
Extracting and Analyzing Hidden Graphs from Relational
Databases

Konstantinos Xirogiannopoulos

University of Maryland, College Park

kostasx@cs.umd.edu

ABSTRACT
Analyzing interconnection structures among underlying entities or
objects in a dataset through the use of graph analytics has been
shown to provide tremendous value in many application domains.
However, graphs are not the primary representation choice for stor-
ing most data today, and in order to have access to these analyses,
users are forced to manually extract data from their data stores,
construct the requisite graphs, and then load them into some graph
engine in order to execute their graph analysis task. Moreover, in
many cases (especially when the graphs are dense), these graphs
can be significantly larger than the initial input stored in the database,
making it infeasible to construct or analyze such graphs in mem-
ory. In this paper we address both of these challenges by build-
ing a system that enables users to declaratively specify graph ex-
traction tasks over a relational database schema and then execute
graph algorithms on the extracted graphs. We propose a declara-
tive domain specific language for this purpose, and pair it up with
a novel condensed, in-memory representation that significantly re-
duces the memory footprint of these graphs, permitting analysis
of larger-than-memory graphs. We present a general algorithm for
creating such a condensed representation for a large class of graph
extraction queries against arbitrary schemas. We observe that the
condensed representation suffers from a duplication issue, that re-
sults in inaccuracies for most graph algorithms. We then present a
suite of in-memory representations that handle this duplication in
different ways and allow trading off the memory required and the
computational cost for executing different graph algorithms. We
also introduce several novel de-duplication algorithms for remov-
ing this duplication in the graph, which are of independent interest
for graph compression, and provide a comprehensive experimental
evaluation over several real-world and synthetic datasets illustrat-
ing these trade-offs.

1. INTRODUCTION
Analyzing the interconnection structure, i.e., graph structure,

among the underlying entities or objects in a dataset can provide
significant insights and value in many application domains such
as social media, finance, health, sciences, and many others. This
has led to an increasing interest in executing a wide variety of
graph analysis tasks and graph algorithms (e.g., community de-
tection, influence propagation, network evolution, anomaly detec-
tion, centrality analysis, etc.) on graph-structured data. Many spe-
cialized graph databases (e.g., Neo4j [1], Titan [3], OrientDB [2],
etc.), and graph execution engines (e.g., Giraph [8], GraphLab [26],
Ligra [34], Galois [29], GraphX [16]) have been developed in re-
cent years to address these needs.

Although such specialized graph data management systems have
made significant advances in storing and analyzing graph-structured

data, a large fraction of the data of interest initially resides in rela-
tional database systems (or similar structured storage systems like
key-value stores, with some sort of schema); this will likely con-
tinue to be the case for a variety of reasons including the maturity
of RDBMSs, their support for transactions and SQL queries, and
to some degree, inertia. Relational databases, as their name sug-
gests, often include various interesting relationships between enti-
ties within them, and can contain many hidden, interesting graphs.
For example, consider the familiar DBLP dataset, where a user may
want to construct a graph with the authors as the nodes. However,
there are many ways to define the edges between the authors; e.g.,
we may create an edge between two authors: (1) if they co-authored
a paper, or (2) if they co-authored a paper recently, or (3) if they
co-authored multiple papers together, or (4) if they co-authored a
paper with very few additional authors (which may indicate a true
collaboration), or (5) if they attended the same conference, and so
on. Some of these graphs might be too sparse or too disconnected
to yield useful insights, while others may exhibit high density or
noise; however, many of these graphs may result in different types
of interesting insights. It is also often interesting to juxtapose and
compare graphs constructed over different time periods (i.e., tem-
poral graph analytics). There are many other graphs that are possi-
bly of interest here, e.g., the bipartite author-publication or author-
conference graphs – identifying potentially interesting graphs itself
may be difficult for large schemas with 100s of tables.

Currently a user who wants to explore such structures in an ex-
isting database is forced to: (a) manually formulate the right SQL
queries to extract relevant data (which may not complete because
of the space explosion discussed below), (b) write scripts to convert
the results into the format required by some graph database system
or computation framework, (c) load the data into it, and then (d)
write and execute the graph algorithms on the loaded graphs. This
is a costly, labor-intensive, and cumbersome process, and poses a
high barrier to leveraging graph analytics on these datasets. This is
especially a problem given the large numbers of entity types present
in most real-world datasets and a myriad of potential graphs that
could be defined over those.

We are building a system, called GRAPHGEN, with the goal to
make it easy for users to extract a variety of different types of
graphs from a relational database1, and execute graph analysis tasks
or algorithms over them in memory. GRAPHGEN supports an ex-
pressive Domain Specific Language (DSL), based on Datalog [6],
allowing users to specify a single graph or a collection of graphs
to be extracted from the relational database (in essence, as views
on the database tables). GRAPHGEN uses a translation layer to

1Although GRAPHGEN (name anonymized for submission) currently only
supports PostgreSQL, it requires only basic SQL support from the underly-
ing storage engine, and could simply scan the tables if needed.

Graph Representation Edges Extraction Latency (s)
DBLP Condensed 17,147,302 105.552

Full Graph 86,190,578 > 1200.000
IMDB Condensed 8,437,792 108.647

Full Graph 33,066,098 687.223
TPCH Condensed 52,850 15.520

Full Graph 99,990,000 > 1200.000
UNIV Condensed 60,000 0.033

Full Graph 3,592,176 82.042
Table 1: Extracting graphs in GRAPHGEN using our condensed
representation vs extracting the full graph. IMDB: Co-actors graph
(on a subset of data), DBLP: Co-authors graph, TPCH: Connect
customers who buy the same product, UNIV: Connect students who
have taken the same course (synthetic, from http://db-book.com)

generate the appropriate SQL queries to be issued to the database,
and creates an efficient in-memory representation of the graph that
is handed off to the user program or analytics task. GRAPHGEN
supports a general-purpose Java Graph API as well as the stan-
dard vertex-centric API for specifying analysis tasks like PageR-
ank. Figure 1 shows a toy DBLP-like dataset, and the query that
specifies a “co-authors” graph to be constructed on that dataset.
Figure 1c shows the requested co-authors graph.

The main scalability challenge in extracting graphs from rela-
tional tables is that: the graph that the user is interested in ana-
lyzing may be too large to extract and represent in memory, even
if the underlying relational data is small. There is a space explo-
sion because of the types of high-output2 joins that are often needed
when constructing these graphs. Table 1 shows several examples of
this phenomenon. On the DBLP dataset restricted to journals and
conferences, there are approximately 1.6 million authors, 3 million
publications, and 8.6 million author-publication relationships; the
co-authors graph on that dataset contained 86 million edges, and re-
quired more than half an hour to extract on a laptop. The condensed
representation that we advocate in this paper is much more efficient
both in terms of the memory requirements and the extraction times.
The DBLP dataset is, in some sense, a best-case scenario since
the average number of authors per publication is relatively small.
Constructing the co-actors graph from the IMDB dataset results in
a similar space explosion. Constructing a graph connecting pairs
of customers who bought the same item in a small TPCH dataset
results in much larger graph than the input dataset. Even on the
DBLP dataset, a graph that connects authors who have papers at
the same conference contains 1.8B edges, compared to 15M edges
in the condensed representation.

In this paper, we address the problem of analyzing such large
graphs by storing and operating upon them using a novel condensed
representation. The relational model already provides a natural
such condensed representation, obtained by omitting some of the
high-output joins from the query required for graph extraction. Fig-
ure 1(d) shows an example of such a condensed representation for
the co-authors graph, where we create explicit nodes for the pubs,
in addition to the nodes for the authors; for two authors, u and v,
there is an edge u ! v, iff there is a directed path from u to v in
this representation. This representation generalizes the idea of us-
ing cliques and bicliques for graph compression [10, 22]; however,
the key challenge for us is not generating the representation, but
rather dealing with duplicate paths between two nodes.

In Figure 1, we can see such a duplication for the edge a1 ! a4
since they are connected through both p1 and p2 . Such dupli-
cation prevents us from operating on this condensed representa-
tion directly. We develop a suite of different in-memory represen-
tations for this condensed graph that paired with a series of “de-

2We use this term instead of “selectivity" terms to avoid confusion.

Nodes(ID, Name):-Author(ID, Name).
Edges(ID1, ID2):-AuthorPub(ID1,
PubID), AuthorPub(ID2, PubID).

aId name

AuthorPubAuthor

aid pid

a1 p1

a2 p1

a3 p1

a4 p1

a6 p1

a1 p2

a4 p2

a5 p2

a2 p3

a3 p3

a5 p3

a6 p3

a7 p3

a1 name1

a2 name2

a3 name3

a4 name4

pId title

Publication

p1 title1

p2 title2

p3 title3

a5 name5

a6 name6

a7 name7

a8 name8

a8 p3

(a) Relational Tables

p1

p2

p3

a1

a2

a3

a4

a5

a6

a7

a8

(d) C-DUP (28 Edges) (e) De-duplicated
(32 Edges)

a1

a2

a3
a4

a5

a6

a7 a8

(c) Expanded Graph (48 Edges (unidirectional))

a1

a2

a3

a4

a5

a6

a7

a8

p3

a1

a2

a3

a4

a5

a6

a7

a8

a1

a2

a3

a4

a5

a6

a7

a8

(b) Extraction Query [Q1]

Figure 1: Key concepts of GRAPHGEN. (Note: the author nodes
here are being shown twice for the sake of simplicity, they are not
being stored twice)

duplication” algorithms, leverage a variety of techniques for deal-
ing with the problem of duplicate edges and ensure only a single
edge between any pair of vertices. We discuss the pros and cons of
each representation and present a formal analysis comparing their
trade-offs. We also present an extensive experimental evaluation,
using several real and synthetic datasets.

