Exploring personally relevant making

Tiffany Chao and Peter Enns

University of Maryland, College Park
{tjyc, slunk}@umd.edu

1 Introduction

The ability to create something usable, something personally relevant, is im-
mensely powerful. And with increasingly accessible parts and processes, this has
become far more attainable for electronic devices.

Inspired in part by our time in Tangible Interactive Computing [4], we wanted
to explore something that was meaningful for both of us. We chose coffee: more
specifically, how to not burn ourselves while drinking it.

2 Ideation

We were interested, more generally, in what connected devices could afford: smart
“forget-me-nots”, perhaps? New ways to keep track of small children? Most of
our initial thoughts were too broad or too vague, and ultimately discarded. What
we converged on was something smaller, but still compelling: a coffee cup.

There’s definitely a niche for a smart cup: see [6], for example, or [7]. Cups are
ubiquitous already—imagine if you could successfully change them? Starbucks,
for instance, hopes to serve 5% of its store-made beverages! in personal tumblers
by 2015 [5]. Perhaps additional features would make reusable tumblers more
attractive?

That said, our goals were far humbler. We just wanted to improve our per-
sonal coffee-drinking experience. Drink temperature stood out; the rest devel-
oped organically from there.

3 Picking parts

Our base requirements were relatively simple:

1. a means to measure temperature, and
2. a means to convey that temperature to a smartphone.

Our priorities were accordingly straightforward:

1. prototyping ease (over production readiness), and

! For a sense of scale: 1.8% in 2013 meant 46.9 million beverages and over 1.4 million
pounds of paper [5].



2. functionality (over form).

Further trading form for reliability, we settled on an Arduino Uno (for some
sensor-side computing power), a RedBearLab BLE shield (for Arduino-smartphone
communication), and a DS18B20 sensor (for reasonably precise temperature
readings).?

4 The prototype

4.1 Major components

Arduino Uno The Arduino Uno [2] is a microcontroller board with an 8-bit
Atmel AVR microcontroller at its core. It has 14 digital input/output pins, 6
analog inputs, and a standard USB connection for easy programming and serial
communication. Importantly, its standardized pin connectors support a wide
variety of modular “shields”, offering vast extensibility.

RedBearLab BLE shield RedBearLab’s Bluetooth Low Energy (BLE) shield
[3], based on the Nordic nRF8001, is a perfect example of how the Arduino
Uno can be trivially extended. Stacking the shield onto a compatible board
(like the Uno) lets the board function as a BLE peripheral, enabling two-way
communication between it and nearby BLE centrals.

Android smartphone The Android operating system (OS) is Google’s open
source mobile OS. Android applications are developed in Java using the An-
droid software development kit (SDK). With extensive online documentation
and useful tools (debugger, libraries, etc.) freely available, the barrier to entry
is relatively low. And since Android applications have access to abstract APIs
that interface with a wide range of hardware typically found on smartphones
(e.g. Bluetooth modules), they’re quite capable of interacting with other devices
in interesting ways. We developed with two Android smartphones: a Samsung
Galaxy S4 mini and an LG Nexus 4.

4.2 Communication protocol

The Uno is the peripheral; the smartphone is the central. Peripheral-to-central
messages map sensor names to their latest readings, and are sent in JSON (see
Figure 1). Central-to-peripheral messages describe per-sensor threshold adjust-
ments, and are sent in plain text (see Figure 2).

The typical use case has the Uno sending sensor readings (raw data) and
receiving per-sensor threshold adjustment requests (vaguely resembling remote
procedure calls). The latter is far less common.

2 We already had two Android smartphones (a Samsung Galaxy S4 mini and an LG
Nexus 4).



{“temp”:25, “press”:1}
Fig. 1. Example Uno-to-phone message
set temp lo 20

Fig. 2. Example phone-to-Uno message

4.3 Current features

Drink temperature notifications Baristas don’t always get your name right
(though they do try); and even if they do, they may mispronounce it. Then once
you’ve retrieved your coffee, the next phase begins: when can I actually drink
this?

We tackle these two problems with three notifications: one when a hot liquid
is poured into the cup (so you know when your drink is about done), one when the
liquid reaches a reasonable temperature (so you know when it’s safe to drink),
and one when the drink has become too cold (so you can perhaps ask for a
refill).?

