Evaluating Functional Correctness via Comparisons of a Code
Summary to Natural Language Directives

Dev Bhardwaj

University of Maryland

1 Introduction

In today’s day and age, ChatGPT, Copilot, and other
large language model (LLM) based services have
become commonplace when writing code or even
just asking questions. Whether it’s auto-completion
or natural language prompts, these tools can make
writing code much easier and quicker. However,
there is also a drawback to using these large
language models: how can we verify their output?
These models train on quite a lot of data and that
data is not guaranteed to be a source of truth.
Therefore, the probabilistic nature of these models
prevents us from making any strong claims on the
validity of their outputs. Thus, the question of
verifying these models’ outputs becomes
increasingly important as models write more and
more code for a variety of systems. We can break
down verifying output into three broad categories:
the style, whether it’s functionally correct, and
whether it is secure. In this paper, I will focus on the
functional correctness of output from LLMs.
Normally, thorough unit/integration tests serve as a
great way to determine whether code is functionally
correct, but the range of responses that an LLM can
provide makes writing tests difficult. If the LLM’s
response uses libraries or connects to a database, it
quickly becomes very hard to create a unit test that
will allow the use of different libraries or confirm
the validity of actions on the database. In this paper,
I investigate whether we can use LLMs to automate
the generation of a proxy for functional correctness,
easing the pain point of writing unit tests while still
providing a verification of the output.

2 Background and Related
Works

Many vulnerability focused research papers, like
Asleep at the Keyboard? (Pearce et al. 2022) use
CodeQL to check for vulnerabilities. An issue that

comes up in that paper and some others is that
CodeQL determines whether or not code that
GitHub CoPilot wrote is secure, but does not factor
in whether it is semantically/functionally correct.

2.1 Research Question

This brings us to our research question: How do we
evaluate functional correctness of code generated by
LLMs without writing unit tests, especially in a
security context?

2.2 Whatis BLEU?

BLUE (Papineni at al. 2002) stands for Bilingual
Evaluation Understudy and is a metric that Papineni
et al. developed to measure whether a machine
generated translation performs well in comparison
to a reference translation, likely from a human. The
BLEU score does this by calculating the mean of
the percentage of overlapping n-grams score over
small and large n-grams and then multiplying it by
a brevity penalty to prevent inflating the score by
providing shorter output. BLEU has performed very
well in machine translation, but due to the
differences between natural language and code, a
different approach is necessary (Ren et al. 2020).

2.2 Whatis CodeBLEU?

CodeBLUE attempts to account for three primary
differences between natural language and code (Ren
et al. 2020):

1. Limited keywords vs millions of words

2. Tree structure vs. sequential structure

3. Unique instructions vs. ambiguous semantic

Here is an image from the CodeBLEU paper that
explains how to compute the CodeBLEU score (Ren
et al. 2020):



Figure 1: CodeBLEU Formula

CodeBLEU =a - BLEU + 8 - BLEU yeight
+7 - Match,g; + & - Matchgs

(D

where BLEU is calculated by standard BLEU (Papineni
et al. 2002), BLEU ycight s the weighted n-gram match, ob-
tained by comparing the hypothesis code and the reference
code tokens with different weights (Sec. 3.1), Match,g; is
the syntactic AST match, exploring the syntactic informa-
tion of code (Sec. 3.2}), and Matchys is the semantic data-
flow match, considering the semantic similarity between the
hypothesis and the reference (Sec. 3.3). The weighted n-
gram match and the syntactic AST match are used to mea-
sure grammatical correctness, and the semantic data-flow
match is used to calculate logic correctness.

2.3 Measuring Semantic Similarity
in Text

I initially was looking at measuring code similarity
using CodeBLEU (Ren et al. 2020), but realized that
it made assumptions that were way too strong for the
scenario of what someone would have before
generating code using an LLM. While pondering
these limiting assumptions, it became clear that I had
to focus on the most useful information that I have
before generating code using an LLM. I started
looking into using a Docstring/comment as the
source of truth, so I investigated measuring semantic
similarity in text. I did see a lot about regular BLEU
at first, but it appeared to not focus on semantic
similarity, heavily discounting using synonyms in
place of a specific word. According to Spot
Intelligence (Otten. 2022), using sentence
embeddings are much more robust to noise and
variability from the input. This is pivotal for
comparing LLM generated text to the source of
truth, the Docstring/comment. They recommend
using one of these five libraries for sentence
embedding: SBERT, USE, FastText, Gensim, and
spaCy. Lastly, to calculate the semantic similarity,
one has to find the distance between two vector
embeddings of the natural language. Encord
(Acharya. 2023) suggests using either Euclidean

distance, Manhattan distance, or cosine similarity for
computing a similarity score.

