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Abstract 

 
In 2008, Boiman et al. announced in their 

work "In defense of Nearest-Neighbor based 
image classification" an interesting point that 
the Nearest-Neighbor-based classifiers have 
been considerably undervalued. The inferior 
performance of most NN-based classifiers was 
not due to the nature of the classifier, but was 
mainly the consequence of using it in a mis-
takenly perceived context. The authors 
claimed that instead of finding NN-from-
images-to-images, finding NN-from-images-
to-classes significantly improves the accuracy, 
in their experiments up to 17%. A simple fix to 
the way NN was used has brought it to be 
among the best classifiers. 

 
In the process of implementing the Leaf 

Recognition project, we had a chance to re-
validate the above finding. We implemented 
both methods and tested on a big dataset of 
about 5,000 images. Against our expectation 
that the recommended NN-images-to-classes 
would greatly outperform the other, it actually 
insignificantly improves the accuracy from 
70.2% to 70.4%. Our results versus their re-
sults raises the need for more investigation 
before confirming the robustness of the above 
finding.    

 
 

1. Introduction 
 
Nearest-Neighbor (NN) based image clas-

sifier is believed to be the simplest multi-
classes classifier that exists. Its simple nature 
of requiring no training phase, using a non-
parametric model, and ease of implementation, 
makes NN favorable enough to be often the 
first method that gets implemented in a new 
experiment’s setup or as a baseline in a test-
bench to compare with much more compli-
cated classifiers. In 2008, in [1], Boiman et al. 

claimed that NN-based classifier had been un-
derestimated and mistakenly used. They 
pointed out that by finding nearest distances 
from images to classes, instead of from images 
to images, they could improve their experi-
ment’s accuracy more than 17%. This result 
was among the top 3, compared with the most 
current and complicated classifiers like 
Varma, Bosch Trees, SPM, Bosch SVM, etc… 

 
In the on-going Field Guide research pro-

ject carried out by the University of Maryland 
and Columbia University, we have about 
5,000 leaf images in 143 species collected and 
described by Inner Distance Shape Context 
(IDSC) descriptors fed for training. An input 
leaf image is recognized by its best matched 
species. Naïve-Bayes NN classifier was cho-
sen as the baseline classifier due to its simplic-
ity. We have implemented both ways of using 
NN including finding the nearest distances 
from images to images and the recommended 
technique in [1] suggesting finding the nearest 
distances from images to species. Against our 
expectation that the recommended way would 
greatly outperform the first traditional one, it 
actually insignificantly improves the accuracy 
from 70.2% to 70.4% in our experiments. This 
finding versus the results in [1] raises an inter-
esting question: in which conditions will NN-
to-classes greatly outperform NN-to-images? 

 
For comprehension, section 2 gives some 

background about bag-of-words model for 
image representation, IDSC shape descriptor 
and how IDSC is applied in our experiments. 
Naïve-Bayes Nearest Neighbor algorithm and 
how NN Images-to-images method differs 
from NN Images-to-Classes method will also 
be introduced. Section 3 discusses about the 
implementation details and results. 

 
 

 



2. Background 
 

2.1 Bag-of-words modeling 
 
The term “bag-of-words” was originally a 

terminology in Natural Language Processing, 
which refers to a class of document classifica-
tion techniques that consider documents as 
unordered set of words taken from a diction-
ary. Documents are classified by analyzing the 
frequencies of word occurrences. Analogous 
to this, in object recognition, an image can be 
treated as a document and words are image 
features. “Word” in images is not off-the-shelf 
like words in text in document, but the process 
of generating words involves three stages: fea-
ture detection, feature description, and code-
book generation.  

 
Feature detection finds the “best locations” 

in the image to sample. The features can be 
constructed around interest points such as 
scale-space extrema (e.g. SIFT keypoints [9]), 
or simply on windows extracted from the im-
age at regular positions and various scales 
(e.g. HOG grids [11]), or even as simple as 
uniform spatially distributed points like in 
Shape Context [4] and IDSC [2]. The feature 
descriptors can be image patches, histograms 
of gradient orientations or color histograms; 
but to be useful they should be able to remain 
invariant to intensity, rotation, scale and affine 
variations to some extent. As these features 
are sensitive to noise and are represented in 
high dimension spaces, they are not directly 
used as words, but are categorized using a vec-
tor quantization technique such as k-means. 
The output of this discretization is the diction-
ary.  

 
Based on the words, a classifier is then 

trained to recognize the categories of the im-
ages. Different techniques can be used such as 
Support Vector Machines (SVM), or Naive 
Bayes Classifiers [7]. Categorizing an image 
then simply entails extracting features, finding 
the corresponding words and applying the 
classifier to the set of words representing the 
image. 

 

The bag-of-words representation of images 
is simple to use in a classifier, but it has one 
importation limitation. It ignores the spatial 
relationship among patches of the image. A 
global feature descriptor that captures infor-
mation of a big region or the whole image 
(e.g. HOG, Shape Context, IDSC, etc…) may 
compensate to some extent.  

