
An Evaluation of Two Algorithms for Hierarchically Semiseparable Matrices
Scholarly Paper, Computer Science Department, University of Maryland, Spring 2011

Brianna Satinoff

Advisor: Dianne O'Leary

Abstract

The hierarchically semiseparable (HSS) representation is a method introduced by Chandrasekaran et al.

to divide sparse matrices into a hierarchical block structure. They used this representation for a

Cholesky factorization algorithm that, for certain types of matrices, was faster than the standard

LAPACK one. In this paper I re-implement this factorization, as well as their algorithm for putting a

matrix in HSS form. I then evaluate this implementation on a set of matrices from a variety of sources

as well as some randomly generated matrices. The experiments partially confirm the authors'

conclusions about the asymptotic complexity of the HSS algorithms. They also confirm that many real-

world matrices have the property, called the ``low-rank property'', that makes them conducive to HSS

representation. However, they fail to find an existing Cholesky implementation that forms a good

standard comparison.

1. Introduction

Direct solution of sparse linear systems is useful because it produces an exact answer, and because it

can be quickly repeated with different right-hand sides. It is often desirable to start by factoring the

matrix using the LU algorithm or, for symmetric positive definite matrices, the Cholesky algorithm. In

this paper, we will focus on symmetric positive definite matrices and the Cholesky factorization.

When directly calculating the Cholesky factorization of a sparse matrix, the lower-triangular factor

often has many more nonzero terms than the original matrix. This "fill-in" is undesirable because it

requires extra storage, and because solving the linear system takes longer. Thus we want to rearrange

the matrix's rows and columns to minimize fill-in. At the same time, we want to minimize the time that

the rearrangement takes.

No practical method finds the best rearrangement for every matrix, but there are several well-known

heuristics. The examples described here all treat the matrix as a graph, with a vertex for each row or

column and an edge for each nonzero entry. That is, if the matrix has a nonzero entry at row 3 and

column 5, for example, an edge connects nodes 3 and 5. The minimum degree algorithm simply picks

the node with minimum degree at each step. Cuthill-McKee starts with a minimum-degree node and

then does a breadth-first traversal. Nested dissection algorithms divide the graph hierarchically instead

of considering each node on its own. In each step, they split the nodes between two halves and a

separator, so that the two halves aren't connected by any edges. They repeat this recursively until some

stopping point, then calculate the ordering from the bottom up.

The hierarchically semiseparable (HSS) representation is another way to split a sparse matrix into a

hierarchical structure. It relies on the matrix having off-diagonal blocks with low rank (compared to the

matrix's dimension). These off-diagonal blocks can then be compressed by using rank-revealing QR

and discarding all rows of R with diagonal entries less than a given tolerance. The end result is a set of

HSS generator matrices that multiply out to approximate the blocks of the original matrix. If all the off-

diagonal blocks have low rank, and the generators' ranks are not much higher, then the matrix is said to

have the "low-rank property"

In (2), Chandrasekaran et al. developed algorithms for Cholesky decomposition and linear system

solving using the HSS representation. They showed that for matrices with the low-rank property, their

HSS Cholesky factorization routine is faster and results in less fill-in than the standard one in the

LAPACK library. In (1), they combined this HSS algorithm with nested dissection into an even faster

algorithm, the "superfast multifrontal method". It starts with the multifrontal method of nested

dissection, then approximates the resulting sub-matrices with the HSS representation.

The purpose of this paper is to evaluate the authors' results by re-implementing a subset of their HSS

based algorithms. Specifically, I followed their instructions for creating HSS generators and for the

generalized HSS Cholesky factorization, both from (2). The implementation was for a specific set of

conditions described in section 2. I then tested my implementations with experiments on several types

of real-world matrices. Although I did not implement the superfast multifrontal method in (1),

conclusions can still be drawn about it because it relies on both of the implemented algorithms.

