine which groups
of frequently occurring items are strongly associated with
each outcome. To achieve this, the well-known a priori
data-mining algorithm is used. The a priori algorithm is
used to efficiently find which sets of items are correlated
with successful executions and failure executions. These
sets of items, together with their correlations with outcomes
are called association rules.

The final stage of the algorithm performs outcome pre-
diction using the association rules produced in the previous
stage. Given a new run, the algorithm finds the rules that
apply to it. If all applicable rules give the same outcome, it
returns that outcome as the prediction. If there is disagree-
ment or no applicable rules exist, the algorithm returns a
prediction of unknown.

3 Experimental Subject and Data

We used the same subject software application for all of
our experiments to create a consistent environment to un-
derstand our proposed approaches. The executions of the

subject software application are labels pass or fail. In this
section we introduce our experimental subject and data.

3.1 Experimental Subject

The software application we chose for our experiments
was CrosswordSage-0.3.5 [1], an open source Java GUI
crossword puzzle creation program. CrosswordSage-0.3.5
contains 1664 lines of executable codes, 34 classes and 244
methods. This version of CrosswordSage contains 4 real
faults detected during our data collection phase. We picked
this software application because it contains roughly same
amount of GUI and logic code. In contrast, JABA (Java Ar-
chitecture for Bytecode Analysis) used in Haran et al con-
tained no GUI code.

3.2 Execution Data and Labels

To generate a training set for the CrosswordSage classi-
fication, we used two Java instrumentation tools:

• instr [2]. a source-to-source translation tool that in-
strument a Java program to collect the number of times
each line of code was executed in a run.

• JRat [3]. a Java byte code modification tool that instru-
ments a Java program to collect runtime information at
method level.

After the instrumentation with these two tools, we are able
to collect three types of runtime information: method entry
count, average method runtime and source line execution
count.

Since CrosswordSage is a GUI application, we used
GUITAR [12], a Java GUI application test tool, to generate
GUI test cases and drive application testing. GUITAR in-
spects the Java GUI application and creates an Event Flow
Graph (EFG) of the GUI. From the EFG, test cases com-
posed of Java Swing events are generated to simulate user
mouse clicks and keystrokes. We were able to generate
2352 valid GUI test cases for CrosswordSage with GUI-
TAR. With these test cases we achieved 50 percent state-
ment coverage.

We labeled the execution outcomes according to whether
any of the four known faults appeared in the execution of a
test case. When any of the four faults appear, a Java Ex-
ception would be thrown; unlike non-GUI applications, a
Java Exception does not constitute halting of the applica-
tion. Out of 2352 test cases, 1376 were labeled pass and
976 were labeled fail.

4 Experiments and Results

To assess the performance of the Association Tree, we
examine two performance measures:



Table 1. Table showing the performance of
Association Tree using different simple pre-
dictors. Method entry count and average
method runtime offered acceptable perfor-
mance. Source line execution count experi-
enced higher error rate due to large number
of potential predictors.

PREDICTOR %CLASSIFIED %ERROR #PREDICTORS

METHOD 68.73 3.03 111
RUNTIME 65.18 4.25 111
SOURCE 65.89 16.49 1664

• Classification rate. Percentage of executions for which
the constructed model predicts either pass or fail. If
the model is able to classify an execution due to lack
of data then the classification rate would be lowered.

• Classification error rate. Percentage of runs whose out-
comes were incorrectly predicted.

In Haran et al, the Association Tree was able to classify
multiple versions of JABA with high classification rate and
accuracy. On average, classification rate of JABA was 63%
and Classification error rate was 2%. The predictor type in
these classifications was method entry count.

In our experiments, we first examine the performance of
the Association Tree on GUI applications by using simple
predictors; method entry count, average method runtime
and source line execution count. The method entry count
predictor would serve as a direct comparison to the results
of Haran et al. Next we seek to reduce the total number
of potential predictors by observing unique profiles of the
simple predictors. And finally, we construct more complex
predictors by combining simple predictors with other soft-
ware application information.

4.1 Simple Predictors

The method entry count is the same predictor used to test
Association Tree in Haran et al. The results from this clas-
sification test is a good indicator how well Association Tree
classifies GUI application executions. In Table 1, method
entry count achieved a classification rate of 68.73% and
classification error rate of 3.03%. This result shows that
Association Tree can successfully classify GUI application
as well.

The average method runtime predictor achieved similar
results as method entry count; 65.18% classification rate
and 4.24% classification error rate.

