
Evaluating OpenMP 4.5 Support on Compilers

Sathwik Yanamaddi

Department of Computer Science

University of Maryland

sathwik7@umd.edu

Abstract—OpenMP is a directive-based API used for paralleliz-
ing applications on CPUs. With the release of OpenMP version
4.0 (published in 2013), the API has evolved to let developers
offload certain compute-intensive tasks to the GPU. This report
evaluates the performance of various compilers in implementing
the OpenMP 4.5 API. Through experiments on BabelStream,
a memory-bound application, and miniBUDE, a compute-bound
application — across the GCC, Clang, NVHPC, and CCE (Cray)
compilers, we aim to assess their OpenMP GPU support, uncover
performance disparities, and identify areas for improvement.

I. INTRODUCTION

OpenMP (Open Multi-Processing) [1] is a commonly used

API for parallel programming using a shared memory model.

Developers employ pragma directives in their code to specify

parallel regions which guide the compiler in generating paral-

lel code. OpenMP handles thread creation and synchronization

automatically, distributing the workload among threads and

managing their execution. This ease of usage allows develop-

ers to harness the power of multi-core processors for improved

performance, thus making it a widely adopted and standardized

approach for developing parallel applications.

GPUs have become significantly better at certain compute-

heavy tasks in comparison to CPUs. However, effectively

programming a GPU often requires extensive knowledge of

its hardware components and experience using its Instruction

Set Architecture. How can programmers harness the power of

GPUs without encountering this hurdle?

In 2013, the OpenMP API was extended to support GPU

utilization, introducing new annotations that allow program-

mers to mark code regions that should be offloaded to the

GPU [2]. Since then, the OpenMP standard has been updated

to improve GPU offloading support. With new, yet simple,

directives like “target”, the beauty of OpenMP’s GPU support

lies in its abstraction.

A. Alternative Programming Models

OpenMP allows us to specify parallel for loops and code

regions using compiler directives, abstracting the complexity

of thread-level programming. There are several alternatives to

this style of programming, ranging from low-level, hardware-

specific models to higher-level, portable ones.

CUDA [3] is a parallel programming API and platform de-

veloped by NVIDIA for their GPU systems. Rather than being

directive-based, CUDA is a language extension to C, C++, and

Fortran, allowing programmers to offload compute-intensive

tasks to the GPU by means of new keywords. Since it is

hardware-specific, CUDA can only be reused across NVIDIA

GPUs, and is therefore not portable to all architectures.

Similarly, HIP [4], developed by AMD, is a runtime and

language extension of C++. HIP is more portable than CUDA,

as it can be used to program both NVIDIA and AMD GPUs.

In practice, HIP is more suitable for AMD GPUs, as it requires

manual coding and performance tuning to perform as well as

a native CUDA implementation on NVIDIA devices.

Finally, SYCL [5] is a higher-level programming model with

respect to CUDA and HIP. It provides high-level abstractions,

as opposed to providing lower-level language extensions. Its

primary goal is to provide “heterogeneous” compute by letting

developers code using its abstractions and taking care of

kernel code compilation for different GPUs. Today, it is most

commonly used for Intel GPUs.

Compared to other GPU programming models, the OpenMP

model is portable, as programmers can specify high-level com-

piler directives not tied to any particular hardware. OpenMP

also has a much lower learning curve, as it does not introduce

any language extensions or higher-level abstractions, letting

programmers rapidly offload code regions to GPUs and ac-

celerators using simple directives. Due to these advantages,

OpenMP is favorable for many situations over other program-

ming models.

Unlike the other programming models, which are tied to

specific runtime implementations, the performance of OpenMP

depends on the choice of compiler used to compile the

OpenMP-annotated code. As such, it is crucial to determine

which compilers provide the best performance for OpenMP

GPU offloading, providing the motivation for this project.

II. EXPERIMENTAL SETUP

A. Applications

To sufficiently benchmark the performance of OpenMP im-

plementations in different compilers, we compile and execute

two applications.

