
CMSC701, 2025, 1–4

doi:

UMD Computer Science Graduate Department: 13 May 2025

Scholarly Paper

Evaluating Implicit Neural Representations for Single
Cell Sequencing Compression
Evan Guenterberg

Department of Computer Science, University of Maryland, College Park

Abstract

Single-cell RNA sequencing produces massive amounts of data. In order to make research using this technique

more efficient, it is worthwhile to develop a compression strategy for the large, sparse matrices that it yields.

This work evaluates the application of implicit neural representations (INRs) to this task, demonstrating

that using sinusoidal activation functions with fully connected layers, as has been shown to be an effective

compression strategy for images, is not a viable path forward in this area.

Key words: Implicit neural representation, single cell sequencing, sparse matrix compression

Introduction

Single cell sequencing

Single-cell RNA sequencing (scRNA-seq) is a growing technology

that allows analysis of the RNA transcripts present in individual

cells. By sequencing the RNA transcripts themselves, researchers

gain knowledge of which genes are being expressed in the cell and

at what level. See Jovic et al. [2022] for a survey of single-cell

sequencing. This technology has already begun providing resources

to treat diseases and unlock new areas of research, but it comes

with its own set of challenges. One such challenge is the vast

amount of data that scRNA-seq produces. The ultimate output

of scRNA-seq is a large matrix representing the cells as columns

and the gene expressions as rows. Typically, cells from the same

organ are sequenced in a batch, meaning that there is likely to

be similarity along the rows. However, these matrices tend to

be extremely sparse. The typical storage method for single-cell

sequencing data is as an hdf5 file, representing the matrix in the

compressed sparse row (CSR) or compressed sparse column (CSC)

format.

Implicit neural representations

Implicit neural representations (INRs) are a relatively recent

technique used to store a signal using a neural network. By viewing

the signal as a function from coordinates to values, it is possible to

train a neural network to learn this function. Another intuition for

this is that it is an extreme case of overfitting. A typical application

of neural networks aims to avoid overfitting, where the network

output conforms too closely to the training data. If the network

overfits on the data to the point where it can reconstruct the data

within some bound, then the network is an approximation of the

data itself.

Implicit neural representations have been used for various types

of data, ranging from audio signals, geometry, 3D scenes, partial

differential equations, images, videos, and more. See Jiang et al.

[2020], Park et al. [2019], Mildenhall et al. [2020], Dupont et al.

[2022], Kim et al. [2023]. INR research has taken various forms.

Early research was focused on learning a network that overfits

to a set of data, such that a single network would represent a

wide variety of images, scenes, or the like [Chen et al., 2020, see].

Another approach focuses on learning encoders and decoders that

map the samples to a latent space and are able to reconstruct the

data from the embedding in the latent space. The third approach,

overfitting a network to a single sample, shows a promising

path for data compression. The success of COIN [Dupont et al.,

2021] showed that compressing images (essentially 2D matrices)

is possible and competitive with JPEG in certain situations. The

downside of COIN is that optimizing a neural network for a single

image is not efficient - on the order of hours. The follow-up

work, COIN++ [Dupont et al., 2022], improved the technique and

showed that it transferred well to other modalities. This method

is more complex, and involves meta-learning over a space of data.

COOL-CHIC [Ladune et al., 2023] and its successors [Leguay et al.,

2023, Kim et al., 2023] took this idea and ran with it, developing

a library to encode and decode images and videos using INRs1.

This work aims to apply simple INR techniques, along the lines

of COIN, to single cell sequencing samples in order to evaluate the

feasibility of using INRs for compression in this field. COIN-style

INRs, though they have their inefficiencies, are a starting point

for exploration in this area.

Approach

COIN-style INRs represent one sample of data as a function that

takes the row and column indices as input and returns the value

1 Available at https://github.com/Orange-OpenSource/

Cool-Chic

© The Author 2025. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

https://github.com/Orange-OpenSource/Cool-Chic
https://github.com/Orange-OpenSource/Cool-Chic


2 Guenterberg

at that point: f : R2 → RC , where C is the number of channels

in the signal. Training the network uses all possible coordinates

as input, and the corresponding values at those coordinates as

‘labels’. Rather than use integer rows and columns, COIN scales

the indexes so that the rows are in the range [−1, 1] and the

columns are scaled by the same value, also centered around 0. This

practice dates back to the SIREN paper [Sitzmann et al., 2020],

which introduced sinusoidal activation functions to capture higher-

resolution information in INRs, which COIN uses (and so does this

work). This decision is not explicitly justified by either paper, but

it likely has to do with the sinusoidal activation function. I also

follow the scaling of indexes in this work.

Due to the sparsity of single cell sequencing data, I believed

that it would not be effective to train an INR on the entirety of the

data. Rather, the neural network can be fit to the nonzero elements

of the matrix. This greatly reduces the volume of information

the network needs to learn and means that the data has fewer

boundaries with large transitions, which neural networks tend to

struggle to approximate.

Although COIN is designed for relatively small images (they

provide evaluation results on the Kodak dataset of 768 by 512

pixel images), C3 [Kim et al., 2023] shows that breaking an image

into patches and creating an INR for each patch is a successful

technique. Based on this, this work will focus on developing an

INR for a subset of a single-cell sequencing matrix.