Key contributions of this paper include:
• A high-level declarative DSL based on Datalog for intuitively

specifying graph extraction queries.
• A general framework for extracting a condensed representa-

tion (with duplicates) for a large class of extraction queries
over arbitrary relational schemas.

• A suite of in-memory representations to handle the duplication
in the condensed representation.

• A systematic analysis of the benefits and trade-offs offered by
extracting and operating on these representations.

• Novel techniques for “de-duplicating” these condensed graphs.
• The first end-to-end system for enabling analytics on graphs

that exist within purely relational datasets, efficiently, and with-
out requiring complex ETL.

Outline: We begin with a brief discussion of how related work
has leveraged relational databases for graph analytics in the past
(Section 2). We then present an overview of GRAPHGEN, briefly
describe the graph extraction DSL, and discuss how GRAPHGEN
decides when the condensed representation should be extracted in-
stead of the full graph (Section 3). We then discuss the different
in-memory representations (Section 4) and present a series of de-
duplication algorithms (Section 5). Finally, we present a compre-
hensive experimental evaluation (Section 6).

2. RELATED WORK
There has been much work on graph data management in re-

cent years, most of it orthogonal to the work we present. Superfi-
cially the most closely related work is the recent work on leverag-
ing relational databases for graph analytics, whose aim is to show
that specialized graph databases or analytics engines may be un-
necessary. Vertexica [21, 20] and GRAIL [13] show how to nor-

malize and store a graph dataset as a collection of tables in an
RDBMS (i.e., how to “shred” graph data), and how to map a sub-
set of graph analysis tasks to relational operations on those tables.
EmptyHeaded [5] is a relational database engine focused on effi-
cient graph processing by implementation of worst-case optimal
join algorithms to provide fast query processing on graphs that are
stored as relational tables. Aster Graph Analytics [35] and SAP
HANA Graph Engine [32] also supports specifying graphs within
an SQL query, and applying graph algorithms on those graphs.
However, the interface for specifying which graphs to extract is
not very intuitive and limits the types of graphs that can be ex-
tracted. Aster also only supports the vertex-centric API for writing
graph algorithms. SQLGraph [36] addresses the challenges in stor-
ing property graphs (a common graph data model) in an RDBMS,
focusing on the storage and layout issues; they also show how to
answer Gremlin queries, which is a graph traversal-based DSL for
querying property graphs, by translating them to SQL.

GRAPHGEN has different goals compared to that prior work and
faces fundamentally different challenges (Figure 2). Those sys-
tems do not consider the problem of extracting graphs from ex-
isting relational datasets, and can only execute analysis tasks that
can be written using the vertex-centric programming framework or
can be mapped to SQL. GRAPHGEN, on the other hand, focuses
on datasets that are not stored in a graph format. While it pushes
some computation to the relational engine, most of the complex
graph algorithms are executed on a graph representation of the data
in memory through a full-fledged native graph API. This makes
GRAPHGEN also suitable for more complex analysis tasks that are
often cannot be succintly expressed and computed using the vertex-
centric framework. This native graph API enables access to analy-
ses like community detection, dense subgraph detection/ matching,
etc., provided the extracted condensed graph fits in memory.

There also exist systems for migrating a relational database to
a graph database by using the relational schema to reason about
the graph structure [12]. Users however are typically not interested
in completely migrating their data over to a graph database if they
aren’t strictly dealing with graph-centric workloads. Ringo [31] has
somewhat similar goals to GRAPHGEN and provides operators for
converting from an in-memory relational table representation to a
graph representation. It however does not consider expensive high-
output joins that are often necessary for graph extraction, or the
alternate in-memory representation optimizations that we discuss
here, but instead assumes a powerful large-memory machine to deal
with both issues. Ringo does include an extensive library of built-in
graph algorithms in SNAP [25], and we do plan to support Ringo
as a front-end analytics engine for GRAPHGEN.

Table2Graph [24] is built towards extracting large graphs from
relational databases using MapReduce jobs, while de-coupling the
execution of the required join operations from the RDBMS. In Ta-
ble2Graph users need to provide a set of descriptive XML files
that specify the exact mappings for nodes, edges, properties and
labels. Similarly, GraphBuilder [19] is a MapReduce-based frame-
work for extracting graphs from unstructured data through user-
defined Java functions for node and edge specifications. GLog [15]
is a declarative graph analysis language based on Datalog which is
evaluated into MapReduce code towards efficient graph analytics
in a distributed setting. Again, the underlying data model they use
(Relational-Graph tables) assumes that the complete graph to be
analyzed explicitly exists as vertices and edges tables. It’s impor-
tant to note that none of the mentioned works are concerned with
providing an intuitive interface or language for the mapping and
extraction of hidden graphs from the relational schema.

There has been much work on large-scale, distributed graph an-

Ingest/Shredding

Nodes Edges Props,..

SQL Translation
Layer

Graph Analytics/query

A relational database

Graph Definition
+

Graph Analytics/query

In-memory Graph
Execution Engine

A relational database
(i) (ii)

Figure 2: GRAPHGEN (right) has fundamentally different goals
than recent work on using relational databases for graph analytics
(left)

alytics systems, some of which have adopted high-level declarative
interfaces based on Datalog [37, 33, 15, 9]. Our use of Datalog is
restricted to specifying which graphs to extract (in particular, we
do not allow recursion), and we also do not consider distributed
execution issues in this paper. Combining declarative graph extrac-
tion ala GRAPHGEN, and high-level graph analytics frameworks
proposed in that prior work, is a rich area for future work.

There has also been a significant amount of work on minimizing
computation time in graph processing through the development of
distributed graph processing engines. Some of these systems are
built for in-memory computation [29, 34, 16, 28, 17], while [23]
is disk-based and enable large graph processing through strategic
data placement onto disk that enables more efficient scans from
disk. The GRAPHGEN prototype currently only works on a single,
shared memory system, there is however potential for integrating
GRAPHGEN with some of this work in order to optimize the entire
pipeline from graph definition and extraction all the way up to exe-
cution, which can be potentially be sped up by using some of these
techniques.

Some very relevant work has also emerged recently on using the
graph data model for general query processing on queries that in-
volve a large number of joins, by loading relational data as a graph
into a distributed graph processing engine [27].

An initial prototype of the GRAPHGEN system was recently demon-
strated [4], where the primary focus was on automatically propos-
ing and extracting hidden graphs given a relational schema. The
current submission provides an in-depth description of the tech-
niques and algorithms for efficient graph extraction as well as a
comprehensive experimental evaluation of the trade-offs therein.

3. SYSTEM OVERVIEW
We begin with a brief description of the key components of GRAPH-

GEN, and how data flows through them. We then sketch our Datalog-
based DSL for specifying graph extraction jobs, and APIs provided
to the users after a graph has been loaded in memory.

3.1 System Architecture
The inner workings of GRAPHGEN and the components that or-

chestrate its functionality are demonstrated in Figure 3. The corner-
stone of the system is an abstraction layer that sits atop an RDBMS,
accepts a graph extraction task, and constructs the queried graph(s)
in memory, which can then be analyzed by a user program. The
graph extraction task is expressed using a Datalog-like DSL, where
the user specifies how to construct the nodes and the edges of the
graph (in essence, as views over the underlying tables). This spec-

Pre-processing,
Optimization, and
Translation to SQL Graph Generation

Query
Results

Analysis
Queries

Final SQL
Queries

Cardinali-
ties

Relational Database
(PostgreSQL)

Standard Graph

Front End
Web App

NetworkX / Other
Graph Libraries

Vertex Centric
Framework Graph API Python API/ Graph

Serialization

Serialized
 Graph

Datalog
Query

Datalog
Query

Datalog Query/
Vertex Centric
Program

In-memory
Graph

In-memory
Graph

Condensed Graph

Figure 3: GRAPHGEN Overview

ification is parsed by a custom parser, which then analyzes the
selectivities of the joins required to construct the graph by using
the statistics in the system catalog. This analysis is used to decide
whether to hand over the partial or complete edge creation task to
the database, or to skip some of the joins and load the implicit edges
in memory in a condensed representation (Section 4.2).

The system then builds one or more batches of SQL queries,
where each batch defines one or more of the graphs that need to
be extracted. We aim to ensure that the total size of the graphs
constructed in a single batch (in our memory-efficient representa-
tion) is less than the total amount of memory available, so that the
graphs can be analyzed in memory. The queries are executed in
sequence, and the output graph object(s) is (are) handed to the user
program. A major focus of this work is to enable analysis on very
large graphs that would typically not fit in memory.

After extraction, users can (a) operate directly upon any por-
tion of the graph using the Java Graph API, (b) define and run
multi-threaded vertex-centric programs on it, (c) visually explore
the graph through our front-end web application, or (d) serialize
the graph onto disk (in its expanded representation) in a standard-
ized format, so that it can be further analyzed using any specialized
graph processing framework or graph library (e.g., NetworkX).

3.2 Datalog-Based DSL
Datalog has seen a revival in the recent years, and has been in-

creasingly used for expressing data analytics workflows, and es-
pecially graph analysis tasks [18, 33, 15]. The main reason for
its emergence lies in its elegance for naturally expressing recursive
queries, but also in its overall intuitive and simple syntax choices.
Our domain specific language (DSL) is based on a limited non-re-
cursive subset of Datalog, augmented with looping and aggregation
constructs; in essence, our DSL allows users to intuitively and suc-
cinctly specify nodes and edges of the target graph as views over
the underlying database tables. We note that our goal here is not to
specify a graph algorithm itself using Datalog (like Socialite [33]),
although we plan to investigate that option in future work.