2.4 Determining if Code is
Functionally Correct

Unit tests often serve as the means of testing
functional correctness. Their effectiveness is fully
dependent on their quality and the extent to which
they can cover the entire range of inputs. Therefore,
it becomes markedly difficult to construct unit tests
that cover the range of valid solutions an LLM could
provide to the prompt.

3 Methodology

I propose a method that uses unit tests as a baseline
to determine whether one can deem code functional
via the following:

1. Generating code using an LLM by giving it
a prompt such as a Docstring or comment.

2. Using an LLM to generate a summary of
the code it generated.

3. Comparing the semantic similarity of the
summary to the prompt that guided the code
generation in the first place.



3.1 Adapting a Dataset

In order to use unit tests as a baseline for
determining the functionality of code, I wanted to
use a dataset that already included unit tests for
prompts to LLMs. The dataset from Examining
Zero-Shot Vulnerability Repair with Large Language
Models (Pearce et al. 2023) is a great starting point,
because it provides security scenarios, prompts, and
unit tests. However, the goal of the paper and
prompts are to examine vulnerability repair.
Therefore, I could use the prompts and unit tests

after making modifications, but I would have to
generate my own programs. Moreover, the
experiment would hold more validity if the
generated code and summaries were done by the
same underlying model, so I chose to use the open
source model CodeT5 (Wang et al. 2021). I modified
the prompts to remove the completed functions, but
left the function header and natural language
directive to turn the focus into code
generation/completion.

Figure 2: Original Scenario

@ scenario.py

experiments > cwe_iterative > cwe_standalone > cwe-20 > codeql-eg-IncompleteHostnameRegExp > @ scenario.py > & redirect_url

from flask import Flask, request, redirect, Blueprint
from urllib.parse import urlparse
from markupsafe import escape

bp = Blueprint('hello',__name_ )

@bp. route('/redirect/<url>")
def redirect_url(url)
url = urlparse(url)
if url.netloc.endswith('example.com'):
return redirect(url.geturl())

return "Error: the target domain was not for example.com'

Figure 3: Modified Scenario

@ scenario_modified.py 2 X

experiments > cwe_iterative > cwe_standalone > cwe-20 > codeql-eg-IncompleteHostnameRegExp > @ scenario_modified.py > ...

from flask import Flask, request, redirect, Blueprint
from urllib.parse import urlparse
from markupsafe import escape

bp = Blueprint(‘'hello',__name_ )

@bp. route('/redirect/<url>")
def redirect_url(url):

Once I had my modified scenarios, I used a CodeT5
model fine-tuned for the downstream task of code
completion for Python:
Salesforce/codet5-large-ntp-py, created by
Salesforce, the company behind CodeT5. I then
generated the top 5 responses for each temperature
level: 0, 0.25, 0.5, 0.75, and 1 for both of the

scenarios. Once I had my 25 generated programs, I
was ready to run the experiment.

3.2 Measuring the Baseline

After generating the 25 programs for each scenario, I
ran the unit tests from Examining Zero-Shot
Vulnerability Repair with Large Language Models
(Pearce et al. 2023). I had to make some
modifications to the test harness to fit the setup, but I



tried to leave the logic of the unit tests as is.
However, for CWE-79, I had to modify the condition
from looking for an exact string to a string that
contains the two important components it was
looking for. The reason I had to do this was because
initially the unit test had the context of a
vulnerability repair dataset, where the functionality
after an LLM “repaired” the code would hopefully
not change much. In the case of code generation,
there are many ways to output the same data with
minor differences that don’t really change the
semantics, so I wanted the unit test to reflect that
property more.

Next, I ran the programs for each scenario against
the unit tests and recorded the results in the file
func_results.txt, with the program name and whether
it passed or failed. I also have data on the reasons for
failure, but did not include it in func_results.txt,
because it created a little bit too much clutter.