The rest of the paper is structured as follows. Implementation details and experimental methods are

described in section 2. Section 3 presents a summary of the results and section 4 discusses them. The

conclusion is in section 5. The actual results table is in Appendix A, since it is too long to insert into the

paper. Appendix B contains some equations I derived for my implementation.

2. Methods

What was implemented?

Hierarchically semiseparable matrices can be divided according to any binary tree. Everything I

implemented was for this specific tree:

This causes the matrix to be divided into 4 parts row-wise and 4 parts column-wise, for a total of 16

blocks with equal dimensions. So for an 100x100 matrix, each block is 25x25. The HSS algorithms

operate on a set of off-diagonal “block rows”, using postordering to match the block rows to the nodes

of the tree. A set of block columns could be defined instead, which would be equivalent for symmetric

matrices. The above tree corresponds to the following 6 block rows:

Figure 1: The binary tree used to

partition the matrix.

First, I wrote a program to put a matrix into hierarchically semiseparable (HSS) form. This involves

finding a set of “generator” matrices that combine to form the original matrix. This step is a

prerequisite for any other HSS-related operation. The algorithm I implemented is described in (2) and

referred to in (1). Even though the algorithm may be used for non-symmetric matrices, I implemented it

for symmetric matrices only because symmetry is required for the subsequent step.

I then implemented the generalized HSS Cholesky factorization, which is presented in (2) and is part of

the superfast multifrontal method in (1). The algorithm is called “generalized” because instead of

returning a single lower triangular matrix and its transpose, it returns a set of lower triangular and

orthogonal matrices of various sizes. They hierarchically form the original matrix, as shown on pg. 14

of (2) and in Appendix B.

Paper (1) also draws on the (non-superfast) multifrontal method for nested dissection, combining it

with generalized HSS Cholesky factorization to build the superfast multifrontal method. I did not

implement this.

I looked for Matlab code for the multifrontal method that I could use for comparison. I found, however,

that Matlab's built-in implementation of sparse Cholesky factorization already uses nested dissection. It

uses a supernodal structure, just as the proposed superfast multifrontal method does. This was much

faster than my implementation, as described in the Results section.

Experiments

I tested the algorithm on 3 different types of matrices:

• Randomly generated sparse matrices, which were generated using the Matlab sprandsym

command. This command (with the options I used) outputs a symmetric positive definite matrix

with a given size, inverse condition number, and proportion of nonzero elements. Some were

altered to set a specific HSS rank, and some were not.

• A subset of the symmetric positive definite matrices on the University of Florida sparse matrix

collection, ranging in size from 136 to 5488. Most, but not all, have very high condition

numbers. I tried to choose a few matrices from each group.

• A set of 9 matrices formed by solving elliptic PDE's using finite elements in Matlab's PDE

toolbox. The variations were the number of mesh refinements (1, 2 or 3) and the boundary

shape: square, circular, or L-shaped. All six PDEs had the following properties:

◦ PDE: -∆x = 10 (a form of the Poisson equation; the default in pdetool)

Figure 2: The 6 off-diagonal block rows used in this paper, with their

relative dimensions.

◦ Boundary conditions: 0 everywhere (the default in pdetool)

The tests consisted of the following steps for each matrix:

1) Put the matrix in HSS form, using a tolerance of 1E-5. Output the HSS representation rank.

1. Note: The HSS representation indicates how “compressed” the HSS representation is; it is

the maximum rank of the HSS generator matrices. This may differ from the HSS rank,

which is just the maximum rank of the off-diagonal blocks in the original matrix.

The maximum for both is ½ the dimension of the matrix. Both must be low for the matrix to

have the low-rank property.

2) Run the generalized HSS Cholesky factorization. Output:

1. The total number of nonzero below-diagonal elements in all of the lower-triangular

generalized Cholesky factors. Use a tolerance of 1E-5 when determining if an element is

zero.

2. The maximum number of nonzero below-diagonal elements in these factors.

3. The total time taken for steps 1 and 2.

3) Run the built-in Cholesky factorization on the matrix, in both sparse and full form. Output the

time taken and the number of nonzero below-diagonal elements. For consistency with the HSS

results, use a tolerance of 1E-5 when determining if an element is zero.

