
 1

Extension and Evaluation of ID3 – Decision Tree Algorithm

Anand Bahety
Department of Computer Science

University of Maryland, College Park
Email: abahety@cs.umd.edu

Abstract

Decision tree algorithms are a method for approximating discrete-valued target
functions, in which the learned function is represented by a decision tree. These kinds of
algorithms are famous in inductive learning and have been successfully applied to a
broad range of tasks. In this paper, I examine the decision tree learning algorithm – ID3
against nominal and continuous attributes extend it to handle missing value. Experiments
to evaluate the performance of the algorithm with continuous valued attributes and
missing attribute values reveal that ID3 does not give acceptable results for continuous
valued attributes and works well in certain data sets with missing values.

1. Introduction
1.1 Decision Tree

Decision trees [1] classify instances by sorting them down the tree from the root
to some leaf node, which provides the classification of the instance. Each node in the tree
specifies a test of some attribute of the instance and each branch descending from that
node corresponds to one of the possible values for this attribute. For example figure
below explains a decision tree based on attribute name outlook.

Figure 1 Decision tree

Play 9
Don’t Play 5

Play 2
Don’t Play 3

Play 4
Don’t Play 0

Outlook ?

Sunny Overcast Rain

Play 2
Don’t Play 0

Play 0
Don’t Play 3

Play 0
Don’t Play 2

Play 3
Don’t Play 0

Wind ?

High Low Weak Strong

Play 3
Don’t Play 2

Humidity ?

Play 9
Don’t Play 5

Play 2
Don’t Play 3

Play 4
Don’t Play 0

Outlook ?

Sunny Overcast Rain

 2

In the above figure, instance with value overcast for the attribute Outlook are positive.
With other values like Sunny and Rain, it leads to sub trees. This type of task to classify
examples into one of a discrete set of possible categories, are often referred to as
classification problems.

 The reasons for decision learning tree algorithms to be attractive are: -

1. They generalize in a better way for unobserved instances, once examined the
attribute value pair in the training data.

2. They are efficient in computation as it is proportional to the number of training
instances observed.

3. The tree interpretation gives a good understanding of how to classify instances
based on attributes arranged on the basis of information they provide and makes
the classification process self-evident.

 There are various algorithms in this area like ID3, C4.5, ASSISTANT etc. I
selected ID3 algorithm to evaluate because it builds tree based on the information
(information gain) obtained from the training instances and then uses the same to classify
the test data. ID3 algorithm generally uses nominal attributes for classification with no
missing values. My hypothesis is that ID3 can even work well on datasets with missing
attribute values to certain extent. I try to evaluate the same with first evaluating the
algorithm in normal circumstances and then proceed to test my hypothesis. The basics of
the algorithm are explained in brief and then implementation and evaluation part is
elaborated.

1.2 Basics of ID3 Algorithm

ID3 is a simple decision learning algorithm developed by J. Ross Quinlan (1986).
ID3 constructs decision tree by employing a top-down, greedy search through the given
sets of training data to test each attribute at every node. It uses statistical property call
information gain to select which attribute to test at each node in the tree. Information gain
measures how well a given attribute separates the training examples according to their
target classification.

1.2.1 Entropy
 It is a measure in the information theory, which characterizes the impurity of an
arbitrary collection of examples. If the target attribute takes on c different values, then
the entropy S relative to this c-wise classification is defined as

Entropy(S) = 2
1

log
c

i i
i

p p
=

−∑

where ip is the proportion/probability of S belonging to class i. Logarithm is base 2
because entropy is a measure of the expected encoding length measured in bits.

For e.g. if training data has 14 instances with 6 positive and 8 negative instances, the
entropy is calculated as

Entropy ([6+, 8-]) = 2 2(6 /14) log (6 /14) (8 /14) log (8 /14)− − = 0.985

 3

A key point to note here is that the more uniform is the probability distribution, the
greater is its entropy.

1.2.2 Information gain
 It measures the expected reduction in entropy by partitioning the examples
according to this attribute. The information gain, Gain(S, A) of an attribute A, relative to
the collection of examples S, is defined as

Gain(S, A) =
()

| |() ()
| |

v
v

v Values A

SEntropy S Entropy S
S∈

− ∑

where ()Values A is the set of all possible values for attribute A, and vS is the subset of S
for which the attribute A has value v. We can use this measure to rank attributes and build
the decision tree where at each node is located the attribute with the highest information
gain among the attributes not yet considered in the path from the root.

1.2.3 ID3 Algorithm
The ID3 algorithm implemented by me is as follows: -

ID3 (Examples, Target_Attribute, Attributes)
Examples are the training examples. Target_Attribute is the attribute whose value is to be
predicted by the tree. Attributes is the list of attributes which may be tested by the learned
decision tree. Returns a decision tree that correctly classifies the given Examples.