 
2.2 Shape Context and Inner Distance     
Shape Context 
 
Shape Context (SC) 
 

 SC describes the relative spatial distribu-
tion (distance and orientation) of landmark 
points around feature points. The idea is to 
pick n sample points p1, p2 ... pn on a shape 
contour. Consider the n−1 vectors obtained by 
connecting pi to all other points. The set of all 
these vectors is a rich description of the shape 
localized at that point, but this set is far too 
detailed since the number of points can be ar-
bitrarily large. In addition, the set itself is sen-
sitive to noise, distortion and articulation.  A 
quantization step to reduce the details and er-
rors is therefore taken. By definition, the shape 
context at point pi is defined as the coarse his-
togram hi of the relative coordinates of the 
remaining   n-1 points: 

 
hi(k) = # {pj: j ≠ i,  (xj - xi ) ∈ bin(k)} 
 

The bins are normally taken to be uniform in 
log-polar space. (figure 1) 

 
The distance between two shape context his-
tograms is defined using the Chi-squared sta-
tistic. 

 
 

Inner Distance Shape Context (IDSC) 
 
The shape context uses the Euclidean dis-

tance to measure the spatial relation between 
landmark points. This causes less discrimin-
ability power for complex shapes or shapes 
deformed by articulations (figure 2&3). IDSC 
extends the SC feature by replacing Euclidean 



distance by the inner distance. The inner dis-
tance is defined as the length of the shortest 
path going through a subset of sampled points 
that does not exit the shape boundaries. The 
inner distance naturally captures the shape 
structure better than Euclidean distance. [2] 

 
 

 
 

 
 
 

2.3 Naïve-Bayes NN (NBNN) algorithm 
 
The detailed mathematical explanation of 

NBNN can be found in [1]. The key idea here 
is to make the Naïve-Bayes assumption of 
conditional independence of the features given 
the class membership. All descriptors of an 
image Q are i.i.d. given the class of Q. Then 
the cost to assign Q to a class C is modeled as 
the sum of the lowest costs of assigning each 
of descriptors di of Q to C. A NN search algo-

rithm finds the closest descriptor of each class 
Ck associating with its distance (cost) to di. A 
class Ĉ with the lowest total cost is chosen as 
the classified class for Q. The algorithm can 
be summarized as follow: 

 
Ĉ := argminC ∑=

n

i 1
||di – NNC(di)||2   

 
where: 
di i=1..n are descriptors of image Q 
NNC(di) is the nearest neighbor descriptor of di 
that belongs to class C.   

 
 

 
 
 

2.4 NN Images-to-Images vs.  
NN Images-to-Classes 

 
Both methods refer to the Nearest- 

Neighbor-based classification techniques 
whose the goal is to find the class that best 
matches a queried image. In NN Images-to-
Images approach, each queried image is com-
pared to all known images and the class of the 
closest image is chosen and assigned to que-
ried image. On the other hand, NN Images-to-
Classes approach first pools all descriptors of 
all the images belonging to each class to form 
a single representation of that class. The que-
ried image is then compared to all the classes 

 
Figure 1: log-polar space formed by 5 levels of 
distance and 12 levels of angle. The correspond-
ing histogram has 60 bins. 

 

 
Figure 3: With the same sample points, the 
distributions of Euclidean distances between all 
pair of points are indistinguishable for shapes 
on the rows, while the distributions of the in-
ner-distances are quite different. 
 
Source: Haibin Ling , David W. Jacobs, “Shape Classi-
fication Using the Inner-Distance 2007 

 
Figure 2: The dashed lines denote inner dis-
tance shortest paths within the shape boundary 
that connect landmark points. (b) was articu-
lated from (a) but the length of the inner dis-
tance shortest path unchanged. ………………
 
Source: Haibin Ling , David W. Jacobs, “Shape Classi-
fication Using the Inner-Distance”, 2007 
 



and the closest class is chosen. Figure 4 sum-
marizes algorithms of these two approaches. 
3. Experiments 

 
We tested both ways of using NN-based 

classifier as mentioned earlier on the 5-fold 
cross validation sets formed by the original 
Central Park dataset. The Central Park data set 
has about 5,000 normalized segmented stock 
leaf images in 143 species. Each crossed set 
was formed by round robin taking 20% of the 
images of each species used for testing and the 
remaining 80% used for validation. The results 
are averaged by the number of crossed data-
sets. Implementation details are mentioned in 
section 2.1. Test results are discussed in sec-
tion 2.2. 