4) Repeat steps 1-3 with a tolerance of 1E-10 instead of 1E-5.

I tested on the matrices from pdetool and from the UF website. Descriptions of these matrices are part

of the Table of Results.

I also tested on two types of randomly generated matrices, since the authors achieved good results on

random matrices. The specifications were:

• Generated using Matlab's SPRANDSYM

• Size: 1024 x 1024

• Proportion of nonzeros: 0.1

In addition, I altered some of these matrices to obtain a specific upper bound on HSS rank. Given some

rank p, the goal was to give each of the 6 off-diagonal block rows a rank of at most p. To accomplish

this, each block of dimension N/4 was assigned a rank as follows:

The blocks with rank 0 were simply zeroed out. For each above-diagonal block with rank p/2, all but

p/2 randomly selected columns were zeroed out. To maintain symmetry, the corresponding below-

Figure 3: The rank assigned to

each block of the random

matrix, to achieve an overall

HSS rank p.

diagonal block is just the transpose of this block. Finally, if the resulting matrix may not be positive

definite according to Gershgorin's circle theorem, a positive multiple of the identity matrix was added

so that it was.

Although this process gives the matrices some non-random structure, it should still be more

experimentally reliable than using a collection of non-random matrices.

Correctness of Implementation

My experiments included methods to verify that my implementation was correct. An equation in (2)

shows how the HSS generators of a 4x4 block matrix should multiply out to form each block of the

original matrix. I checked the accuracy of the generators by substituting them into this equation. The 2-

norm of the error for each block was always less than the supplied tolerance, and in most tests was near

machine precision.

For the HSS Cholesky factorization, another equation in (2) shows how the generalized Cholesky

factors should multiply out to the original matrix. This equation only applies to 2x2 block matrices, so I

derive a generalization for 4x4 block matrices in Appendx B. Again, I checked the accuracy of the

generalized Cholesky factors by substituting them into this equation. The 2-norm of the error was

always close to the above error from forming the generators, so the factorization itself added negligible

error.

3. Results

The following tables show correlation coefficients between various pairs of measurements. The full

results for the non-random matrices are also in Appendix A.

Legend

N = dimension of matrix

p = HSS rank of matrix (the maximum rank of the 6 off-diagonal blocks)

Correlations for random matrices

I am considering the random matrices separately because they all have the same dimension, so the

effects of p can be analyzed without considering N. In addition, I am considering only the HSS rank,

not the HSS representation rank, because they were identical for the random matrices and nearly

identical for the non-random ones.

Dependent variable Correlation with:

p p^2

Time to form HSS generators 0.9419 0.9053

Time for HSS Cholesky factorization 0.9247 0.8656

(Time for HSS Cholesky factorization) / (time for CHOL) 0.9284 0.8870

(Time for HSS Cholesky factorization) / (time for

CHOLMOD)

0.9346 0.8956

(time for CHOLMOD) / (time for CHOL) -0.0080 -0.0348

Maximum nonzeros in HSS Cholesky factors 0.9489 0.9883

Total nonzeros in HSS Cholesky factors 0.9646 0.9231

Total nonzeros in CHOL result 0.9942 0.9850

(Maximum nonzeros) / (total nonzeros) in HSS Cholesky

factors

0.9374 0.9818

(Maximum nonzeros in HSS Cholesky factorization) / (total

nonzeros in CHOL)

0.7615 0.8348

(Total nonzeros in HSS Cholesky factorization) / (total

nonzeros in CHOL)

-0.9346 -0.8572

Correlations for non-random matrices

These matrices allow us to consider the effect of N in addition to the other factors.