- Create a root node for the tree
- IF all examples are positive, Return the single-node tree Root, with label = +
- If all examples are negative, Return the single-node tree Root, with label = -
- If number of predicting attributes is empty, then Return the single node tree Root,

with label = most common value of the target attribute in the examples
- Otherwise Begin

o A The Attribute that best classifies examples
o Decision Tree attribute for Root A
o For each positive value, vi, of A,

 Add a new tree branch below Root, corresponding to the test A =
vi

 Let Examples(vi), be the subset of examples that have the value vi
for A

 If Examples(vi) is empty
• Then below this new branch add a leaf node with label =

most common target value in the examples
• Else below this new branch add the subtree

ID3 (Examples(vi), Target_Attribute, Attributes – {A})
- End
- Return Root

 4

1.2.3 Example
ID3 algorithm is explained here using the classic ‘Play Tennis’ example.
The attributes are Outlook, Temp, Humidity, Wind, Play Tennis. The Play Tennis is the
target attribute.

Outlook Temp Humidity Wind Play Tennis

Sunny Hot High Weak No
Sunny Hot High Strong No
Overcast Mild High Weak Yes
Rain Mild High Weak Yes
Rain Cool Normal Weak Yes
Rain Cool Normal Strong No
Overcast Cool Normal Strong Yes
Sunny Mild High Weak No
Sunny Cool Normal Weak Yes
Rain Mild Normal Weak Yes
Sunny Mild Normal Strong Yes
Overcast Mild High Strong Yes
Overcast Hot Normal Weak Yes
Rain Mild High Strong No

Calculating entropy based on the above formulas gives: -
Entropy ([9+,5-]) = 2 2(9 /14) log (9 /14) (5 /14) log (5 /14)− − = 0.940

Gain(S,Humidity) =0.151
Gain(S,Temp)=0.029
Gain(S, Outlook) = 0.246

Based on the above calculations attribute outlook is selected and algorithm is repeated
recursively. The decision tree for the algorithm is shown in Figure 1.

2. Implementation and Evaluation

I have implemented the ID3 algorithm explained in the above section using Java

programming language. The program takes two files, first the file containing the training
data and next the file containing the test data. The format of the file includes the names of
the attributes in the first line and then the list of instances. The last attribute is always
taken as the target attribute. The program was then executed with different datasets taken
from the UCI Machine Learning Repository [2]. The output of the program includes the
decision tree and also the accuracy results of the classification.

ID3 algorithm is best suited for: -
1. Instance is represented as attribute-value pairs.
2. Target function has discrete output values.
3. Attribute values should be nominal.

 5

2.1 Handling of attributes with nominal values
Experiments conducted on various datasets gave the following results: -

Name of
Dataset

of training
instances

of test
instances

Apparent Error
Rate %

Estimated True
Error Rate %

TicTacToe 669 289 0.0 17.65
Chess 1548 1648 0.0 0.73

Hayes-roth 77 55 7.8 36.37
Balance-Scale 522 335 0.0 31.95

The above datasets contained nominal attribute values. From the results, apparent error
rate, i.e., the error rate on the training examples is very less or zero. But the estimated
true error rate on the test data varies. This is because the results depend on how well the
attributes generalize the dataset and how much training data is available and how relevant
are the attributes in context with the target attribute. For instance in the Chess dataset
there are 36 attributes with boolean target attribute, which helps to generalize in a better
way compared to other data sets.

2.2 Handling attributes with continuous values

 Handling of continuous attributes may lead to inappropriate classification. For
e.g., consider a data set where one of the attribute is date. Well each value of date will
have a different value and thus this attribute will have the highest information gain. But
the problem with such attribute is that they do not generalize in a better way. I have tried
to evaluate the performance of the algorithm on datasets with continuous attributes which
is as follows: -

Name of
Dataset

of training
instances

of test
instances

Apparent Error
Rate %

Estimated True
Error Rate %

CPU
performance

422 231 0.0 68.84

Yeast 838 646 0.0 88.70
Breast Cancer 451 118 0.0 96.60

From the above observation we notice that the performance of ID3 algorithm

degrades to a large extent on datasets with attributes having continuous values. It has zero
error rates on training examples but the same increases drastically on test datasets. Some
of the reasons for the same are: -

1. The attribute which has the highest number of distinct values tends to have the
highest information gain but that attribute may not generalize the dataset in a
better way.