Our DSL uses three special keywords: Nodes, Edges, and
For; the last keyword can be used for optionally expressing si-
multaneous extraction of multiple graphs. A graph specification
comprises of at least one Nodes statement, followed by at least
one Edges statement. Users may specify multiple Nodes and
Edges statements in order to extract, say, heterogeneous graphs
with multiple different types of vertices and edges.

[Q2] For Author(X, _).
Nodes(ID, Name) :- Author(ID, Name), ID = X.
Nodes(ID, Name) :- AuthorPub(X,P), AuthorPub(ID,P),

Author(ID, Name).
Edges(ID1, ID2) :- Nodes(ID1, _), Nodes(ID2, _),

AuthorPub(ID1, P), AuthorPub(ID2, P).

[Q3] Nodes(ID, Name) :- Customer(ID, Name).
Edges(ID1, ID2) :- Orders(order_key1, ID1),LineItem(

order_key1, part_key), Orders(order_key2, ID2),
LineItem(order_key2,part_key).

[Q4] Nodes(ID, Name) :- Instructor(ID, Name).
Nodes(ID, Name) :- Student(ID, Name).
Edges(ID1, ID2) :- TaughtCourse(ID1, courseId),

TookCourse(ID2, courseId)

Figure 4: Graph Extraction Query Examples (cf. Figure 1 for Q1)

The typical workflow for a user when writing a query in this DSL
would be to initially inspect the database schema, figure out which
relations are relevant to the graph they are interested in exploring,
and then choose which attributes in those relations would connect
the defined entities in the desired way. We assume here that the user
is knowledgeable about the different entities and relationships exis-
tent in the database, and is able to formulate such queries; we have
built a visualization tool that would allow users to discover poten-
tial graphs and construct such extraction queries in an interactive
manner [4], however that is not the focus of this paper.

Figure 4 demonstrates several examples of extraction queries. In
each one of these queries, a set of common attributes represents
an equi-join between their respective relations. An extraction task
can contain any number of joins; e.g. [Q1] in Figure 1, only re-
quires a single join (in this case a self-join on the AuthorPub
table), while [Q3] as shown in Figure 5a would require a total of
3 joins, some of which (in this case Orders(order_key1, ID1) 1
LineItem(order_key1, partkey), and Orders(order_key2, ID2) 1
LineItem(order_key2, partkey)) will be handed off to the database
since they are highly selective key-foreign key joins. The extraction
query [Q4] extracts a bi-partite (heterogeneous) directed graph be-
tween instructors and students who took their courses, shown in
Figure 5b.
[Q2] shows how the For loop feature can be used to extract

separate “ego-graphs” for every individual node. We have imple-
mented a means for extracting these ego-graphs efficiently without
the need for a series of independent SQL queries (through “tag-
ging” returned rows), but omit the details due to lack of space.

3.3 Parsing and Translation
The first step towards communicating the user defined graph ex-

traction to the system is the parsing of the Datalog query and trans-
lation into the appropriate SQL. We have built a custom parser for
the DSL described above using the ANTLR [30] parser generator.
The parser is then used to create the Abstract Syntax Tree (AST) of
the query which is in turn used for translation into SQL. GRAPH-
GEN evaluates programs in our DSL and translates them into SQL,
line at a time. Connections between the lines of code loosely exist
(e.g., code below a For defines a multiple ego-graph query, and
translation is done accordingly), and are maintained throughout the
execution of the code from one statement to the next.

The translation itself requires a full walk of the AST, during
which the system gathers information about the statement, loads the
appropriate statistics for each involved relation from the database
and creates a translation plan based on the information gathered.
Lastly, the generation of the final SQL queries is actually triggered
upon exiting the AST walk and is based on this translation plan.
The specifics depend on the nature of the Edges statement(s).

Case 1: Each of the Edges statements corresponds to an acyclic,
aggregation-free query. In that case, we may load a condensed rep-
resentation of the graph into memory (Section 4.2).
Case 2: At least one Edges statement violates the above condition,
in which case, we simply create a single SQL statement to construct
the edges and execute that to load the graph into memory in an
expanded fashion.

The rest of this paper focuses on Case 1 (which covers all the ex-
amples shown till now) and shows how to reduce memory require-
ments and execute graph algorithms more efficiently than loading
the entire expanded graph in memory. In future work, we plan to
generalize our ideas to other classes of queries in Case 2.

3.4 Analyzing the Extracted Graphs
The most efficient means to utilize GRAPHGEN is to directly

operate on the graph either using our native Java Graph API, or
through a vertex-centric API that we provide. Both of these have
been implemented to operate on all the in-memory (condensed or
otherwise) representations that we present in Section 4.

Basic Data Structure: The basic data structure we choose to store
a graph in memory is a variant of Compressed Sparse Row (CSR) [11]
format that allows for a higher degree of mutability (even the con-
densed representations uses this data structure underneath). Instead
of maintaining single arrays for each node’s incoming and outgoing
edges like traditional CSR, we instead choose to maintain a set of
two ArrayLists, for the in- and out-going edges of each vertex.
We use Java ArrayLists instead of linked lists for space effi-
ciency. Our custom graph data structure ensures the same graph
traversal operation runtime complexities as CSR with the small
space overhead of ArrayLists. On top of this, our data struc-
ture supports deletion of edges and vertices with the appropriate
overheads those entail. Because we are using ArrayLists, the
deleteVertex operation in particular requires rebuilding of the
entire index of vertices. We therefore implement a lazy deletion
mechanism where vertices are initially only removed from the in-
dex, thus logically removing them from the graph, and are then
physically removed from the vertices list, in batch, at a later point
in time. This way only a single re-building of the vertices index is
required after a batch removal.

Java API: All of our in-memory representations implement a sim-
ple graph API, consisting of the following 7 operations:

• getVertices(): This function returns an iterator over
all the vertices in the graph.

• getNeighbors(v): For a vertex v, this function returns
an iterator over the neighbors of v, which itself supports the
standard hasNext() and next() functions. If a list of
neighbors is desired (rather than an iterator), it can be re-
trieved using getNeighbors(v).toList.

• existsEdge(v, u): Returns true if there is an edge be-
tween the two vertices.

• addEdge(v, u), deleteEdge(v, u), addVer-
tex(v), deleteVertex(v): These allow for manip-
ulating the graphs by adding or removing edges or vertices.

The Vertex class also supports setting or retrieving properties as-
sociated with a vertex.

Vertex-centric API: The vertex-centric conceptual model has been
extensively used in the past to express complex graph algorithms by
following the “think-like-a-vertex” methodology in designing these
algorithms. We have implemented a simple, multi-threaded variant
of the vertex-centric framework in GRAPHGEN that allows users to
implement a COMPUTE function and then execute that against the
extracted graph regardless of its in-memory representation. The

o_key c_key

Orders

o1 c1

o2 c2

o3 c3

o_key p_key

LineItem

o1 p1

o1 p2

o2 p1

o2 p3

o3 p1

o3 p2

o3 p3

TookCourse

s_Id c_Id

s1 c1

s2 c2

s3 c3

i1_s

i2_s

TaughtCourse

i_Id c_Id

i1 c1

i1 c2

i2 c1

i2 c3

c1

c2

c3

s_Id name

Student

i_Id name

Instructor

s1_t

s2_t

s3_t

(a) Execution of [Q3] (b) Execution of [Q4]

c_key name

Customer

Lineitem

Orders

c1_s

c2_s

c3_s

p1

p2

p3

o1

o2

o3

o1

o2

o3

c1_t

c2_t

c3_t

Lineitem

Orders

s1_s

s2_s

s3_s

i1_t

i2_t

Figure 5: Extraction examples: (a) Multi-layered condensed repre-
sentation, (b) extracting a heterogeneous bipartite graph

framework is based on a VertexCentric object which coor-
dinates the multi-threaded execution of the compute() function
for each job. The coordinator object splits the graph’s nodes into
chunks depending upon the number of cores in the machine, and
distributes the load evenly across all cores. It also keeps track of
the current superstep, monitors the execution and triggers a termi-
nation event when all vertices have voted to a halt. Users simply
need to implement the Executor interface which contains a sin-
gle method definition for compute(), instantiate their executor
and call the run()method of the VertexCentric coordinator object
with the Executor object as input. The implementation of message
passing we’ve adopted is similar to the gather-apply-scatter (GAS)
model used in GraphLab [?] in which nodes communicate by di-
rectly accessing their neighbors’ data, thus avoiding the overhead
of explicitly storing messages in some intermediary data structure.
External Libraries: GRAPHGEN can also be used through a li-
brary called higraphpy, a Python wrapper over GRAPHGEN allow-
ing users to run queries in our DSL through simple Python scripts
and serialize the resulting graphs to disk in a standard graph format,
thus opening up analysis to any graph computation framework or
library. A similar workflow is used in the implementation of our
front-end web application [4] through which users can get a visual
cue of the kinds of graphs that exist within their relational schema,
and decide whether they would be interesting to analyze. However,
since those require loading the graph into an external application,
the graph has to be in its expanded (non-condensed) format.

4. IN-MEMORY REPRESENTATION AND
TASK EXECUTION

The key efficiency challenge with extracting graphs from rela-
tional databases is that: in most cases, because of the normalized
nature of relational schemas, queries for extracting explicit rela-
tionships (i.e., edges) between entities from relational datasets (i.e.,
nodes) requires expensive non-key joins. Because of this, the ex-
tracted graph may be much larger than the input size itself (cf. Ta-
ble 1). We propose instead maintaining and operating upon the
extracted graph in a condensed fashion. We begin with describing
a novel condensed representation that we use and discuss why it is

ideally suited for this purpose; we also discuss the duplication issue
with this representation. We then present an general algorithm for
constructing such a condensed representation for a graph extraction
query over an arbitrary schema, that guarantees that the condensed
representation requires at most as much memory as loading all the
underlying tables in the worst case. The condensed representation
and the algorithm can both handle any non-recursive, acyclic graph
extraction query over an arbitrary schema.