Independent variable Dependent variable Correlation

N Time to form HSS generators 0.6361

N^2 Time to form HSS generators 0.4800

N * p Time to form HSS generators 0.8277

N * p^2 Time to form HSS generators 0.9292

N Time for HSS Cholesky factorization 0.6587

N^2 Time for HSS Cholesky factorization 0.5136

N * p Time for HSS Cholesky factorization 0.8298

N * p^2 Time for HSS Cholesky factorization 0.9108

Other results

All of the purely random matrices – the ones where the HSS rank was not explicitly set – had HSS

ranks very close to the maximum of N/2. The HSS ranks ranged from 433 to 454, with N = 1024.

The number of below-diagonal nonzeros in the generalized Cholesky factors can be measured in two

ways: the total number of nonzeros in all the factors, and the maximum number in any factor. The

standard Cholesky factorization only produces one factor. All of the matrices, regardless of HSS rank,

had more total nonzeros than the standard Cholesky factor. Some of the matrices, however, had fewer

maximum nonzeros than the standard factor. All of the matrices with this property had relatively low

HSS rank, but the converse is not true. An example is matrix 1138_bus (from the UF collection) when

using tolerance 1E-5. This matrix has dimension 1136, HSS rank 98, and a maximum of 24340 below-

diagonal nonzeros per generalized factor. The standard Cholesky factor has 20847 below-diagonal

nonzeros.

4. Discussion of Results

Algorithm Performance

External Comparisons

In every case, my code was several times slower than Matlab's built-in sparse Cholesky (CHOLMOD)

and even its full Cholesky (CHOL) functions. This doesn't necessarily mean that my code has the

wrong big-O performance, but simply that the constant factor is very large. Several factors may have

caused this slowness. First, much of the logic in my code is in Matlab, while both CHOLMOD and

CHOL are entirely in C. Matlab is an interpreted language, while C gets a performance advantage by

being compiled into machine code. Also, I used various Matlab constructs such as cells without really

knowing how efficient their underlying implementation is. Choosing certain constructs over others

might turn out to improve the code's performance.

I tried to create a fairer comparison by testing my code against a simple, pure-Matlab, no-optimization

Cholesky implementation. 1 However, that was many times slower than my code even on matrices with

near-maximum HSS rank, probably because my code does use some built-in functions such as QR..

The conclusion is that external comparisons don't work in this case. My implementation is a

heterogeneous mix of interpreted Matlab and calls to built-in, compiled functions. It can't fairly be

compared with either all-compiled (such as CHOL and CHOLMOD) or all-Matlab code. A future task

would be to re-implement the algorithms in a single language, using a matrix library written in the same

language. The authors already did this with Fortran and the LAPACK library. There are also C and Java

numerical libraries. 2

Internal Comparisons

The authors claim in (2) that forming the HSS generators should take O(N^2) time, where N is the

dimension of the matrix. This would mean a low correlation between p and this runtime for the random

matrices, which all had the same size. However, a strong positive correlation was found, so the

complexity of my implementation does include a factor of p. Furthermore, for the non-random

matrices, the correlations between this runtime and N, N*p, and N*p^2 were all stronger than N^2.

This can be explained by noting some constraints that the authors set but I could not. In their big-O

proof, they assume that m (the block size) is O(p). In the experiments, they specifically set m = 2*p. I

could not do this, because my implementation was only for a particular block size (m = N/4). Another

possibility is that the constant factors that slowed down my code's performance had most of their

impact on the N, N*p, and N*p^2 terms.

The authors also claim in (2) that generalized HSS Cholesky factorization should take O(N*p^2) time,

where p is the matrix's HSS rank and N is its dimension. There was indeed a strong correlation – with

p^2 for the random matrices and N*p^2 for the nonrandom ones. However, the random matrices gave a

higher correlation with p. Again, the difference between the observed and expected relationships could

be explained by the same factors as above.

1 The Matlab code was found at

http://www.ece.uwaterloo.ca/~dwharder/NumericalAnalysis/04LinearAlgebra/cholesky/.

2 A C example is the GNU Scientific Library, at http://www.gnu.org/software/gsl/. A Java example is

Java Numerics, at http://math.nist.gov/javanumerics/.