BabelStream is an application intended to “measure memory

transfer rates to/from global device memory on GPUs” [6]. It

is a GPU port of a similar memory-bound kernel developed for

CPUs, that instead allocates arrays on the heap, following the

best practice for parallel programming. BabelStream has been

implemented on a variety of programming models, including

the ones mentioned above (CUDA, HIP, and SYCL).

MiniBUDE is a molecular dynamics program that runs

energy simulations against a protein for a configurable number

of iterations [7]. It has also been implemented across a variety



Fig. 1: Roofline Plot of BabelStream (Dot Kernel) and miniBUDE

of programming models, and provides options for running

benchmarks. Unlike BabelStream, miniBUDE is a compute-

bound program, meaning that it measures the running time of

the kernel, rather than measuring the memory throughput.

Looking at the roofline plot, we can confirm that Babel-

Stream (dot outlined in green) is a memory-bound application

since it lies to the left of the ridge point. For miniBUDE (dot

outlined in blue) its kernel lies to the right of the ridge point,

indicating that it is a compute-bound application.

Both of these projects are developed and maintained at the

University of Bristol, and have been used for benchmarking

runtimes and programming models in a number of publications

[7, 8]. In this project, we compile the OpenMP implementation

of BabelStream and miniBUDE using different compilers (see

below). Subsequently, we run each of these compiled programs

three times, and compare the average memory throughput, as

well as the average kernel time, that each compiled program

achieves. By comparing these numbers for each compiled pro-

gram, we can understand which OpenMP compiler produces

the best-performing GPU code, and assess the strengths and

weaknesses of each compiler.

B. Machine

We run our experiments on Perlmutter, a Cray FX super-

computer at the National Energy Research Scientific Comput-

ing Center (NERSC). Active since 2021, Perlmutter (officially

NERSC-9) is a collaboration of HPE, NVIDIA, and AMD, and

has since been dubbed the “world’s fastest AI supercomputer”

[8].

Perlmutter consists of 3,072 CPU-only nodes, each with 2

AMD EPYC 7763 CPUs, as well as 1,536 GPU-accelerated

nodes, each with 4 NVIDIA A100 GPUs and 1 AMD EPYC

7763. It features a standard 3-hop dragonfly network, as well

as 35PB of flash disk space, augmented with 16 metadata

servers and 274 I/O servers [8].

In our experiment, we benchmark the performance of vari-

ous OpenMP compilers in offloading compute-intensive tasks

to one GPU. We measure performance in terms of kernel

time and memory transfer speed. Therefore, our experimental

setup runs on a single GPU-accelerated node, running on an

NVIDIA A100 GPU.

C. Compilers

For our experiment, we have chosen to benchmark four

OpenMP compilers that are mature, and support both NVIDIA

and AMD GPUs. GCC [9] is an open source compiler that

supports multiple languages. It is a general-purpose compiler,

and is used across a variety of applications and domains.

Clang [10], like GCC, is also open-source. However, Clang

is built on LLVM, a collection of modular compiler and

toolchain technologies. As such, Clang has been known to

be faster, and use less memory, than GCC. Clang is also a

general-purpose compiler.

In addition to Clang, the NVHPC [11] and CCE [12] com-

pilers are also built on LLVM. However, these compilers are

more domain-specific. NVHPC was developed by NVIDIA,

specifically for high-performance computing on NVIDIA de-

vices, whereas CCE was developed by Cray for their super-

computing systems. These are both optimized specifically for

their target hardware. Since Perlmutter is a Cray supercom-

puter that uses NVIDIA GPUs, it will be interesting to see

which of these compilers perform better.

III. RESULTS

To evaluate the GPU support of each compiler, we compare

the performance of the program that it generates, to the CUDA

implementation of each application. Since CUDA is low-level

and native to NVIDIA GPUs, it provides a good baseline for

comparison. This baseline is used to assess how close each

OpenMP compiler gets to the native implementation.