We then propose a series of in-memory variations of the basic
condensed representation that handle the duplication issue through
uniquely characterized approaches. These representations are prod-
ucts of a single-run pre-processing phase on top of the condensed
representation using an array of algorithms described in Section 5.
We also expand on the natural trade-offs associated with storing
and operating on each in-memory representation.

4.1 Condensed Representation & Duplication
The idea of compressing graphs through identifying specific types

of structures has been around for a long time. Feder and Mot-
wani [14] presented the first theoretical analysis of clique-based
compression; there, one takes a clique C in the given (undirected)
graph, adds a new virtual node corresponding to C (say vC), re-
moves all the edges amongst the nodes in C, and instead connects
each of those nodes with vC . Other structures (e.g., bi-cliques [10])
can be used instead as well.

Here, we propose a novel condensed representation, called C-
DUP, that is better suited for our purposes. Given a graph extraction
query, let G(V,E) denote the output expanded graph; for clar-
ity of exposition, we assume that G is a directed graph. We say
GC(V

0, E0
) is an equivalent C-DUP representation if and only if:

(1) for every node u 2 V , there are two nodes us, ut 2 V 0 – the
remaining nodes in V 0 are called virtual nodes;
(2) GC is a directed acylic graph, i.e., it has no directed cycle;
(3) in GC , there are no incoming edges to us8u 2 V and no out-
going edges from ut8u 2 V ;
(4) for every edge hu ! vi 2 E, there is at least one directed path
from us to vt in GC .

Figure 5 shows two examples of such condensed graphs. In
the second case, where a heterogeneous bipartite graph is being
extracted, there are no outgoing edges from s[123]s or incoming
edges to i[12]t, since the output graph itself only has edges from i_
nodes to s_ nodes.

Although we assume there are two copies of each real node in
GC here, the physical representation of GC only requires one copy
(with special-case code to handle incoming and outgoing edges).
Duplication Problem: The above definition allows for multiple
paths between us and vt, since that’s the natural output of the
extraction process below. Any graph algorithm whose correctness
depends solely on the connectivity structure of the graph (we call
these “duplicate-insensitive” algorithms), can be executed directly
on top of this representation, with a potential for speedup (e.g.,
connected components or breadth-first search). However, this du-
plication causes correctness issues on all non duplicate-insensitive
graph algorithms. The duplication problem entails that program-
matically, when each real node tries to iterate over its neighbors,
passing through its obligatory virtual neighbors, it may encounter
the same neighbor more than once; this indicates a duplicate edge.
The set of algorithms we propose in Section 5 are geared towards
dealing with this duplication problem.
Single-layer vs Multi-layer Condensed Graphs: A condensed graph
may have one or more layers of virtual nodes (formally, a con-
densed graph is called multi-layer if it contains a directed path of

length > 2). In the majority of cases, most of the joins involved in
extracting these graphs will be simple key-foreign key joins, and
high-output joins (which require use of virtual nodes) occur rela-
tively rarely. Although our system can handle arbitrary multi-layer
graphs, we also develop special algorithms for the common case of
single-layer condensed graphs.

4.2 Extracting a Condensed Graph
The key idea behind constructing a condensed graph is to post-

pone certain joins. Here we briefly sketch our algorithm for mak-
ing those decisions, extracting the graph, and postprocessing it to
reduce its size.
Step 1: First, we translate the Nodes statements into SQL queries,
and execute those against the database to load the nodes in memory.
In the following discussion, we assume that for every node u, we
have two copies us (for source) and ut (target); physically we only
store one copy.
Step 2: We consider each Edges statement in turn. Recall that the
output of each such statement is a set of 2-tuples (corresponding to
a set of edges between real nodes), and further that we assume the
statement is acyclic and aggregation-free (cf. Section 3.3, Case 1).
Without loss of generality, we can represent the statement as:
Edges(ID1, ID2) : �R1(ID1, a1), R2(a1, a2), ..., Rn(an�1, ID2)

(two different relations, Ri and Rj , may correspond to the same
database table). Generalizations to allow multi-attribute joins and
selection predicates are straightforward.

For each join Ri(ai�1, ai) 1ai Ri+1(ai, ai+1), we retrieve the
number of distinct values, d, for ai (the join attribute) from the
system catalog (e.g., n_distinct attribute in the pg_stats ta-
ble in PostgreSQL). If |Ri||Ri+1|/d > 2(|Ri|+ |Ri+1|), then we
consider this a high-output join and mark it so.
Step 3: We then consider each subsequence of the relations with-
out a high-output join, construct an SQL query corresponding to it,
and execute it against the database. Let l,m, ..., u denote the join
attributes which are marked as high-output. Then, the queries we
execute correspond to:
res1(ID1, al) : �R1(ID1, a1), ..., Rl(al�1, al),
res2(al, am) : �Rl+1(al, al+1), ..., Rm(am�1, am), ..., and
resk(au, ID2) : �Ru+1(au, au+1), ..., Rn(an�1, ID2).
Step 4: For each join attribute attr 2 {l,m, ..., u}, we create a set
of virtual nodes corresponding to all possible values attr takes.
Step 5: For (x, y) 2 res1, we add a directed edge from a real node
to a virtual node: xs ! y. For (x, y) 2 resk, we add a directed
edge x ! yt. For all other resi, for (x, y) 2 resi, we add an edge
between two virtual nodes: x ! y.
Step 6 (Pre-processing): For a virtual node, let in and out de-
note the number of incoming and outgoing edges respectively; if
in ⇥ out 6, we “expand” this node, i.e., we remove it and
add direct edges from its in-neighbors to its out-neighbors. This
pre-processing step can have a significant impact on memory con-
sumption. We have implemented a multi-threaded version of this
to exploit multi-core machines, which resulted in several non-trivial
concurrency issues. We omit a detailed discussion for lack of space.

If the query contains multiple Edges statements, the final con-
structed graph would be the union of the graphs constructed for
each of them.

It is easy to show that the constructed graph satisfies all the re-
quired properties listed above, that it is equivalent to the output
graph, and it occupies no more memory than loading all the input
tables into memory (under standard independence assumptions).

In the example shown in Figure 5a, the graph specified in query
[Q3] that is extracted assumes that all three of the joins involved

portray low selectivity, and so we choose not to hand any of them
to the database, but extract the condensed representation by instead
projecting the tables in memory and creating intermediate virtual
nodes for each unique value of each join condition.

4.3 In-Memory Representations
Next, we propose a series of in-memory graph representations

that can be utilized to store the condensed representation mentioned
above in its de-duplicated state. We focus on the implementation of
the getNeighbors() iterator, which underlies most graph algorithms.
C-DUP: Condensed Duplicated Representation: This is the rep-
resentation that we initially extract from the relational database,
which suffers from the edge duplication problem. We can uti-
lize this representation as-is by employing a naive solution to de-
duplication, i.e., by doing de-duplication on the fly as algorithms
are being executed. Specifically, when we call getNeighbors(u), it
starts a depth-first traversal from us and returns all the real nodes
(_t nodes) reachable from us; it also keeps track of which neigh-
bors have already been seen (in a hashset) and skips over them if
the neighbor is seen again.

This is typically the most memory-efficient representation, does
not require any pre-processing overhead, and is a good option for
graph algorithms that access a small fraction of the graph (e.g., if
we were looking for information about a small number of specific
nodes). On the other hand, due to the required hash computations
at every call, the execution penalty for this representation is high,
especially for multi-layer graphs; it also suffers from memory and
garbage collection bottlenecks for algorithms that require process-
ing all the nodes in the graph. Operations like deleteEdge()
are also quite involved in this representation, as deletion of a logi-
cal edge may require non-trivial modifications to the virtual nodes.
EXP: Fully Expanded Graph: On the other end of the spectrum,
we can choose to expand the graph in memory, i.e., create all direct
edges between all the real nodes in the graph and remove the virtual
nodes. The expanded graph typically has a much larger memory
footprint than the other representations due to the large number of
edges. It is nevertheless, naturally, the most efficient representation
for operating on, since iteration only requires a sequential scan over
one’s direct neighbors. The expanded graph is the baseline that
we use to compare the performance of all other representations in
terms of trading off memory with operational complexity.
DEDUP-1: Condensed De-duplicated Representation: This rep-
resentation is similar to C-DUP and uses virtual nodes, but the ma-
jor difference that it does not suffer from duplicate paths. This
representation typically sits in the middle of the spectrum between
EXP and C-DUP in terms of both memory efficiency and itera-
tion performance; it usually results in a larger number of edges
than C-DUP, but does not require on-the-fly de-duplication, thus
significantly decreasing the overhead of neighbor iteration. The
trade-offs here also include the one-time cost of removing duplica-
tion; de-duplicating a graph while minimizing the number of edges
added can be shown to be NP-Hard. Unlike the other representa-
tions discussed below, this representation maintains the simplicity
of C-DUP and can easily be serialized and used by other systems
which need to simply implement a proper iterator.
BITMAP: De-duplication using Bitmaps: This representation re-
sults from applying a different kind of pre-processing based on
maintaining bitmaps, for filtering out duplicate paths between nodes.
Specifically, a vritual node V may be associated with a set of bitmaps,
indexed by the IDs of the real nodes; the size of each bitmap is
equal to the number of outgoing edges from V . Consider a depth-
first traversal starting at us that reaches V . We check to see if there

V

V
1

u
1

u
3

u
2

d

f

e

a

c

b

u
1

u
3

u
2

d

f

e

a

c

b

V

V
1

u
1

u
3

u
2

d

f

e

a

c

b

u
1

u
3

u
2

d

f

e

a

c

b

u
1

u
3

u
2

d

f

e

a

c

b
W
2

W
1

W
3

(a) C-DUP (24 Edges) (b) DEDUP1 (32 Edges) (c) DEDUP2 (22 Edges)

Figure 6: The resulting graph after the addition of virtual node V .
(c) shows the resulting graph for if we added edges between virtual
nodes (we omit _s and _t subscripts since they are clear from the
context).
is a bitmap corresponding to us; if not, we traverse each of the
outgoing edges in turn. However, if there is indeed a bitmap cor-
responding to us, then we consult the bitmap to decide which of
the outgoing edges to skip (i.e., if the corresponding bit is set to
1, we traverse the edge). In other words, the bitmaps are used to
eliminate the possibility of reaching the same neighbor twice.