The difference between my results and theirs raises a set of interesting questions. How would the

efficiency of the HSS Cholesky factorization change if m << 2p or m >> 2p? Would the runtime

increase in both cases, or would splitting the matrix into "too many" blocks have no effect? The

experiments in (1) provide a hint. They were all run on the same class of matrices, but with different

HSS block sizes. The runtime did bottom out at a certain level and then go back up. However, this

result was for the combination of multifrontal nested dissection and HSS Cholesky factorization, so it

might not apply for the HSS method alone.

Nonzeros in Algorithm Output

Performance is not the only goal of a Cholesky factorization algorithm; minimizing the number of

below-diagonal nonzeros in the factors is also important. However, this algorithm outputs multiple

lower-triangular factors, so there are two counts to consider: the total number of below-diagonal

nonzeros in all the factors, and the maximum such number in any factor. Both increased as the HSS rank

increased, as expected. However, the relationship between them also varied. For matrices with near-

maximum HSS rank, the maximum count was close to the total count, so most of the below-diagonal

nonzeros were concentrated in a single factor. For lower-HSS-rank matrices, the counts were further

apart, so the nonzeros were more evenly distributed. The positive correlation between p and the

(maximum count / total count) ratio for the random matrices confirms this relationship.

I'm not certain whether the total count or the maximum count is a better indicator of the usefulness of

the factorization. My understanding is that HSS applications use each generalized factor by itself, rather

than combining them together. In these cases, a low maximum count might be important.

Patterns in HSS Rank

As stated by the authors and verified in my experiments, a matrix's HSS rank needs to be small relative

to its dimension in order for the HSS representation to be useful. After all, using the authors' rule of

thumb that m = 2p (where m is the block size and p is the HSS rank), an HSS rank of close to N/2

means that the block size should be N. That is, the matrix should not be split up at all! So an important

question is, what type of matrices have the low-rank property?

Many of the real-world matrices from the UF library had low HSS rank, including 1138_bus (size 1138,

HSS rank 98) and crystm01 (size 4875, HSS rank 390). (I would expect more dramatic results if I had

implemented the HSS formation algorithm with more than 16 blocks.) However, the random matrices I

generated all had HSS ranks fairly close to the maximum of N/2. So the low-rank property is not typical

for sparse matrices in general.

The authors also state that the low-rank property often occurs in matrices that come from solving

elliptic PDEs using finite elements. The set of such matrices that I tested on only showed this property

to a limited degree. With 1 mesh refinement, the HSS ranks ranged from 0.68 to 0.78 of the maximum

– close enough to make the HSS representation worthless. With 3 refiments, they were all about 0.50 of

the maximum – a small improvement, but still far from the “low-rank” realm. The matrices might need

more refinements to really show the low-rank property, but the close proximity of the HSS ranks for the

3-refinement matrices suggests some type of asymptote. Perhaps only certain classes of elliptic PDE's

generate matrices with the low-rank property.

For the matrices with HSS rank near the maximum of (size)/2 – the random matrices, the matrices from

pdetool, Trefethen200_b, and Trefethen_300 – the built-in sparse Cholesky factorization took about as

long or longer than the full one. For the other matrices, the built-in sparse factorization took much less

time. This suggests that matrices with low HSS rank also have some property that makes the

CHOLMOD algorithm more efficient.

Limitations of Work

The following limitations refer specifically to observations I made about my implementation.

When testing on small random matrices, I encountered the situation where one of the off-diagonal

blocks is all zeros. The HSS generators couldn't be formed in that case. I assume that matrices

generated from real-world applications generally do not have this property.

The HSS Cholesky factorization failed on four of the matrices with high condition number when using

a tolerance of 1E-5. An intermediate matrix was supposed to be positive definite and had lost that

property. In all but one of the matrices where this happened, using a tolerance of 1E-10 fixed the

problem. This makes sense: a high condition number means that small changes to a matrix may totally

alter its properties. In this case, the small change was eliminating the singular values that were less than

1E-5 when creating the HSS generators.