 
3.1 Implementation 

 
For leaf recognition, we have all the im-

ages segmented and normalized to eliminate 
scaling factor. In our first attempt, we used 
IDSC as the single feature descriptor. IDSC 
does very well in capturing the shape of sil-
houette images.  Though combining multiple 
descriptors may improve the accuracy, it does 
not affect the relative performance of the two 
approaches we are considering: NN images-to- 
classes and NN images-to-images. In image 
sampling process, 1024 points equally spread 
on the shape contour are chosen for each im-
age to form sixteen uniform groups each has 
64 points. Sixteen IDSC computations are 
done and the results are taken to average. For 
best performance, 5 inner-distance and 12 in-
ner-angle levels are pre-configured for IDSC. 
Therefore, each image is described by 64 his-
tograms, each has 60 slots. To enhance the 
speed of finding the nearest neighbors - the 
process which dominates the total cost, K-D 
tree search structures from Approximate Near-
est Neighbor (ANN) software package [3] are 
used to answer the nearest distance request 
efficiently in O(log N) time. In our implemen-
tation, the choice of variance functions to 
measure the distance between two histograms 
does not really make a big difference. Though 
Chi-square or KL-divergence is usually a good 
choice, Euclidean distance works well in our 

experiments.  The implementation is summa-
rized as given below. 

 

 
 

 
 

Figure4: Implementation routines for NN Images-to-
Classes and NN Images-to-Images 
 
3.2 Result & Discussion  

 
To our surprise, NN-Images-to-Classes 

method achieves 70.4% accuracy, just slightly 
better than NN-Images-to-Images by 0.2%. 
We have tested on our 5 crossed sets and all 
results seem consistent with each other. The 
mean accuracy and standard deviation of our 
experiments is given in the table 1. 

  
 

NBNN Images-to-Images algorithm 
 
• Learning  

For all training images I: 
compute and add descriptors d1, 
d2,…, dn to K-D tree TI  

• Recognition 
1. Compute descriptors d1, d2,…, dn 

of the query image  
2. ∀di ∀TI compute the NN of di 

to image I:   
NNI(di) := TI →findNN(di) 

3. Ĉ := class_of (argminI ∑=

n

i 1
|| di – 

NNI(di)||2 )

NBNN Images-to-Classes algorithm 
 
• Learning  

For all training images I: 
compute and add descriptors d1, 
d2,…, dn to K-D tree TC , where   
I ∈ class C 
 

• Recognition 
1. Compute descriptors d1, d2,…, dn 

of the query image  
2. ∀di ∀TC compute the NN of di 

to class C:   
NNC(di) := TC →findNN(di) 

3. Ĉ := argminC ∑=

n

i 1
|| di – NNC(di)||2  



 
 

 
 Accuracy Stdev

Images-to-Images 70.2% 3.4% 
Images-to-Classes 70.4% 1.8% 

 
    Table1: Results on Central Park dataset 

 
Our experiments showed that there was not 

much difference in performance between the 
two approaches running on our datatset as 
compared to the huge performance boost 
achieved in [1]. One point worth noticing 
about the Central Park dataset we used, it con-
tains 143 different species of the same class 
(leaf) whereas Caltech 101 or Caltech 256 
used in [1] contains objects of different classes 
(e.g. airplane, book, elephant, etc…). We hold 
the hypothesis that the Images-to-Classes ap-
proach may obtain much better performance in 
inter-classes classification compared to the 
Images-to-Images approach, but there would 
not be that difference in case of intra-class 
classification. 

 
 

 
 
 

 
 
 

However, there is little evidence that really 
explain why the NN-Images-to-Classes ap-
proach would greatly outperform NN-Images-
to-Images. NN distances from images to 
classes are obviously smaller than NN dis-
tance from images to images. An image I of 
class C will have a smaller nearest distance to 
class C (found in the first approach) than the 
nearest distance to any of the other class-C 
images I’ (found in second approach). This is 
good for the first approach, but the good is 
only half of the story. At the same time, the 
nearest distance from I to a different class C’ 
also gets smaller than the nearest distance 
from I to its nearest class-C’ image. Finally, 
when switching from NN-Images-to-Images to 
NN-Images-to-Classes, both the cost of get-
ting I classified to C and not classified to C 
decrease. Without further investigation, it 
might be hard to convince one why one ap-
proach would greatly outperform the other.  

 
On the practical side, with the support of a 

search structure like K-D tree, NN-Images-to-
Classes does achieve faster running time. This 
approach maintains far fewer search structures 
than the other one so it reduces the time cost 
caused by cache missing and cache loading. In 
our experiment on a big dataset like Central 
Park, we have about 5,000 images versus only 
143 species, the reduction in time cost is huge. 
(The number of search structures reduces from 
5,000 to 143). Another thought would be, 
however, when the number feature descriptors 
describing an image are relatively small, like 
64 in this case, it may not be worth to pay the 
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Figure 6: Performance varies by the number of 

classes in both approaches 

 
 
Figure 5: Samples from Central Park dataset 
(a) Cornus kousa               (b)Cornus florida  
(c) Crataegus crus-galli   (d) Corylus colurna 
 
 



high cost of building and maintaining search 
structures for finding distance between two 
images when implementing NN-Images-to-
Images classification.  

 
 

4. Conclusion 
 
The result from this experiment suggests 

that the big performance gap between NN Im-
ages-to-Images and NN Images-to-Classes 
approach may not always hold, especially 
when classifying intra-class objects. 
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