The main drawback of this representation is the memory over-
head and complexity of storing these bitmaps, which also makes
this representation less portable to systems outside GRAPHGEN.
The pre-processing required to set these bitmaps can also be quite
involved as we discuss in the next section.
DEDUP-2: Optimization for Single-layer Symmetric Graphs:
This optimized representation can significantly reduce the memory
requirements for dense graphs, for the special case of a single-layer,
symmetric condensed graph (i.e., hus ! vti =) hvs ! uti);
many graphs satisfy these conditions. In such a case, for a virtual
node V , if us ! V , then V ! ut, and we can omit the _t nodes
and associated edges. Figure 6 illustrates an example of the same
graph if we were to use all three de-duplication representations. In
C-DUP, we have two virtual nodes V1 and V2, that are both con-
nected to a large number of real nodes. The optimal DEDUP-1
representation (Figure 6b) results in a substantial increase in the
number of edges, because of the large number of duplicate paths.
The DEDUP-2 representation (Figure 6c) uses special undirected
edges between virtual nodes to handle such a scenario. A real node
u is considered to be connected to all real nodes that it can reach
through each of its direct neighboring virtual nodes v, as well as the
virtual nodes directly connected to v (i.e. 1 hop away); e.g., node a
is connected to b and c through W2, and to u1, u2, u3 through W1

(which is connected to W2), but not to d, e, f (since W3 is not con-
nected to W2). This representation is required to be duplicate-free,
i.e., there can be at most one such path between a pair of nodes.
The DEDUP-2 representation here requires 11 undirected edges,
which is just below the space requirements for C-DUP. However,
for dense graphs, the benefits can be substantial as we discuss in
Section 6.

Generating a good DEDUP-2 representation for a given C-DUP
graph is much more intricate than generating a DEDUP-1 repre-
sentation. Due to space constraints, we omit the details of the algo-
rithm.

5. PRE-PROCESSING & DE-DUPLICATION
In this section, we discuss a series of pre-processing and de-

duplication algorithms we have developed for constructing the dif-
ferent in-memory representations for a given query. The input to

x1

x2

y1

y2

a1

a2

a3

a1

a2

a3

x1

x2

a1 1
y1

a2 1
y1

a3 1

a1 1 1
x1

a2
a3

x2

1 1
1 1

a1 1
a1

a2
a3

1
1

a1 1 1
a2
a3

a2 a3

1 1
1 1 V1

V2

A

B

C

A

B

C

A
B
C

0 1 0
1 0 1
0 1 0

A B C D
1
1
1

D 1 1 1 0

A
B
C

0 0 1
0 0 0
1 0 0

A B C

D D

(a) Multi-layer Graph (b) Single-layer Graph

0
y2

0

Figure 7: Using BITMAPs to handle duplication.
all of these algorithms is the C-DUP representation, that has been
extracted and instantiated in memory. We first present a general
pre-processing algorithm for the BITMAP representation for multi-
layer condensed graphs. We then discuss a series of optimizations
for single-layer condensed graphs, including de-duplication algo-
rithms that attempt to eliminate duplication (i.e., achieve DEDUP-1
representation).

We also describe the runtime complexity for each algorithm in
which we refer to nr as the number of real nodes, nv as the number
of virtual nodes, k as the number of layers of virtual nodes, and d
as the maximum degree of any node (i.e., the maximum number of
outgoing edges).

5.1 Pre-Processing for BITMAP
Recall that the goal of the pre-processing phase here is to asso-

ciate and initilize bitmaps with the virtual nodes to avoid visiting
the same real node twice when iterating over the out-neighbors of
a given real node. We begin with presenting a simple, naive algo-
rithm for setting the bitmaps; we then analyze the complexity of
doing so optimally and present a set cover-based greedy algorithm.

5.1.1 BITMAP-1 Algorithm
This algorithm only associates bitmaps with the virtual nodes in

the penultimate layer, i.e., with the virtual nodes that have outgo-
ing edges to _t nodes. We iterate over all the real nodes in turn.
For each such node u, we initiate a depth-first traversal from us,
keeping track of all the real nodes visited during the process using
a hashset, Hu. For each virtual node V visited, we check if it is in
the penultimate layer; if yes, we add a bitmap of size equal to the
number of outgoing edges from V . Then, for each outgoing edge
V ! vt, we check if vt 2 Hu. If yes, we set the corresponding bit
to 0; else, we set it to 1 and add vt to Hu.

This is the least computationally complex of all the algorithms,
and in practice the fastest algorithm. It maintains the same number
of edges as C-DUP, while adding the overhead of the bitmaps and
the appropriate indexes associated with them for each virtual node.
The traversal order in which we process each real node does not
matter here since the end result will always have the same number
of edges as C-DUP. Changing the processing order only changes
the way the set bits are distributed among the bitmaps.
Complexity: The worst-case runtime complexity of this algorithm
is O(nr ⇤ dk+1

). Although this might seem high, we note that this
is always lower than the cost of expanding the graph.

5.1.2 Formal Analysis
The above algorithm, while simple, tends to initialize and main-

tain a large number of bitmaps. This leads us to ask the question:
how can we achieve the required deduplication while using the min-
imum number of bitmaps (or minimum total number of bits)? This
seemingly simple problem unfortunately turns out to be NP-Hard,
even for single-layer graphs. In a single-layer condensed graph, let
u denote a real node, with edges to virtual nodes V1, ..., Vn, and

let O(V1) denote the set of real nodes to which V1 has outgoing
edges. Then, the problem of identifying a minimum set of bitmaps
to maintain is equivalent to finding a set cover where our goal is
to find a subset of O(V1), ..., O(Vn) that covers their union. Un-
fortunately, the set cover problem is not only NP-Hard, but is also
known to be hard to approximate.

5.1.3 BITMAP-2 Algorithm
This algorithm is based on the standard greedy algorithm for

set cover, which is known to achieve the best approximation ra-
tio (O(log n)) for the problem. We describe it using the terminol-
ogy above for single-layer condensed graphs. The algorithm starts
by picking the virtual node Vi with the largest |O(Vi)|. It adds a
bitmap for u to Vi, and sets it to all 1s; all nodes in O(Vi) are now
considered to be covered. It then identifies the virtual node Vj with
the largest |O(Vj) � O(Vi)|, i.e., the virtual node that connects to
largest number of nodes that remain to be covered. It adds a bitmap
for us to Vj and sets it appropriately. It repeats the process until
all the nodes that are reachable from us have been covered. For the
remaining virtual nodes (if any), the edges from us to those nodes
are simply deleted since there is no reason to traverse those.

We generalize this basic algorithm to multi-layer condensed graphs
by applying the same principle at each layer. Let V 1

1 , ..., V
1
n denote

the set of virtual nodes pointed to by us. Let N(us) denote all the
real _t nodes reachable from us. For each V 1

i , we count how many
of the nodes in N(us) are reachable from V 1

i , and explore the vir-
tual node with the highest such count first. At the penultimate layer,
the algorithm reduces to the single-layer algorithm described above
and appropriately sets the bitmaps. At all points, we keep track of
how many of the nodes in N(us) have been covered so far, and
use that for making the decisions about which bits to set. So af-
ter bitmaps have been set for all virtual nodes reachable from V 1

1 ,
if there are still nodes in N(us) that need to be covered, we pick
the virtual node V 1

i that reaches the largest number of uncovered
nodes, and so on.

One difference here is that we never delete an outgoing edge
from a virtual node, since it may be needed for another real node.
Instead, we use bitmaps to stop traversing down those paths (e.g.,
edge x2 ! y2 in Figure 7).

Our implementation exploits multi-core parallelism, by creat-
ing equal-sized chunks of the set of real nodes, and processing the
nodes in each chunk in parallel.
Complexity: The runtime complexity of this algorithm is signifi-
cantly higher than BITMAP-1 because of the need to re-compute
the number of reachable nodes after each choice, and the worst-
case complexity could be as high as: O(nr ⇤ d2

k
). In practice,

k is usually 1 or 2, and the algorithm finishes reasonably quickly,
especially given our parallel implementation.

5.2 De-duplication for DEDUP-1
The goal with de-duplication is to modify the initial C-DUP

graph to reach a state where there is at most one unique path be-
tween any two real nodes in the graph. We describe a series of novel
algorithms for achieving this for single-layer condensed graphs,
and discuss the pros and cons of using each one as well as their
effectiveness in terms of the size of the resulting graph. We briefly
sketch how these algorithms can be extended to multi-layer con-
densed graphs; however, we leave a detailed study of de-duplication
for multi-layer graphs to future work.