“Forget-me-not” notifications Keys, wallets, phones, bags—it’s incredibly
easy to misplace something. And since a “forget-me-not” feature would be useful
for many potential peripherals, we decided to add one.

Any connected peripheral can be tagged as something that shouldn’t be for-
gotten. When the connection between phone and peripheral is lost, the user
receives the appropriate reminder. While this is admittedly a simplistic mecha-
nism, it’s proven to be a reasonable approximation.*

5 Conclusion

We may yet explore additional sensors (an accelerometer to detect when the
cup’s been knocked over, for example), or augment the interaction with infer-
ences based on data already available Android-side. But perhaps it would be
more interesting to consider other prototyping techniques altogether. If we used
conductive tape instead of wires and breadboards, would we have come up with
something different? If we’d chosen a much smaller peripheral, would we have
pursued different interactions? Making is very much a process of bricolage [11];
efforts to expand related prototype techniques are ongoing.” If we revisited the

3 The high and low temperature thresholds actually allow us to address cold drinks as
well. The states there become: (i) not empty, (ii) cold enough, and (iii) too warm.

4 We'll experiment with heartbeat messages in the future.

® And quite varied: recent examples include a 3D printer that uses wool yarn [9], low-
fidelity wireframes printed directly in 3D space [12], inkjet-printed circuits [1,10],
modular circuit stickers [8], and homemade conductive and insulating doughs [13].



same problem a year from now, would we have produced something entirely dif-
ferent? Maybe. Maybe it won’t even be a problem anymore. We look forward to
new developments, all the same.

References

B~ W N =

(=]

10.

11.

12.

13.

. AgIC. http://agic.cc/.

. Arduino Uno. http://arduino.cc/en/Main/arduinoBoardUno.

. BLE Shield. http://redbearlab.com/bleshield/.

. CMSCB838f: Tangible Interactive Computing. http://cmsc838f-s14.wikispaces.

com/.

. Cups and Materials. http://wuw.starbucks.com/responsibility/environment/

cups-and-materials.

. Vessyl. https://www.myvessyl.com/.
. Hiroshi Chigira, Masayuki Thara, Minoru Kobayashi, Akimichi Tanaka, and To-

mohiro Tanaka. Heart rate monitoring through the surface of a drinkware. In
Proceedings of the 2014 ACM International Joint Conference on Pervasive and
Ubiquitous Computing, UbiComp 14, pages 685—689, New York, NY, USA, 2014.
ACM.

. Steve Hodges, Nicolas Villar, Nicholas Chen, Tushar Chugh, Jie Qi, Diana

Nowacka, and Yoshihiro Kawahara. Circuit stickers: Peel-and-stick construction of
interactive electronic prototypes. In Proceedings of the 32Nd Annual ACM Con-
ference on Human Factors in Computing Systems, CHI ’14, pages 1743-1746, New
York, NY, USA, 2014. ACM.

. Scott E. Hudson. Printing teddy bears: A technique for 3d printing of soft inter-

active objects. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI '14, pages 459-468, New York, NY, USA, 2014. ACM.
Yoshihiro Kawahara, Steve Hodges, Benjamin S. Cook, Cheng Zhang, and Gre-
gory D. Abowd. Instant inkjet circuits: Lab-based inkjet printing to support rapid
prototyping of ubicomp devices. In Proceedings of the 2013 ACM International
Joint Conference on Pervasive and Ubiquitous Computing, UbiComp ’13, pages
363-372, New York, NY, USA, 2013. ACM.

David A. Mellis and Leah Buechley. Do-it-yourself cellphones: An investigation
into the possibilities and limits of high-tech diy. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’14, pages 1723-1732,
New York, NY, USA, 2014. ACM.

Stefanie Mueller, Sangha Im, Serafima Gurevich, Alexander Teibrich, Lisa Pfis-
terer, Francgois Guimbretiére, and Patrick Baudisch. Wireprint: 3d printed pre-
views for fast prototyping. In Proceedings of the 27th Annual ACM Symposium on
User Interface Software and Technology, UIST 14, pages 273-280, New York, NY,
USA, 2014. ACM.

Matthew Schmidtbauer, Samuel Johnson, Jeffrey Jalkio, and AnnMarie Thomas.
Squishy circuits as a tangible interface. In CHI ’12 Extended Abstracts on Human
Factors in Computing Systems, CHI EA ’12, pages 2111-2116, New York, NY,
USA, 2012. ACM.