The source line execution count results are worse than
the other two predictor’s results, especially in classification

Table 2. Table showing the performance of
Association Tree using unique profile predic-
tors. Comparing to the source line execu-
tion count predictor, the classification rate
improved and classification error rate de-
creased drastically. Also, the potential num-
ber of predictored dropped from 1664 to 137.

PREDICTOR %CLASSIFIED %ERROR #PREDICTORS

PROFILE 88.76 2.98 137

error rate. We believe this high error rate caused by the
much larger number of potential predictors; this suggests
that source line level information make poor predictors on
its own.

4.2 Unique Profile Predictors

We observed that many of the predictors shared the same
profile across all test case executions. Figure 1 is a table of
5 test cases with 7 potential predictors. Predictor 1, 5 and 7
were executed same number of times in all test cases, thus
these three predictors have the same profile. If we can group
predictors with the same profiles together to form a single
predictor, then we can reduce the total number of predic-
tors in this example from 7 to 4. With this unique profile
reduction technique, we can reduce the amount of instru-
mentation by only enable one predictor from each group of
predictors.

We used this technique to reduce the source line execu-
tion count data. The total number of potential predictors
reduced from 1664 to 137, a 92% reduction. The most
common profile is all zeros across all test cases, meaning
all these predictors are lines of code never executed by any
of the test cases; nearly half of the predictors fall into this
group.

With this unique profile predictor, Association Tree
achieved 88.76% classification rate and 2.98% classifica-
tion error rate (Table 2). The Association Tree performed
much better then the simple predictors were used. The im-
provement is amazing considering it was derived from the
source line execution count data.

Our understanding is that unique profile reduction tech-
nique put less emphasis (weight) on commonly occurring
patterns and more emphasis on less commonly occuring
partterns. For example, users use the GUI to save a cross-
word puzzle often, therefore the same sequence of events
would occur often. Logically, the less commonly occurring
event patterns are more likely to reveal undiscovered faults
in the application.



Figure 1. Example showing unique profile reduction. Predictor 1, 5 and 7 share one unique profile.
Predictor 2 and 4 share another unique profile.

Table 3. Table showing the performance of
Association Tree using complex predictors.
The classification rate dropped for both com-
plex predictors, however, classification error
rate improved for both. Both are good candi-
date for unique profile reduction.

PREDICTOR %CLASSIFIED %ERROR #PREDICTORS

COVERAGE 54.28 2.91 245
PERCENT 59.89 1.40 111

4.3 Complex Predictors

In the next experiment, we construct 2 complex predic-
tors. In theory, the complex predictors contain more knowl-
edge about the application than the simple predictors and
thus should perform better when used with the Association
Tree.

4.3.1 Coverage Predictor

The first complex predictor, coverage predictor, is con-
structed with the source line execution count and the source
code itself. The coverage predictor is constructed in two
stages:

1. Statically analyze the source code, extract out every
method from the source code and gather information
on starting line of the method, ending line of the
method and total number of executable source code
(excludes comments, curly braces and variable defini-
tions).

2. Based on source line execution data for each test case,
determine which lines were executed at least once and
which methods they belong to. Then calculate the per-
cent of each method covered by that test case.

The logic behind using this predictor is to build appli-
cation specific knowledge into the Association Tree classi-
fication process. For example, a method usually gets high
coverage but gets a low coverage could be a signal of a fault;
the reverse could also be true. As expected, the coverage of
methods generally falls on the two extremes, very low cov-
erage and high coverage, with majority being less than one
percent covered.

In Table 3, coverage predictor achieved 54.28% classi-
fication rate and 2.91% classification error rate. This com-
plex predictor did not perform as well as the first two simple
predictors, however, it did outperform the source line execu-
tion count predictor which it was derived from. Once again,
the results show that source line execution count data can
be useful when processed (number of potential predictors
reduced).

4.3.2 Runtime Percentage Predictor

The second complex predictor, runtime percentage predic-
tor, is constructed with the method entry count and the av-
erage method runtime data.

The runtime percentage predictor is constructed by:

1. estimate the total runtime:

totalRuntime =
n∑

i=1

avgRuntimei ∗ entryCounti

2. calculate each methods runtime percent:

runtimePercenti =
avgRuntimei ∗ entryCounti

totalRuntime

The logic behind use this predictor is similar to that of
coverage predictor; a method usually takes a long time to
run but finishes quickly could be a signal of a fault. How-
ever, these two complex predictors are different:

• runtime percentage predictor is not weight by the size
of the method.