5.2.1 Single-layer Condensed Graphs
The theoretical complexity of this problem for single-layer con-

densed graphs is the same as the original problem considered by

N(V
1
)={u

1
,u

2
,u

3
,u

4
,u

5
}

N(V
2
)={u

1
,u

3
,u

4
,u

6
,u

7
}

N(V
3
)={u

1
,u

2
,u

4
,u

6
}

N(V
4
)={u

1
,u

2
,u

3
,u

6
}

N(V
5
)={u

1
,u

3
,u

5
,u

6
}

N(V
1
)={u

1
,u

2
,u

3
,u

4
,u

5
}

N(V
2
)={u

1
,u

3
,u

4
,u

6
,u

7
}

N(V
3
)={u

1
,u

2
,u

4
,u

6
}

N(V
4
)={u

1
,u

2
,u

3
,u

6
}

N(V
5
)={u

1
,u

3
,u

5
,u

6
}

u
1

u
4

u
5

u
3

u
2

u
6

u
7

V
1

V
2

V
3

V
4

V
5

u
1

u
4

u
5

u
3

u
2

u
6

u
7

u
1

u
4

u
5

u
3

u
2

u
6

u
7

V
1

V
2

V
3

V
4

V
5

u
1

u
4

u
5

u
3

u
2

u
6

u
7

(a) 44 Edges (b) 34 Edges

Figure 8: Deduplicating u1 using the “real-nodes first” algorithm,
resulting to an equivalent graph with a smaller number of edges

Feder and Motwani [14], which focuses on the reverse problem of
compressing cliques that exist in the expanded graph. Although the
expanded graph is usually very large, it is still only O(n2

), so the
NP-Hardness of the de-duplication problem is the same. However,
those algorithms presented in [14] are not applicable here because
the input representation is different, and expansion is not an option.
We present four algorithms for this problem.

In the description below, for a virtual node V , we use I(V) to
denote the set of real nodes that point to V , and O(V) to denote
the real nodes that V points to.
Naive Virtual Nodes First: This algorithm de-duplicates the graph
one virtual node at a time. We start with a graph containing only
the real nodes and no virtual nodes, which is trivially duplication-
free. We then add the virtual nodes one at a time, always ensuring
that the partial graph remains free of any duplication.

When adding a virtual node V : we first collect all of the vir-
tual nodes Ri such that I(V) \ I(Ri) 6= �; these are the virtual
nodes that the real nodes in I(V) point to. Let this set be R. A
processed set is also maintained which keeps track of the virtual
nodes that have been added to the current partial graph. For every
virtual node Ri 2 R \ processed, if |O(V) \ O(Ri)| > 1, we
modify the virtual nodes to handle the duplication before adding V
to the partial graph (If there is no such Ri, we are done). We select
a real node r 2 O(V)\O(Ri) at random, and choose to either re-
move the edge (V ! r) or (Ri ! r), depending on the indegrees
of the two virtual nodes. The intuition here is that, by removing
the edge from the lower-degree virtual node, we have to add fewer
direct edges to compensate for removal of the edge. Suppose we
remove the former (V ! r) edge. We then add direct edges to r
from all the real nodes in I(V), while checking to make sure that r
is not already connected to those nodes through other virtual nodes.
Virtual node V is then added to a processed set and we consider
the next virtual node.
Complexity: The runtime complexity is O(nv ⇤ d4).
Naive Real Nodes First: In this approach, we consider each real
node in the graph at a time, and handle duplication between the

virtual nodes it is connected to, in the order in which they appear in
its neighborhood. This algorithm handles de-duplication between
two virtual nodes that overlap in exactly the same way as the one
described above. It differs however in that it entirely handles all
duplication between a single real node’s virtual neighbors before
moving on to processing the next real node. As each real node is
handled, its virtual nodes are added to a processed set, and every
new virtual node that comes in is checked for duplication against
the rest of the virtual nodes in this processed set. This processed
set is however limited to the virtual neighborhood of the real node
that is currently being de-duplicated, and is cleared when we move
on to the next real node.

Complexity: The runtime complexity is O(nr ⇤ d4).
Greedy Real Nodes First Algorithm: In this less naive but still
greedy approach, we consider each real node in sequence, and de-
duplicate it individually. Figure 8 shows an example, that we will
use to illustrate the algorithm. The figure shows a real node u1 that
is connected to 5 virtual nodes, with significant duplication, and a
de-duplication of that node. Our goal here is to ensure that there
are no duplicate edges involving u1 – we do not try to eliminate
all duplication among all of u1’s virtual nodes like in the naive ap-
proach. The core idea of this algorithm is that we consult a heuristic
to decide whether to remove an edge to a virtual node and add the
missing direct edges, or to keep the edge to the virtual node.

Let V 0 denote the set of virtual nodes to which us remains con-
nected after deduplication, and V 00 denote the set of virtual nodes
from which us is disconnected; also, let E denote the direct edges
that we needed to add from us during this process. Our goal is to
minimize the total number of edges in the resulting structure. This
problem can be shown to be NP-Hard using a reduction from the
exact set cover problem (see the extended version of the paper for
details).

We present a heuristic inspired by the standard greedy set cover
heuristic which works as follows. We initialize V 0

= ?, and V 00
=

V; we also logically add direct edges from us to all its neighbors
in N(us), and thus E = {(us, x)|x 2 [V 2VO(V)}. We then
move virtual nodes from V 00 to V 0 one at a time. Specifically, for
each virtual node V 2 V 00, we consider moving it to V 0. Let X =

[O(V 0
) denote the set of real nodes that u is connected to through

V 0. In order to move V to V 0, we must disconnect V from all nodes
in V \ X – otherwise there would be duplicate edges between u
and those nodes. Then, for any a, b 2 V \X , we check if any other
virtual node in V 00 is connected to both a and b – if not, we must
add the direct edge (a, b). Finally, for ri 2 V �V \X , we remove
all direct edges (u, ri).

The benefit of moving the virtual node V from V 00 to V 0 is com-
puted as the reduction in the total number of edges in every sce-
nario. We select the virtual node with the highest benefit (> 0) to
move to V 0. If no virtual node in V 00 has benefit > 0, we move on
to the next real node and leave u connected to its neighbors through
direct edges.

Complexity: The runtime complexity here is roughly O(nr ⇤ d5).
Greedy Virtual Nodes First Algorithm: Exactly like the naive ver-
sion above, this algorithm de-duplicates the graph one virtual node
at a time, maintaining a de-duplicated partial graph at every step.
We start with a graph containing only the real nodes and no vir-
tual nodes, which is trivially de-duplicated. We then add the virtual
nodes one at a time, always ensuring that the partial graph does not
have any duplication. Let V denote the virtual node under con-
sideration. Let V = {V1, ..., Vn} denote all the virtual nodes that
share at least 2 real nodes with V (i.e., |O(V) \ O(Vi)| � 2). Let
Ci = O(V) \ O(Vi), denote the real nodes to which both V and

N(V
1
)={u

1
,u

2
,u

3
}

N(V
2
)={u

1
,u

4
,u

5
,u

6
}

N(V
3
)={u

2
,u

5
,u

7
}

N(V)={u
1
,u

2
,u

4
,u

5
}

N(V
1
)={u

1
,u

2
,u

3
}

N(V
2
)={u

1
,u

4
,u

5
,u

6
}

N(V
3
)={u

2
,u

5
,u

7
}

N(V)={u
1
,u

2
,u

4
,u

5
}

u
1

u
4

u
5

u
3

u
2

u
6

u
7

V
1

V
2

V
3

V

u
1

u
4

u
5

u
3

u
2

u
6

u
7

u
1

u
4

u
5

u
3

u
2

u
6

u
7

V
1

V
2

V
3

V

u
1

u
4

u
5

u
3

u
2

u
6

u
7

(a) 28 Edges (b) 24 Edges

Figure 9: De-duplication using the greedy virtual nodes first
Vi are connected. At least |Ci|�1 of those edges must be removed
from V and Vi combined to ensure that there is no duplication.

The special case of this problem where |Ci| = 2, 8i, can be
shown to be equivalent to finding a vertex cover in a graph (we
omit the proof due to space constraints). We again adopt a heuristic
inspired by the greedy approximation algorithm for vertex cover.
Specifically, for each node in Ci, we compute the cost and the
benefit of removing it from any Vi versus from V . The cost
of removing the node is computed as the number of direct edges
that need to be added if we remove the edge to that virtual node,
whereas the benefit is computed as the reduction in the total num-
ber of nodes in the intersection with Vi (⌃|Ci|) (removing the node
from Vi always yields a benefit of 1, whereas removing it from V
may have a higher benefit). We then make a more informed deci-
sion and choose to remove an edge from a real node rn that leads
to the overall highest benefit/cost ratio.
Complexity: The runtime complexity here is: O(nvd(nvd

2
+d)).

We note that, these complexity bounds listed here make worst-case
assumptions and in practice, most algorithms run much faster.

5.2.2 Multi-layer Condensed Graphs
Deduplicating multi-layer condensed graphs turns out to be sig-

nificantly trickier and computationally more expensive than single-
layer graphs. In single layer graphs, identifying duplication is rela-
tively straightforward; for two virtual nodes V1 and V2, if O(V1)\
O(V2) 6= � and I(V1) \ I(V2) 6= �, then there is duplication. We
keep the neighbor lists in sorted order, thus making these checks
very fast. However, for multi-layer condensed graphs, we need to
do expensive depth-first traversals to simplify identify duplication.