A. BabelStream

For BabelStream, we found CRAY outperforms the other

compilers and matches CUDA’s performance for most bench-

marks. CLANG performs slightly worse than NVHPC while

GCC performs significantly worse than all other compilers.

Fig. 2: BabelStream Memory Speed Benchmark (Higher is

Better)



B. miniBude

For miniBUDE, we found that CUDA significantly outper-

formed all OpenMP implementations. CLANG performed the

worst while NVHPC and CRAY were about the same. GCC

did not produce the correct results.

Fig. 3: miniBUDE Kernel Time Benchmark (Lower is Better)

Now, let’s look at some interesting cases extracted from

these results and investigate how these implementations differ.

IV. ANALYSIS

A. GCC’s Poor Performance

Fig. 4: miniBUDE Kernel Time Benchmark (Lower is Better)

To understand why GCC performs significantly worse than

other compilers, we captured the event trace of its BabelStream

implementation using NVIDIA’s Nsight Systems tool [13].

Looking at the trace, GCC’s OpenMP implementation for

NVIDIA GPUs seems to perform memory allocations and

frees before and after each kernel launch. This behavior is

not present in other implementations. Memory allocations are

considered costly and ideally should not be performed after

every kernel launch.

This issue affects the results in miniBUDE as the main

kernel (fasten) is executed multiple times before the final result

is sent back to the CPU. Frees and allocations of data between

kernel launches lead to the loss of previously computed results,

thus, giving us an incorrect output.

Examining the GCC kernel profiles reveals a consistent

allocation of 72 registers per thread. This high amount limits

how many threads can run in parallel on the GPU. Since

BabelStream is a memory bound application, threads will often

be waiting to fetch from global memory. An SM can hide

this latency by scheduling other threads to execute. Other

implementations of the simple copy kernel have less than 32

Fig. 5: Registers Per Thread, BabelStream Copy Kernel

registers allocated per thread which allow for more parallelism

and latency hiding.

We investigated the cause for this increased register usage

by looking at the assembly code (SASS). GCC’s implemen-

tation introduces numerous barriers and synchronizations in

the SASS. In addition we noticed that it’s performing the

copy in shared memory rather than in global memory. This

is obviously not ideal since there is no data reuse warranted

to use shared memory and using it limits the number of threads

that can be concurrently executing.

B. Why Cray Performs Well

Looking at the earlier registers per thread chart, we can

see that the CRAY compiler allocates the same amount of

registers per thread as CUDA. Requiring less registers per

thread can allow the GPU to launch more threads and achieve

more parallelism.

Looking at the profiles, there are no barriers present in the

Cray implementation so threads are not waiting. Additionally,

Cray is the manufacturer of the supercomputer so it makes

sense to expect good performance, as the hardware is likely

optimized for the style of code generated by the Cray compiler.

C. NVHPC and Clang’s Middling Performance

Fig. 6: Roofline of the BabelStream Dot Kernel (Dot outlines

represent different implementations) (CUDA - Green, GCC -

Light Blue, Purple - CRAY, Orange - NVHPC, Clang - Red)

An interesting observation we saw for all the BabelStream

kernels was that NVHPC and CLANG had a higher Arithmetic

Intensity compared to the CUDA and CRAY implementations.

Diving into the SASS code, we saw that both NVHPC and

CLANG perform more IMAD (Integer Multiply and ADD)

and ISETP (Integer and Compare Set Predicate) and BRA

(Relative Branch) instructions.



Fig. 7: Instruction Statistics for IMAD, ISETP, and BRA

We believe that the performance disparity might be linked

to the execution of additional instructions compared to CUDA

and CRAY. However, drawing firm conclusions requires a

more comprehensive investigation, including an examination

of the generated intermediate representation (IR) or possibly

conducting mini-benchmarks on these kernels.