5. Conclusions

Overall, the experiments were a mixed success. They confirmed the authors' conclusions about

asymptotic complexity for the HSS generator formation algorithm. They supported, but did not

definitely confirm, this asymptotic complexity for the HSS Cholesky factorization. However, the

attempts to find an external standard of comparison were failures.

The experiments also corroborated the authors' statement that many matrices from physical and

mathematical applications have the low-rank property. The UF matrices showed strong results here,

even though the elliptic PDE-based ones did not. My use of varying real-world matrices was a new

addition to the authors' work; they used randomized matrices in (2) and a single class of PDE in (1).

Although I could not achieve the direct one-to-one comparisons that the authors did, I believe that my

results are still sufficient to show the usefulness of the HSS representation. Several steps of future work

would better duplicate or extend the authors' experiments. First, a complete re-implementation should

be able to divide the matrix according to any complete binary tree, not just the small three-level one in

this paper. Also, as previously mentioned, the implementation should be in a single language for better

external comparisons. Finally, a more complete set of finite element problems for elliptic PDE's should

be tested, to more clearly establish which ones result in the low-rank property.

List of Resources

1. Xia, J., Chandrasekaran, S., Gu, M., Li, X.S.: Superfast multifrontal method for large structured

linear systems of equations. SIAM Journal on Matrix Analysis and Applications 31(3), 1382-

1411 (2009). DOI 10.1137/09074543X

2. Xia, J., Chandrasekaran, S., Gu, M., Li, X.S.: Fast algorithms for hierarchically semiseparable

matrices. Numerical Linear Algebra with Applications, 17: 953–976 (2010).

DOI 10.1002/nla.691

3. University of Florida sparse matrix collection: http://www.cise.ufl.edu/research/sparse/matrices

Appendix A: Experimental Results

Matrix name Size Condition

Number

HSS

Rank

(max =

size/2)

Toler-

ance

Processing time (seconds) Number of off-diagonal nonzeros in

Cholesky factors

HSS

algorithm

Sparse

Cholesky

(built-in)

Full

Cholesky

(built-in)

Total of

HSS

Cholesky

factors

Max of HSS

Cholesky

factors

Non-HSS

Cholesky

factor

bcsstk22 136 1.4E+5 28 1E-5 HSS Cholesky factorization failed because an intermediate matrix was not

positive definite.

1E-10 0.0116 0.0002 0.0008 2244 573 863

lund_a 144 4.6E+5 36 1E-5 0.0117 0.0002 0.0008 5248 2637 2557

1E-10 0.0117 0.0003 0.0007 5383 2715 2795

Trefethen_200b 196 7.1E+2 98 1E-5 0.0413 0.0023 0.0011 14379 13987 2557

1E-10 0.0414 0.0030 0.0011 14945 14553 13495

mesh3e1 288 9.0 54 1E-5 0.0137 0.0011 0.0026 7297 1984 2947

1E-10 0.0264 0.0011 0.0027 9657 2618 5653

mesh3em5 288 5.0 54 1E-5 0.0105 0.0012 0.0053 1200 285 270

1E-10 0.0131 0.0012 0.0023 2733 628 914

Trefethen_300 300 2.6E+3 150 1E-5 0.1030 0.0059 0.0024 31500 30900 3923

1E-10 0.1056 0.0067 0.0036 34575 33975 28368

mesh2em5 304 2.9E+2 88 1E-5 0.0432 0.0011 0.0038 14392 5719 2226

1E-10 0.0732 0.0013 0.0029 20069 8150 6771

bcsstk06 420 1.2E+7 72 1E-5 0.0202 0.0013 0.0064 15023 4520 9492

1E-10 0.0260 0.0014 0.0066 23706 7650 13501

nos5 468 2.9E+4 114 1E-5 0.0884 0.0029 0.0065 43263 18967 18633

1E-10 0.0896 0.0060 0.0063 46292 20193 27038

Matrix name Size Condition

Number

HSS

Rank

(max =

size/2)

Toler-

ance

Processing time (seconds) Number of off-diagonal nonzeros in

Cholesky factors

HSS

algorithm

Sparse

Cholesky

(built-in)

Full

Cholesky

(built-in)

Total of

HSS

Cholesky

factors

Max of HSS

Cholesky

factors

Non-HSS

Cholesky

factor

bcsstk19 816 2.8E+11 ? 1E-5 HSS Cholesky factorization failed because an intermediate matrix was not

positive definite.