An auxiliary succinct data structure can then hold information

about which entries in the matrix were zeros. Value lookup would

be a two step process: examining the auxiliary data structure and

retrieving the nonzero value from the INR if necessary. Notably, it

is still a constant time operation, as the INR is essentially a series

of fixed matrix operations.

Methods

A single dataset of single cell sequencing data was retrieved from

10x Genomics [10x Genomics, 2021]. The cells sampled were

human peripheral blood mononuclear cells from a single healthy

donor. Only a single dataset was used because this was intended

to be an initial foray into the technique, to be supplemented with

other datasets later, but for reasons that will become clear, this

did not come to pass. This data consisted of a 587 by 36601 matrix,

with corresponding information about the cells sequenced and the

genes tallied. To simulate patching, 500 columns and 1000 rows of

the matrix were randomly sampled. In practice, patches would be

contiguous, but in this investigative case it was randomly sampled

to preserve as many attributes (sparsity, value distribution, etc)

from the whole matrix as possible. This patch contained 33564

nonzero entries.

The network architecture was chosen based on the work by

Dupont et al. [2021] involving an architecture search which settled

on a network of 10 hidden layers, each with the same number

of nodes. Using more than 10 layers is not advised due to the

vanishing gradient problem, where the early layers of the network

do not contribute to the approximation. Each hidden layer consists

of a fully connected layer and a sinusoidal activation function. The

output layer consists of a fully connected layer with no activation

function. In this case, since the values produced by single-cell

sequencing are single integers, the output has one node. The

input layer is two nodes, with no activation layer, representing

the coordinates of each entry of the matrix.

Fig. 1: Log of the frequency distribution of the values in the

500x1000 patch of single-celled sequencing data.

Various smaller numbers of nodes in the hidden layer were

attempted, none of which produced usable results. Eventually

I decided on 2400 nodes, which provided a trade-off between

acceptable training time (less than one hour) and a large number

of parameters (51,871,201). Maximizing parameter count for this

work was desirable, because if producing an INR with a much

greater size than the data proved to be impossible, then it can

reasonably be concluded that INRs are a non-viable method of

compression for this modality.

The loss function used for the INR is mean squared error

(MSE), also known as the squared L2 norm. This is a widely used

loss function, but it offers the desirable property that predicted

values which differ from the expected values by greater than one

are given more pressure to conform to the expected result during

backpropagation. Since the values are rounded to the nearest

integer after evaluation anyway, it is less important to correct

values that round to the expected result.

Three configurations were tested during training: training

to match the matrix entries exactly without any normalization

function, training to match the matrix entries divided by the

maximum matrix entry (min-max scaling), and training to

match the log of the matrix entries (logarithmic scaling). The

two attempts at normalization follow the observations that the

matrices COIN trains on are composed of values falling within

the [0, 1] range, and that the entries of the single-cell sequencing

matrices follow a roughly exponential decay (see Figure 1).

Results

All configurations successfully converged (see Figure 2), indicating

successful training and that the models had achieved a local

maxima approximating the matrix.

The INRs were evaluated by accuracy of their predicted

values after rounding. Unfortunately, no INR even approached

a reasonable accuracy. See Table 1 for the values. Logarithmic

normalization was substantially more effective than no normalization

or min-max normalization, but it still managed to predict the right

matrix value less than a quarter of the time.

I believe this to result from a combination of two factors.

Primarily, single-cell sequencing data contains very few regions

of homogeneity. Even if adjacent cells in the matrix have similar

counts of gene expressions, that only extends horizontally and



Single Cell Sequncing INR 3

(a) No normalization (b) Min-max normalization (c) Log normalization

Fig. 2: Convergence plots showing MSE per epoch of the three configurations. Note the smooth curve to a stable loss value in all three,

indicating successful convergence of the neural network. The networks were not trained for the same number of epochs, but this is not a

problem as the networks had converged to a stable state.

Accuracy results (%) on nonzero entries

No normalization Min-max normalization Log normalization

3.32 4.83 23.28

Table 1. INR recreation accuracy results.

not vertically. Nearly all other successful use cases of INRs

involve modalities that contain regions of homogeneity - images,

geometries, 3D scenes all are focused on regions of similar values.

Although improvements have been made in approximating high-

resolution boundaries [see Sitzmann et al., 2020], these are still

boundaries of relatively homogeneous regions. Secondarily, the

unbounded nature of single-cell sequencing data means that the

sharp boundaries present can be extremely steep. This contrasts

with images, where the values are limited to the range [0, 255].

Limitations

This project was limited to a single patch of 500 by 1000 entries

from a single dataset. It is therefore conceivable that COIN-style

INRs might accurately compress some scRNA-seq data, but not

this sample. However this indicates that at the very least, COIN-

style INRs cannot be a universal method of storing, let alone

compressing, scRNA-seq data.

Future Work

Matrix reordering techniques were not explored in this work.