D. Getting Closer to the CUDA Baseline

We observed that OpenMP implementations struggled with

the dot kernel, a simple vector reduction task. In contrast, the

CUDA implementation of the dot kernel utilized shared mem-

ory to store partial sums for each launched block, resulting in

a better achieved bandwidth.

The OpenMP implementations took a different route for

reduction, relying on warp-level shuffle instructions instead

of more shared memory like the CUDA version. We suspect

that using shuffle instructions might not provide significant

advantages compared to the shared memory approach in

CUDA. This is because the shuffle instructions increase the

number of registers allocated per thread, limiting the total

threads that can be launched. Additionally, the throughput of

shuffle instructions is lower compared to reading from shared

memory and performing additions.

Fig. 8: Registers Per Thread, BabelStream Dot Kernel

The CUDA version of miniBUDE’s main kernel utilizes

dynamic shared memory, a feature absent in all OpenMP

implementations. Shared memory has much higher bandwidth

and lower latency compared to global memory contributing to

the faster runtime for miniBUDE.

V. CONCLUSION

OpenMP is becoming more widely used to offload compute

to GPUs due to its ease-of-use and portability compared to

other models. The performance of OpenMP programs depends

on the compiler. In this project, we evaluated the implemen-

tation of OpenMP 4.5 GPU-offloading on several compilers.

Our evaluation revealed significant performance dispari-

ties. CRAY emerged as a top performer, closely matching

CUDA’s baseline in BabelStream. However, GCC exhibited

poor performance due to excessive memory allocations and

high register usage. NVHPC and Clang showed middling per-

formance, with potential areas for improvement. The observed

differences underscore the importance of compiler choice as

various implementations will prioritize different aspects of

GPU acceleration. Developers must consider their specific

requirements to find an optimal compiler.

In the future, we hope to address specific implementation

issues. In addition, due to the time constraints on the project,

we only evaluated these compilers on NVIDIA A100 GPUs

on the Perlmutter supercomputer. Further work should be done

to evaluate these compilers on other GPU architectures across

a variety of machines.

REFERENCES

[1] “1.1. introduction of OpenMP — parallel program-
ming and performance optimization with OpenMP,”
https://passlab.github.io/OpenMPProgrammingBook, accessed: 2024-4-
21.

[2] T. Lewis, “OpenMP accelerator support for GPUs,”
https://www.openmp.org/updates/openmp-accelerator-support-gpus/,
Sep. 2017, accessed: 2024-4-21.

[3] “CUDA zone,” https://developer.nvidia.com/cuda-zone, accessed: 2024-
4-21.

[4] “HIP: HIP: C++ Heterogeneous-Compute interface for portability.”
[5] M. Wong, “SYCL - c++ single-source heterogeneous programming

for acceleration offload,” https://www.khronos.org/sycl/, Jan. 2014, ac-
cessed: 2024-4-21.

[6] “BabelStream: STREAM, for lots of devices written in many program-
ming models.”

[7] “miniBUDE: A BUDE virtual-screening benchmark, in many program-
ming models.”

[8] NERSC, “Architecture - NERSC documentation,”
https://docs.nersc.gov/systems/perlmutter/architecture/, accessed:
2024-4-21.

[9] “GCC, the GNU compiler collection,” https://gcc.gnu.org/, accessed:
2024-4-21.

[10] “Clang: a c language family frontend for llvm,” https://clang.llvm.org/.
[11] “NVIDIA HPC SDK,” https://developer.nvidia.com/hpc-sdk, accessed:

2024-4-21.
[12] “Cray compiler environment — HPE cray programming environ-

ment 23.12 documentation,” https://cpe.ext.hpe.com/docs/cce/, accessed:
2024-4-21.

[13] “Nvidia nsight systems,” https://developer.nvidia.com/nsight-systems.
[14] D. Harris, “Need for speed: Researchers switch on world’s fastest

AI supercomputer,” https://blogs.nvidia.com/blog/nersc-perlmutter-ai-
supercomputer/., May 2021, accessed: 2024-4-21.