1E-10 HSS Cholesky factorization failed because an intermediate matrix was not

positive definite.

bcsstk09 1080 3.1E+4 114 1E-5 0.2201 0.0060 0.0280 114808 35455 43125

1E-10 0.2105 0.0059 0.0272 148241 44509 61382

1138_bus 1136 3.2E+6 98 1E-5 0.3181 0.0076 0.0348 57116 18141 20847

1E-10 0.3025 0.0073 0.0309 75447 23827 36243

nasa2910 2908 1.8E+7 437 1E-5 HSS Cholesky factorization failed because an intermediate matrix was not

positive definite.

1E-10 8.9447 0.0896 0.2619 1381350 353861 444569

nasa4704 4704 1.2E+8 533 1E-5 HSS Cholesky factorization failed because an intermediate matrix was not

positive definite.

1E-10 11.5104 0.1729 0.8606 2316417 825071 770057

crystm01 4872 4.2E+2 390 1E-5 7.2590 0.3110 1.0494 849637 316156 33753

1E-10 7.0759 0.3093 1.0004 1030955 380110 85026

s1rmq4m1 5488 1.7E+6 360 1E-5 14.7170 0.1937 1.3398 1582386 535819 734623

1E-10 14.8114 0.1863 1.4299 2437364 827371 980204

Elliptic PDE

w/square

boundary #1

696 5.4E+3 241 1E-5 0.7246 0.0138 0.0127 133516 78597 12300

1E-10 0.8840 0.0154 0.0148 158201 86814 29506

Matrix name Size Condition

Number

HSS

Rank

(max =

size/2)

Toler-

ance

Processing time (seconds) Number of off-diagonal nonzeros in

Cholesky factors

HSS

algorithm

Sparse

Cholesky

(built-in)

Full

Cholesky

(built-in)

Total of

HSS

Cholesky

factors

Max of HSS

Cholesky

factors

Non-HSS

Cholesky

factor

Elliptic PDE

w/L-shaped

boundary #1

556 2.60E+003 191 1E-5 0.4308 0.0091 0.0098 84682 52217 9295

1E-10 0.4730 0.0117 0.0099 96928 54798 19552

Elliptic PDE

w/circular

boundary #1

540 3.6E+3 211 1E-5 0.4381 0.0099 0.0090 90318 65110 10287

1E-10 0.4946 0.0109 0.0078 99401 67067 22468

Elliptic PDE

w/square

boundary #2

2576 3.8E+4 701 1E-5 25.8294 0.1366 0.1883 1546208 610681 62499

1E-10 30.3747 0.1339 0.2003 1843236 726770 185124

Elliptic PDE

w/L-shaped

boundary #2

2144 2.0E+4 615 1E-5 14.4548 0.0909 0.1238 1078433 471416 50053

1E-10 18.1226 0.1282 0.1774 1305218 560476 136522

Elliptic PDE

w/circular

boundary #2

2096 2.9E+4 603 1E-5 15.4345 0.1080 0.1206 1083231 494881 54795

1E-10 18.8469 0.1003 0.1137 1246156 543632 160383

Elliptic PDE

w/square

boundary #3

10144 3.0E+5 2536

For the elliptic PDE's with 3 mesh refinements, Matlab ran out of memory when

calculating the HSS Cholesky factorization. So only the sizes, condition numbers, and

HSS ranks are shown.