3.3 Generating Summaries

I then focused on generating summaries of each of
the programs for the scenarios. For this I used
another CodeT5 model fine-tuned by Salesfore (the
creators of CodeT5) for the task of code
summarization in multiple languages:
Salesforce/codetS-base-multi-sum. In fact, this
fine-tuned model’s performance was part of the
results in the CodeT5 paper (Wang et al. 2021).
Generating the summary was not as straightforward

similarity(A, B)

From what I saw online, the community
recommends conducting a user study to empirically
determine a threshold for the Cosine Similarity
(CSS) threshold. This was not feasible for this
project, so instead I decided to go on the higher end
of values that the community tends towards at 0.75
as the threshold for whether two natural languages
texts are semantically the same.

4 Evaluation

After setting up an automated approach to generating
code completions, generating summaries, baselining

as it seemed, because I couldn’t just get a summary
of the entire program including the imports and the
comments that explained what we wanted to
generate. I chose to extract the function header and
paired it with the generated code as the inputs for the
model. I then generated a summary for each of the
25 programs for each scenario.

3.4 Determining Semantic
Similarity

Once I generated the summaries, I then used a
popular open-source NLP library called spaCy along
with their en_core_web_lg model to create vector
embeddings for the summaries and the natural
language directive that was a critical part of the
prompt. I initially had looked at using the BLEU
score, but upon further research, the BLEU score
targets translations and looks at ngrams for more
syntactic than semantic similarity. However, by
finding the vector embeddings of these summaries
and the directive, I can compare their semantic
similarity, which is what I want. The model learns
which words are similar, can be interchanged, and
incorporates meaning much more than the BLEU
score. Therefore, by finding the Cosine Similarity
between the embeddings, I can find a great proxy for
the semantic similarity between the summary and the
directive. I calculate the Cosine Similarity using the
following formula:

cos(0) = 1ATia

against unit tests, and calculating semantic similarity
scores, I used my framework on two different
Python scenarios from Examining Zero-Shot
Vulnerability Repair with Large Language Models
(Pearce et al. 2023): CWE-20 and CWE-79. The
main limitation preventing me from incorporating
more scenarios was that the remaining scenarios
were all in C. However, if they were more Python
scenarios, I would be able to easily incorporate them
into the testing framework I set up. Additionally, if I
had more time, I could fine-tune a CodeT5 model for
next token prediction, specifically for C code, like
the fine-tuned Python model I was using and



incorporate the C scenarios as well after modifying
the prompts as I described in the methodology.

There is a link to the testing framework (Jupyter
Notebooks folder) as well as all of the scenarios,
directives, function headers, generated programs,

generated summaries, and results for both of the
scenarios (Experiments folder) below in the
Appendix.

I obtained the following results (see func_results.txt
and sim_results.txt in the cwe20 and cwe79 folders):

Scenario Passed

Passed Semantic Similarity
Functional Test | Threshold

Overlap of Failures

CWE-20 20/25 20/25

CWE-79 25/25

25/25 (5 bordered the threshold) N/A

It is hard to make definite conclusions, given the
very limited dataset and the apparent skew of
CWE-79’s prompt. If given more time, my first
priority would be to incorporate a fine-tuned NTP
CodeT5 model to enable comparisons to the 7 other
standalone CWEs that are in C. However, given the
data, I reached the following conclusions:

4.1 Conclusion 1: No Strong
Correlation (given this data)

There is not a strong correlation between passing the
functional test and passing the semantic similarity
threshold, given this dataset. In CWE-20, if semantic
similarity above a certain threshold was a great
indicator for functional code, then the 5 programs
that failed to pass the functional tests should have
been the same five that failed to meet the semantic
similarity threshold for their summary of the
directive. This was not the case. The five programs
that failed the functional tests had no overlap with
the five programs that failed to meet the semantic
similarity threshold. This is not very promising,
because it indicates that semantic similarity in the
way we calculated, does not act as a proxy for
determining functionality. However, I would like to
see if this trend continues at scale. In CWE-79, all of
the programs pass the functional test and all of the
programs pass the semantic similarity threshold,
which could indicate a correlation between the two.
Determining the strength of that correlation will
require more scenarios. Additionally, 5 of the
programs were very close to the semantic similarity
threshold, indicating that they were close to
communicating that the code was not functional.