Permuting either the rows or columns has no impact on the

underlying data, as long as the labels are identically permuted. It

may be successful to reorder the rows and columns of scRNA-seq

data as a preparation step for INR fitting. Increasing homogeneity

by grouping similar values together might improve performance

following the principles discussed above, but it would be very

difficult to guarantee that a reordering that ensures successful INR

creation exists.

Advanced patching techniques are another potential avenue

of improvement. Given the likelihood of similar gene expression

values along the rows, using patches that extend the entire width of

the matrix might increase homogeneity and therefore performance.

This similarity is not guaranteed, especially given the fact that

scRNA-seq samples can be combined by horizontal concatenation,

so this approach is probably limited.

Conclusion

Due to the unbounded nature of the values stored and the

lack of homogeneity, the sparse matrices generated by single-cell

sequencing data are not amenable to compression via COIN-style

INRs. The naive approach, considered foundational for the success

of later works, was unable to reconstruct the underlying data even

at a highly negative compression ratio. It is possible, but unlikely,

that improvements may be found in matrix reordering techniques

or other INR architectures such as the encoder-decoder model.

References

10x Genomics. 500 human pbmcs, 3’ lt v3.1, chromium

x, single cell immune profiling dataset by cell ranger

v6.1.0, 2021. URL https://www.10xgenomics.com/datasets/

500-human-pbm-cs-3-lt-v-3-1-chromium-x-3-1-low-6-1-0.

Yinbo Chen, Sifei Liu, and Xiaolong Wang. Learning continuous

image representation with local implicit image function. arXiv

preprint arXiv:2012.09161, 2020.

Emilien Dupont, Adam Goliński, Milad Alizadeh, Yee Whye

Teh, and Arnaud Doucet. Coin: Compression with implicit

neural representations, 2021. URL https://arxiv.org/abs/

2103.03123.

Emilien Dupont, Hrushikesh Loya, Milad Alizadeh, Adam

Goliński, Yee Whye Teh, and Arnaud Doucet. Coin++: Neural

compression across modalities, 2022. URL https://arxiv.org/

abs/2201.12904.

Chiyu Max Jiang, Soheil Esmaeilzadeh, Kamyar Azizzadenesheli,

Karthik Kashinath, Mustafa Mustafa, Hamdi A. Tchelepi,

Philip Marcus, Prabhat, and Anima Anandkumar.

Meshfreeflownet: A physics-constrained deep continuous

space-time super-resolution framework, 2020. URL

https://arxiv.org/abs/2005.01463.

Dragomirka Jovic, Xue Liang, Hua Zeng, Lin Lin, Fengping

Xu, and Yonglun Luo. Single-cell rna sequencing technologies

and applications: A brief overview. Clinical and Translational

Medicine, 12(3):e694, 2022. doi: https://doi.org/10.1002/

ctm2.694. URL https://onlinelibrary.wiley.com/doi/abs/

10.1002/ctm2.694.

Hyunjik Kim, Matthias Bauer, Lucas Theis, Jonathan Richard

Schwarz, and Emilien Dupont. C3: High-performance and low-

complexity neural compression from a single image or video,

https://www.10xgenomics.com/datasets/500-human-pbm-cs-3-lt-v-3-1-chromium-x-3-1-low-6-1-0
https://www.10xgenomics.com/datasets/500-human-pbm-cs-3-lt-v-3-1-chromium-x-3-1-low-6-1-0
https://arxiv.org/abs/2103.03123
https://arxiv.org/abs/2103.03123
https://arxiv.org/abs/2201.12904
https://arxiv.org/abs/2201.12904
https://arxiv.org/abs/2005.01463
https://onlinelibrary.wiley.com/doi/abs/10.1002/ctm2.694
https://onlinelibrary.wiley.com/doi/abs/10.1002/ctm2.694


4 Guenterberg

2023. URL https://arxiv.org/abs/2312.02753.

Théo Ladune, Pierrick Philippe, Félix Henry, Gordon Clare, and

Thomas Leguay. Cool-chic: Coordinate-based low complexity

hierarchical image codec, 2023. URL https://arxiv.org/abs/

2212.05458.

Thomas Leguay, Théo Ladune, Pierrick Philippe, Gordon Clare,

and Félix Henry. Low-complexity overfitted neural image codec,

2023. URL https://arxiv.org/abs/2307.12706.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,

Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:

Representing scenes as neural radiance fields for view synthesis,

2020. URL https://arxiv.org/abs/2003.08934.

Jeong Joon Park, Peter Florence, Julian Straub, Richard

Newcombe, and Steven Lovegrove. Deepsdf: Learning

continuous signed distance functions for shape representation,

2019. URL https://arxiv.org/abs/1901.05103.

Vincent Sitzmann, Julien N. P. Martel, Alexander W. Bergman,

David B. Lindell, and Gordon Wetzstein. Implicit neural

representations with periodic activation functions, 2020. URL

https://arxiv.org/abs/2006.09661.

https://arxiv.org/abs/2312.02753
https://arxiv.org/abs/2212.05458
https://arxiv.org/abs/2212.05458
https://arxiv.org/abs/2307.12706
https://arxiv.org/abs/2003.08934
https://arxiv.org/abs/1901.05103
https://arxiv.org/abs/2006.09661