• runtime does not always correlate with line of code

• methods called multiple times carries more weight in
this predictor.

Only a small fraction of methods get high percentage (usu-
ally higher than 75%) of the total runtime, most method
runtimes are insignificant to the total runtime of a test case.

In Table 3, runtime percentage predictor achieved
59.89% classification rate and 1.40% classification error
rate. This complex predictor did not outperform the first
two simple predictors which it was derived from, however,
its classification rate was much lower than the simple pre-
dictors.

Both of these complex predictors can be greatly reduced
in size with the unique profile reduction technique presented
earlier. We hypothesize that performance of these predictors
can be improved after unique profile reduction, but we leave
those experiments to future work.

5 Future Work

The performance of the Association Tree classification
can be improved by using bagging [6] to combine models
built from different data set. When one model fails to clas-
sify an execution, other models could classify it. This would
improve the classification rate. If an execution is classified
differently by the models, a voting system can be imple-
mented to select the most fitting outcome. This would lower
the classification error rate. Das and Chen [7] has imple-
mented a similar system to classify stock market sentiments
from financial message board posts, and shown that this ap-
proach can improve classification performance.

Our preliminary results suggest that unique profile re-
duction technique can improve the performance of Associ-
ation Tree. We plan to examine the performance impact
when this technique is applied to other predictors, espe-
cially the complex predictors.

CrosswordSage is a good GUI application to test out our
concepts for better predictors. Our next step is to apply
these concepts and techniques to a larger application with
more known and unknown faults.

We want to study how Association Tree can be used to
aid the development and testing of rapidly changing soft-
ware. For example, those developed with the extreme pro-
gramming teams. These applications could use the learned
models from the previous version to improve learning of the
next version. How would Association Tree models change
with the application?

6 Conclusion

In this paper, we have presented three experiments con-
ducted on the Association Tree classification technique with

a Java GUI application. The first experiment used sim-
ple predictors to classify execution outcomes, the results
showed that Association Tree can be used on GUI applica-
tions and predictors other than method entry count can yield
similar accuracy. The second experiment was to test the
unique profile reduction technique, we demonstrated that
this technique can greatly reduce the amount of instrumen-
tation needed by the application instances and still produce
better classification results. The third experiment tested per-
formance impact of more complex predictors, results sug-
gested that simply adding application knowledge does not
equate to better classification. But these complex predictors
appear to be good candidate for the unique profile reduction
technique. To conclude, our results showed the Association
Tree can be improved to further reduce the overhead prob-
lem face by most RAMSS.

References

[1] Crossword sage: Java puzzle creation utility.
[2] instr: Java test coverage and instrumentation toolkits.
[3] Jrat: the java runtime analysis toolkit.
[4] J. Bowring, A. Orso, and M. Harrold. Monitoring

deployed software using software tomography. ACM
SIGPLAN/SIGSOFT Workshop Program Analysis Software
Tools and Engineering, pages 2—8, 2002.

[5] J. Bowring, J. Rehg, and M. Harrold. Active learning for
automatic classification of software behavior. International
Symposium on Software Testing and Analysis, pages 195—
205, 2004.

[6] L. Breiman. Bagging predictors. Machine Learning,
24:123—140, 1996.

[7] S. R. Das and M. Y. Chen. Yahoo! for amazon: Sentiment
extraction from small talk on the web. 8th Asia Pacific Fi-
nance Association Annual Conference, 2001.

[8] S. Elbaum and M. Diep. Profiling deployed software: As-
sessing strategies and testing opportunities. IEEE Transac-
tions of Software Engineering, pages 312—327, 2005.

[9] P. Francis, D. Leon, M. Minch, and A. Podgurski. Tree-
based methods for classifying software failures. Proceed-
ings of 15th International Symposium on Software Reliablil-
ity Engineering, pages 451—462, 2004.

[10] M. Haran, A. Karr, M. Last, A. Orso, A. Porter, A. Sanil,
and S. Fouche. Techniques for classifying executions of
deployed software to support software engineering tasks.
IEEE Transactions on Software Engineering, pages 287—
304, 2007.

[11] D. Hilbert and D. Redmiles. Extracting usability informa-
tion from user interface events. ACM Computing Surveys,
pages 384—421, 2000.

[12] A. Memon. An event-flow model of gui-based applications
for testing. Software Testing Verification and Reliability,
pages 137—157, 2007.