4.2 Conclusion 2: Semantic
Similarity Could be a Secondary
Indicator

An important thing to note about unit tests, is that
unless they are extremely meticulous, just because a
program passes unit tests does not mean that it will
be functional. Moreover, I investigated this approach
because writing unit tests for generated programs is
already quite difficult, especially when incorporating
third party libraries for databases or HTTP requests.
Therefore, semantic similarity could be a great
secondary measure of functionality because a unit
test often will not cover enough. However, we need
much more data in order to analyze the scenario
where semantic similarity correctly indicates
incorrect code, but the unit test indicates functional
correctness. This would be an example of a
generated program that causes an issue that wouldn’t
be caught by the given unit test. Therefore, we
would need complicated scenarios to draw a
conclusion that maintains statistical significance. I
am very curious about how this could perform,
because having the source of truth via a Docstring or
comment for a function is a practice I’m sure will
continue. Moreover, this approach could provide
another level of checking, especially as we
incorporate Al pair programming into more and
more workflows.

5 Future Work

I want to continue exploring this at least to the point
of incorporating a fine-tuned model for
next-token-prediction for C to see if the trends here




seem to continue or change once I incorporate 7 more
scenarios. Moreover, it won’t be a massive undertaking,
given that the framework I created will make it mostly
plug and play. Once I've fine-tuned a model for the task. I
could also try and provide a more robust semantic
similarity score by generating multiple summaries and
then averaging the semantic similarity scores for a single
program before testing it against the threshold.

6 Takeaways

In conclusion, I found that given the current data from my
experiment, there is no strong correlation between a
functionality (baselined by unit tests) and a semantic
similarity score for a generated summary of generated
code and the Docstring/comment. However, the current
data is limited and I want to expand the experiment by
fine-tuning a CodeT5 model for C code to test the
remaining scenarios I couldn’t from Examining Zero-Shot
Vulnerability Repair with Large Language Models (Pearce
et al. 2023). Although the data from the experiment is not
promising, I believe that it is in large part due to the
limited dataset. If we could procure or create a larger
dataset, I think that the approach could effectively rule out
many of a model’s invalid snippets or programs, verifying
the output to an extent. The approach won’t act as a
complete solution to vetting the functional correctness of a
model’s generated code, but it can definitely assist in the
process of moving the bar forward for verifying the
ever-growing number of outputs from large language
models.

7 Appendix

Please take a look at the code and results here: Dev
Bhar j Final Project 8181


https://drive.google.com/drive/folders/1WtDtMHKQkv55ZaPRKxqYiuiYtoX5ich1?usp=sharing
https://drive.google.com/drive/folders/1WtDtMHKQkv55ZaPRKxqYiuiYtoX5ich1?usp=sharing

References

(1]

[4]

Acharya, Akruti. “What is Vector Similarity
Search?” Encord, 12 June 2023,
https://encord.com/blog/vector-similarity-searc
b/. Accessed 16 December 2023.

Pearce, Hammond, Baleegh Ahmad, et al.
“Asleep at the Keyboard? Assessing the
Security of

GitHub Copilot’s Code Contributions.” 2022
IEEE Symposium on Security and Privacy
(SP), IEEE, 2022, pp. 754-68. DOl.org
(Crossref),
https://doi.org/10.1109/SP46214.2022.9833571

Pearce, Hammond, Benjamin Tan, et al.
“Examining Zero-Shot Vulnerability Repair
with Large

Language Models.” 2023 IEEE Symposium on
Security and Privacy (SP), IEEE, 2023,

pp- 2339-56. DOL.org (Crossref),
https://doi.org/10.1109/SP46215.2023.1017932
4.

Van Otten, Neri. “Sentence Embedding More
Powerful Than Word Embedding? What Is The
Difference.” Spot Intelligence, 17 December
2022,
https://spotintelligence.com/2022/12/17/senten
ce-embedding/. Accessed 16 December

2023.

Wang, Yue, et al. “CodeT5: Identifier-Aware
Unified Pre-Trained Encoder-Decoder Models
for

Code Understanding and Generation.”
Proceedings of the 2021 Conference on
Empirical

Methods in Natural Language Processing,
Association for Computational Linguistics,
2021, pp. 8696—708. DOI.org (Crossref),
https://doi.org/10.18653/v1/2021.emnlp-main.6
85.