Elliptic PDE

w/L-shaped

boundary #3

8416 1.6E+5 2101

Elliptic PDE

w/circular

boundary #3

8256 2.3E+5 2064

Appendix B: Equation Sheet

Equations (4.7) and (4.8) in Chandrasekaran et al's 2008 paper (2) show how to check that the

generalized hierarchically semiseparable Cholesky factorization is correct for a block 2x2 matrix. I will

use these equations, along with (4.1) through (4.6), to generate a similar set of equations for a block

4x4 matrix.

Call the original matrix H. Assume that we have all the results from the generalized HSS Cholesky

factorization algorithm, including the D, D-hat, D-tilde, Q, and L matrices. Equations (4.1) through

(4.6) show where these matrices come from. Then, starting with the 4x4 HSS form of H:

H=[
D1 U 1 B1 U 2

T
U 1 R1 B3 R4

T
U 4

T
U 1 R1 B3 R5

T
U 5

T

U 2 B1

T
U 1

T
D2 U 2 R2 B3 R4

T
U 4

T
U 2 R2 B3 R5

T
U 5

T

U 4 R4 B6 R1

T
U 1

T
U 4 R4 B6 R2

T
U 2

T
D4 U 4 B4 U 5

T

U 5 R5 B6 R1

T
U 1

T
U 5 R5 B6 R2

T
U 2

T
U 5 B4

T
U 4

T
D5

]
Q=[

Q1

Q2

Q3

Q4

]
H=Q[

D1
U1 B1

U 2

T U 1 R1 B3 R4

T U 4

T U 1 R1 B3 R5

T U 5

T

U 2 B1

T U1

T D2
U 2 R2 B3 R4

T U 4

T U 2 R2 B3 R5

T U 5

T

U 4 R4 B6 R1

T U1

T U 4 R4 B6 R2

T U 2

T D4
U 4 B4

U 5

T

U 5 R5 B6 R1

T U 1

T U 5 R5 B6 R2

T U 2

T U5 B4

T U 4

T D5

]QT
 from (4.1)

L=[L3

L6
]

where Lhat_3 is formed as in equation (4.7) and Lhat_6 is formed the same way, by replacing nodes 1

and 2 with nodes 4 and 5.

P=[
P1

P2

P3

P 4

]
H=Q L P [

D1
U 1 B1

U 2

T U 1 R1 B3 R4

T U 4

T U 1 R1 B3 R5

T U 5

T

U 2 B1

T U 1

T D2
U 2 R2 B3 R4

T U 4

T U 2 R2 B3 R5

T U 5

T

U 4 R4 B6 R1

T U 1

T U 4 R4 B6 R2

T U 2

T D4
U 4 B4

U 5

T

U 5 R5 B6 R1

T U 1

T U 5 R5 B6 R2

T U 2

T U 5 B4

T U 4

T D5

]P
T L

T
Q

T

by (4.7) and (4.8)

Note: The paper does not state what the P matrices look like, but that information is not necessary to

check the correctness of the HSS Cholesky factors. All we need to know is that the P_j's are a set of

orthogonal matrices that transform the above matrix into the sparser matrix in the previous step. The

authors assume that these P's exist, so I will too.

Using the substitutions in equations (4.5) and (4.6), this expression becomes:

H=Q L P [D3 U 3 B3U 6

T

U 6 B3

T
U 3

T
D 6

]P
T L

T
Q

T

But this inner matrix is now in 2x2 HSS block form, so we can use equations (4.7) and (4.8) on it

directly to get:

H=Q L P [Q3

Q6
][L3

L6
][P3

P6
]D7[P3

T

P6

T][
L3

T

L6

T][Q3

T

Q6

T]P
T L

T
Q

T

where D_7 can be decomposed into L7 L7

T
.

We have now written the original matrix H in terms of matrices that we already know from the

generalized HSS Cholesky decomposition algorithm. We don't know what the P matrices are, but we

know that they expand matrices in a particular way, so we can simulate their effect. I have used this set

of equations in the cholHSS() function to check the correctness of the generalized Cholesky factors.

	writeup
	resultsTable
	equationSheet