We can adapt the naive virtual nodes first algorithm described
above to the multi-layer case as follows. We (conceptually) add a
dummy node s to the condensed graph and add directed edges from
s to the _s copies of all the real nodes. We then traverse the graph
in a depth-first fashion, and add the virtual nodes encountered to
an initially empty graph one-by-one, while ensuring no duplica-
tion. However, this algorithm turned out to be infeasible to run
even on small multi-layer graphs, and we do not report any experi-
mental results for that algorithm. Instead, we propose using either
the BITMAP-2 approach for multi-layer graphs, or first converting
it into a single-layer graph and then using one of the algorithms
developed above.
6. EXPERIMENTAL STUDY

Figure 10: Memory footprint of each representation for each of the
explored datasets.

Dataset Real Nodes Virt Nodes Avg Size EXP Edges
DBLP 523,525 410,000 2 1,493,526
IMDB 439,639 100,000 10 10,118,354

Synthetic_1 20,000 200,000 7 2,032,523
Synthetic_2 200,000 1000 94 4,135,768

Table 2: Small Datasets: avg size refers to the average number of
real nodes contained in a virtual node

In this section, we provide a comprehensive experimental evalua-
tion of GRAPHGEN using several real-world and synthetic datasets.
We first present a detailed study using 4 small datasets, including
micro-benchmarks that showcase the performance of each of the
aforementioned representations on a few basic graph operations,
and on three common graph algorithms. We then compare the
performance of the different de-duplication algorithms. We then
present an analysis using much larger datasets, but for a smaller
set of representations. All the experiments were run on a single
machine with 24 cores running at 2.20GHz, and with 64GB RAM.

6.1 Small Datasets
First we present a detailed study using 4 relatively-small datasets.

We use representative samples of the DBLP and IMDB datasets in
our study (Table 2), extracting co-author and co-actor graphs re-
spectively. We also generated a series of synthetic graphs so that
we can better understand the differences between the representa-
tions and algorithms on a wide range of possible datasets, with
varying numbers of real nodes and virtual nodes, and varying de-
gree distributions and densities. Since we need the graphs in a con-
densed representation, we cannot use any of the existing random
graph generators for this purpose. Instead, we built a synthetic
graph generator that aims to generate graphs consistent with the
the Barabàsi–Albert model [7] (also called the preferential attach-
ment model). We omit a detailed description of our generator due
to lack of space.

6.1.1 Memory Footprint
Due to the dynamic nature of the JVM and lack of effective

user-control mechanisms over garbage collection, it is difficult to
measure memory consumption of a Java object accurately. The
System.gc() call simply hints to the JVM that it may want to
call the garbage collector (GC), but the actual decision on whether
or not to call the GC is ultimately made internally by the JVM.
We anecdotally confirmed that the System.gc() call works as
expected, and initiates garbage collection the majority of the time.
For our purposes, we therefore take this simple approach of calling

(a) DBLP (b) IMDB (c) Synthetic_1 (d) Synthetic_2
Figure 11: Microbenchmarks for each representation

System.gc() and calling Thread.sleep() for a small pe-
riod of time (500ms), thus attempting to trigger the GC. We do this
5 times consecutively, record the used heap size after each call, and
finally keep the minimum recorded value. We also take care to only
have the graph object loaded in the current process at that time.

Figure 10 shows the memory footprint for each individual rep-
resentation in each dataset; the algorithm used for DEDUP-1 was
Greedy Virtual Nodes First, described in Section 5.2.1. When the
average degree of virtual nodes is small and there is a large num-
ber of virtual nodes (DBLP and Synthetic_1), we observe that there
is a relatively small difference in the size of the condensed and
expanded graphs, and de-duplication (DEDUP1 and DEDUP2) ac-
tually results in an even smaller footprint graph. The overhead of
the bitmaps in the BITMAP representation also shows up heavily in
these datasets.

On the other hand, the IMDB dataset shows a 6-fold difference
in size between EXP and C-DUP and over a 2-fold difference with
all other representations. Here, the BITMAP representation works
very well relative to the edge explosion of EXP. Synthetic_2 por-
trays the amount of compression possible in graphs with very large,
overlapping cliques. The BITMAP representations prevail here as
well; however this dataset also shows how the DEDUP2 repre-
sentation can be significantly more compact than DEDUP1, while
maintaining its natural, more portable structure compared to the
BITMAP representations.

We report memory footprints for larger datasets in Section 6.2.

6.1.2 Microbenchmarks
We conducted a complete set of micro-benchmarks on each func-

tion in our Graph API described in Section 4. Figure 11 shows the
results for some of the more interesting graph operations. The re-
sults shown are normalized using the values for the full EXP repre-
sentation, which typically is the fastest and is used as the baseline.
Since most of these operations take micro-seconds to complete, to
ensure validity in the results, the metrics shown are the result of the
mean of 3000 repetitions for each operation, on a specific set of the
same 3000 randomly selected nodes for each dataset.

Iteration through each real node’s neighbors via the GETNEIGH-
BORS() method is naturally more expensive on all other represen-

(a) DBLP (b) Synthetic_1
Figure 12: Performance of Graph Algorithms on Each Representa-
tion for two datasets

tations compared to the expanded graph. This portrays the natural
tradeoff of extraction latency and memory footprint versus perfor-
mance that is offered by these representations. DEDUP2 is usually
least performant here because of the extra layer of indirection that
this representation introduces. DEDUP1 is typically more perfor-
mant than the BITMAP representations in datasets where there is a
large number of small cliques.

In terms of the EXISTSEDGE() operation, we have included aux-
iliary indices in both virtual and real vertices, which allow for rapid
checks on whether a logical edge exists between two real nodes.
Latency in this operation is relative to the total number of vir-
tual nodes, the indexes of which need to be checked. The RE-
MOVEVERTEX() operation is actually more efficient on the CDUP,
DEDUP1 and DEDUP2 representations than EXP. In order for a
vertex to be removed from the graph, explicit removal of all of its
edges is required. In representations like DEDUP1 and DEDUP2,
that employ virtual nodes, we need to remove a smaller number of
edges on average in the removal process. DEDUP2 is most interest-
ing here because a real node is always connected to only 1 virtual
node, therefore the removal cost is constant.

6.1.3 Graph Algorithms Performance
Figure 12 shows the results of running 3 different graph algo-

rithms on the different in-memory representations. We compared
the performance of Degree calculation, Breadth First Search start-
ing from a single node, as well as PageRank on the entire graph.
Again, the results shown are normalized to the values for the full
EXP representation. Degree and PageRank were implemented and
run on our custom vertex-centric framework described in Section 3.4,
while BFS was run in a single threaded manner starting from a sin-
gle random node in the graph, using our Graph API to operate di-
rectly on top of each of the representations. Again, the Breadth first
search results are the mean of runs on a specific set of 50 randomly
selected real nodes on all of the representations, while the PageR-
ank are an average of 10 runs. As we can see, BFS and PageRank
both follow the trends of the micro-benchmarks in terms of differ-
ences in performance between representations.

For IMDB and Synthetic_2, both of which yield very large ex-
panded graphs, we observed little to no overhead in real world
performance compared to EXP when actually running algorithms
on top of these representations, especially when it comes to the
BITMAP and DEDUP1 representations (we omit these graphs).
DBLP and Synthetic_1 datasets portray a large gap in performance
compared to EXP; this is because these datasets consist of a large
number of small virtual nodes, thus increasing the average number
of virtual nodes that need to be iterated over for a single calculation.
This is also the reason why DEDUP1 and BITMAP2 typically per-
form better; they feature a smaller number of virtual neighbors per
real node than representations like C-DUP and BMP1, and some-
times DEDUP2 as well.

6.1.4 Comparing De-duplication Algorithms

(a) Performance comparison of the de-
duplication algorithms in terms of number of
edges in output graph. Random (RAND) ver-
tex ordering was used where applicable.

(b) De-duplication time comparison between
algorithms. Random (RAND) vertex order-
ing was used where applicable.

(c) Small variations caused by node ordering
in de-duplication

Figure 13: Deduplication Performance Results

Dataset CDUP BMP-DEDUP EXP
Degree PR BFS Mem (GB) Degree PR BFS Mem (GB) Dedup Time Degree PR BFS Mem (GB)

Layered_1 40 1211 382 1.421 30 1025 284 2.737 1714 DNF DNF DNF >64
Layered_2 12 397 129 1.613 10 339 111 2.258 553 11 83 85 19.798
Single_1 2 30 0.01 1.276 1.8 25 0.02 1.493 10.4 1.6 14.7 0.01 1.2
Single_2 202 DNF 1.3 9.901 81 3682 .12 13.042 5871 DNF DNF DNF >65
TPCH 3.5 58 86 .023 0.4 6 8.6 .049 1207 1.470 8 16 7.398

Table 3: Comparing the performance of C-DUP, BMP, and EXP on large datasets: the table shows the running times (in seconds) for three
graph algorithms, and total memory consumption (in GB); the table also shows the time required for bitmap de-duplication

Finally, we compare the various de-duplication algorithms pre-
sented in Section 5. Figure 13a compares the number of edges
in the resulting graph after running the different de-duplication al-
gorithms. As we can see, the differences between the different
DEDUP-1 algorithms are largely minor, with the Virtual Nodes
First Greedy algorithm having a slight edge on most datasets. The
comparisons across different representations mirror the relative mem-
ory footprint performance (Figure 10), with the main difference be-
ing the overheads associating with bitmaps in BITMAP represen-
tations that are not counted here.