2. Not all the values are seen during training (because of attributes with continuous
values), certain unseen values in the test dataset result in improper classification
of the instance. In order to overcome this problem, the algorithm divided the
continuous range of values into discrete ranges.

 6

In order to improve the performance, the values for an attribute should be mapped to
some discrete values and try to keep them normal. One way is to selects just one value in
a selected interval as a representative of the entire range of values in that interval. Usama
et al.[3] form a cut point over the continuous range to divide the values into two
categories. Equal width interval and adaptive discretization is used [4]. Ventura et al. [5]
present a comparison of several preprocessing steps for converting continuous attributes
to discrete values.

2.3 Handling attributes with missing values

 In real world, datasets contain noise. Well not all the values of each attribute are
available at the time of learning. Missing attribute values can be considered as noise. The
way ID3 algorithm is formulated, it is difficult to deal with missing values.

I tried to evaluate several datasets with missing attribute values in different way.
First of all I just ran the algorithm without any modifications to the algorithm. This
means that any missing value (“?”) will be taken as a new attribute value. The
experimental results are: -

Name of
Dataset

of training
instances

of test
instances

Apparent Error
Rate %

Estimated True
Error Rate %

Soybean 512 171 0.0 20.0
Voting 330 105 0.0 4.80

Mushroom 3955 4169 0.0 4.20

The results show that ID3 seems to give acceptable results for datasets even with
missing attributes. The results depend on the type of dataset. The Soybean dataset has a
large number of missing values but still during learning it develops a classification even
for instances with “?” values for attributes. The Voting data set has few missing values
but all the attributes are boolean which makes the classification process easy. The
decision tree tries to over generalize the data with considering “?” as a new value because
any unseen/missing value for an attribute will come under this category.

 I tried another way to deal with missing values for attributes, i.e., to completely
neglect the instance with attributes having missing values, while learning. Doing so on
the same datasets gave the following results: -

Name of
Dataset

of training
instances

of test
instances

Apparent Error
Rate %

Estimated True
Error Rate %

Soyabean 427 171 0.0 31.60
Voting 176 105 0.0 50.50

Mushroom 2300 4169 0.0 24.00

The above results show that performance of ID3 degrades because in this case all
the instances with missing values are classified incorrectly, as no missing value
information is embedded in the decision tree while learning from training data.

 7

There are some other techniques as well to deal with noise like replacing missing

values with most common value, pruning of the decision tree, having some background
information to preprocess the data into more informative feature space and others.
Karmaker et al. [6] use EM approach to handle missing attribute values.

The average performance of the ID3 over all that cases considered above is shown

in the graph. The average of estimated true error rate in each case is shown and results are
compared.

 Figure 2. Performance of ID3

The above graph shows that the performance of ID3 in case of continuous

attributes deteriorates to a high extent. But in case of missing attribute values the
performance of the algorithm actually depends on how the missing attribute is handled.
Here the performance is better if missing values are considered compared to nominal
attribute value case. Though if the missing values are neglected, the performance slightly
deteriorates.

3. Conclusion

The experiments conducted conclude that ID3 works fairly well on classification
problems having datasets with nominal attribute values. It also works well in case of
missing attribute values but the way missing attributes are handled actually governs the
performance of the algorithm. In case of neglecting instances with missing values for the
attribute leads to high error rate compared to selecting the missing value as a separate
value.

 8

4. Acknowledgement
I thank Dr. James Reggia for his thoughtful discussion and insight in this paper.

5. References

[1] Tom M. Mitchell, (1997). Machine Learning, Singapore, McGraw- Hill.

[2] UCI Machine Learning Repository - http://mlearn.ics.uci.edu/databases

[3] Usama et al. “On the Handling of Continuous-Values Attributes in Decision Tree
Generation”. University of Michigan, Ann Arbor.

[4] R. Chmielewski et al. “Global Discretization of Continuous Attributes as
Preprocessing for Machine Learning”. Int. Journal of Approximate Reasoning 1996.

[5] Dan Ventura et al. “An Empirical Comparison of Discretization Methods”.
Proceedings of the Tenth International Symposium on Computer and Information
Sciences, pp. 443-450, 1995.

[6] Karmaker et al. “Incorporating an EM-Approach for Handling Missing Attribute-
Values in Decision Tree Induction”

[7] Quinlan, J.R. 1986. Induction of Decision trees. Machine Learning

[8] http://www.cs.cornell.edu/Courses/cs578/2003fa/missing_featsel_lecture.ppt

[9] WEKA Software, The University of Waikato. http://www.cs.waikato.ac.nz/ml/weka/

[10] Stuart Russell, Peter Norvig, 1995. Artificial Intelligence: A Modern Approach.
New Jersey: Prantice Hall