Figure 13b shows the running times for the different algorithms
(on a log-scale). As expected, BITMAP-1 is the fastest of the al-
gorithms, whereas the DEDUP-1 and DEDUP-2 algorithms take
significantly more time. We note however that de-duplication is a
one-time cost, and the overhead of doing so may be acceptable in
many cases, especially if the extracted graph is serialized and re-
peatedly analyzed over a period of time. Finally, Figure 13c shows
how the performance of the various algorithms varies depending on
the processing order. We did not observe any noticeable differences
or patterns in this performance, and recommend using the random
ordering for robustness.
6.2 Large Datasets

To reason about the practicality and scalability of GRAPHGEN,
we evaluated its performance on a series of datasets that yielded
larger and denser graphs (Table 3). Datasets Layered_1 and Lay-
ered_2 are synthetically generated multi-layer condensed graphs,
while Single_1, Single_2 are standard single-layer condensed graphs.
These graphs were derived from joins on synthetically generated
tables, where the selectivity of the join condition attributes were
tweaked accordingly. At this scale, only the C-DUP, BMP-2, and
EXP are typically feasible options, since none of the de-duplication
algorithms (targetting DEDUP-1 or DEDUP-2) run in a reasonable
time.

Comparing the memory consuption, we can see that we were not
able to expand the graph in 2 of the cases, since it consumed more

memory than available (> 64GB); in the remaining cases, we see
that EXP consumes more than 1 or 2 orders of magnitude more
memory. In one case, EXP was actually smaller than C-DUP; our
pre-processing phase (Section 4.2), which was not used for these
experiments, would typically expand the graph in such cases. Run-
times of the graph algorithms show the patterns we expect, with
EXP typically performing the best (if feasible), and BMP some-
where in between EXP and C-DUP (in some cases, with an order
of magnitude improvement). Note that: we only show the base
memory consumption for C-DUP – the memory consumption can
be significantly higher when executing a graph algorithm because
of on-the-fly de-duplication that we need to perform. In particular,
C-DUP was not able to complete PageRank for Single_2, running
out of memory.

As these experiments show, datasets don’t necessarily have to
be large in order to hide some very dense graphs, which would nor-
mally be extremely expensive to extract and analyze. This is shown
in the TPCH dataset where we extracted a graph of customers who
have bought the same item. With GRAPHGEN, we are able to load
them into memory and with a small de-duplication cost, are able
to achieve comparable iteration performance that allows users to
explore, and analyze them in a fraction of the time, and using a
fraction of the machine’s memory that would be initially required.

7. CONCLUSION
In this paper, we presented GRAPHGEN, a system that enables

users to analyze the implicit interconnection structures between en-
tities in normalized relational databases, without the need to ex-
tract the graph structure and load it into specialized graph engines.
GRAPHGEN can interoperate with a variety of graph analysis li-
braries and supports a standard graph API, breaking down the barri-
ers to employing graph analytics. However, these implicitly defined
graphs can often be orders of magnitude larger than the original re-
lational datasets, and it is often infeasible to extract or operate upon
them. We presented a series of in-memory condensed representa-

tions and de-duplication algorithms to mitigate this problem, and
showed how we can efficiently run graph algorithms on such graphs
while requiring much smaller amounts of memory. The choice of
which representation to use depends on the specific application sce-
nario, and can be made at a per dataset or per analysis level. The de-
duplication algorithms that we have developed are of independent
interest, since they generate a compressed representation of the ex-
tracted graph. Some of the directions for future work include tun-
ing the selectivity estimates for complex extraction queries, and ex-
tending our de-duplication algorithms to handling general directed,
heterogeneous graphs.

Acknowledgements I’d like to extend a big thanks to Prof. Amol
Deshpande, for his contributions and guidance in this work.

8. REFERENCES
[1] Neo4j - native graph database. https://neo4j.com/.
[2] Orientdb - second generation distributed graph database.

http://orientdb.com/orientdb/.
[3] Titan - distributed graph database.

http://titan.thinkaurelius.com/.
[4] Demonstration proposal; anonymized for double-blind

reviewing. 2015.
[5] C. R. Aberger, S. Tu, K. Olukotun, and C. Ré. Emptyheaded:

A relational engine for graph processing. arXiv preprint
arXiv:1503.02368, 2015.

[6] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
databases, volume 8. Addison-Wesley Reading, 1995.

[7] R. Albert and A.-L. Barabási. Statistical mechanics of
complex networks. Reviews of modern physics, 74(1):47,
2002.

[8] Apache. Giraph. http://giraph.apache.org/.
[9] Y. Bu, V. Borkar, J. Jia, M. J. Carey, and T. Condie. Pregelix:

Big(ger) graph analytics on a dataflow engine. Proc. VLDB
Endow., 8(2):161–172, 2014.

[10] G. Buehrer and K. Chellapilla. A scalable pattern mining
approach to web graph compression with communities. In
Proceedings of the 2008 International Conference on Web
Search and Data Mining, pages 95–106. ACM, 2008.

[11] A. Buluç, J. T. Fineman, M. Frigo, J. R. Gilbert, and C. E.
Leiserson. Parallel sparse matrix-vector and
matrix-transpose-vector multiplication using compressed
sparse blocks. In SPAA, 2009.

[12] R. De Virgilio, A. Maccioni, and R. Torlone. Converting
relational to graph databases. In GRADES, 2013.

[13] J. Fan, G. Raj, and J. Patel. The case against specialized
graph analytics engines. In CIDR, 2015.

[14] T. Feder and R. Motwani. Clique partitions, graph
compression and speeding-up algorithms. JCSS, 1995.

[15] J. Gao, J. Zhou, C. Zhou, and J. X. Yu. Glog: A high level
graph analysis system using mapreduce. In 2014 IEEE 30th
International Conference on Data Engineering, pages
544–555. IEEE, 2014.

[16] J. Gonzalez, R. Xin, A. Dave, D. Crankshaw, M. Franklin,
and I. Stoica. Graphx: Graph processing in a distributed
dataflow framework. In OSDI, 2014.

[17] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin.
Powergraph: Distributed graph-parallel computation on
natural graphs. In Presented as part of the 10th USENIX
Symposium on Operating Systems Design and
Implementation (OSDI 12), pages 17–30, 2012.

[18] T. J. Green, M. Aref, and G. Karvounarakis. Logicblox,
platform and language: A tutorial. Springer, 2012.

[19] N. Jain, G. Liao, and T. Willke. GraphBuilder: A Scalable
Graph ETL Framework. In GRADES, 2013.

[20] A. Jindal, S. Madden, M. Castellanos, and M. Hsu. Graph
analytics using the Vertica relational database. arXiv preprint
arXiv:1412.5263, 2014.

[21] A. Jindal, P. Rawlani, E. Wu, S. Madden, A. Deshpande, and
M. Stonebraker. VERTEXICA: your relational friend for
graph analytics! PVLDB, 7(13):1669–1672, 2014.

[22] C. Karande, K. Chellapilla, and R. Andersen. Speeding up
algorithms on compressed web graphs. Internet
Mathematics, 2009.

[23] A. Kyrola, G. Blelloch, and C. Guestrin. Graphchi:
large-scale graph computation on just a pc. In Presented as
part of the 10th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 12), pages 31–46, 2012.

[24] S. Lee, B. H. Park, S.-H. Lim, and M. Shankar. Table2graph:
A scalable graph construction from relational tables using
map-reduce. In IEEE BigDataService, 2015.

[25] J. Leskovec and R. Sosič. SNAP: A general purpose network
analysis and graph mining library in C++.
http://snap.stanford.edu/snap, June 2014.

[26] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and
J. Hellerstein. Distributed graphlab: A framework for
machine learning in the cloud. PVLDB, 5(8):716–727, 2012.

[27] H. Ma, B. Shao, Y. Xiao, L. J. Chen, and H. Wang. G-sql:
fast query processing via graph exploration. Proceedings of
the VLDB Endowment, 9(12):900–911, 2016.

[28] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: a system for
large-scale graph processing. In Proceedings of the 2010
ACM SIGMOD International Conference on Management of
data, pages 135–146. ACM, 2010.

[29] D. Nguyen, A. Lenharth, and K. Pingali. A lightweight
infrastructure for graph analytics. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems
Principles, pages 456–471. ACM, 2013.

[30] T. Parr. Another tool for language recognition (antlr).
http://www.antlr.org/.

[31] Y. Perez, R. Sosič, A. Banerjee, R. Puttagunta, M. Raison,
P. Shah, and J. Leskovec. Ringo: Interactive graph analytics
on big-memory machines. In SIGMOD, 2015.

[32] M. Rudolf, M. Paradies, C. Bornhövd, and W. Lehner. The
graph story of the sap hana database. In BTW, volume 13,
pages 403–420. Citeseer, 2013.

[33] J. Seo, S. Guo, and M. S. Lam. Socialite: Datalog extensions
for efficient social network analysis. In Data Engineering
(ICDE), 2013 IEEE 29th International Conference on, pages
278–289. IEEE, 2013.

[34] J. Shun and G. E. Blelloch. Ligra: a lightweight graph
processing framework for shared memory. In ACM
SIGPLAN Notices, volume 48, pages 135–146. ACM, 2013.

[35] D. Simmen, K. Schnaitter, J. Davis, Y. He, S. Lohariwala,
A. Mysore, V. Shenoi, M. Tan, and Y. Xiao. Large-scale
Graph Analytics in Aster 6: Bringing Context to Big Data
Discovery. PVLDB, 7(13), 2014.

[36] W. Sun, A. Fokoue, K. Srinivas, A. Kementsietsidis, G. Hu,
and G. Xie. SQLGraph: an efficient relational-based property
graph store. In SIGMOD, 2015.

[37] F. Yang, J. Li, and J. Cheng. Husky: Towards a more efficient
and expressive distributed computing framework.
Proceedings of the VLDB Endowment, 9(5):420–431, 2016.

