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Failure-Resilient Coverage Maximization
With Multiple Robots

Md. Ishat-E-Rabban

Abstract—The task of maximizing coverage using multiple
robots has several applications such as surveillance, exploration,
and environmental monitoring. A major challenge of deploying
such multi-robot systems in a practical scenario is to ensure re-
silience against robot failures. A recent work (L. Zhou et al., 2019)
introduced the Resilient Coverage Maximization (RCM) problem
where the goal is to maximize a submodular coverage utility when
the robots are subject to adversarial attacks or failures. The RCM
problem is known to be NP-hard. In this letter, we propose two
approximation algorithms for the RCM problem, namely, the Or-
dered Greedy (OrG) and the Local Search (LS) algorithm. Both
algorithms empirically outperform the state-of-the-art solution in
terms of accuracy and running time. To demonstrate the effec-
tiveness of our proposed solution, we empirically compare our
proposed algorithms with the existing solution and a brute force
optimal algorithm. We also perform a case study on the persistent
monitoring problem to show the applicability of our proposed
algorithms in a practical setting.

Index Terms—Cooperating robots, multi-robot systems, path
planning for multiple mobile robots or agents.

I. INTRODUCTION

ASKS such as surveillance [3], tracking [2], and motion
planning [7] can be formulated as an optimization problem
that aims to maximize the coverage of a set of targets. These
coverage maximization tasks can benefit from the use of multiple
robots as opposed to a single robot. Although the advancements
in robotic mobility, sensing, and communication technology
have led to the use of multiple collaborating robots to support
such tasks [4]-[6], a major challenge for practical deployment
of such multi-robot systems is to make the robots resilient to
failures. For example, the robots may undergo adversarial at-
tacks [10], or the field-of-view of some robots may get occluded
due to environmental hazards [11], or the sensors may stop
working due to technical malfunction [12]. In this letter, our goal
is to devise coverage maximization algorithms that are resilient
to such failures.
Adversarial variants of combinatorial optimization problems
have gained attention among the research community lately.
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Fig. 1. Two robots are covering targets (black dots). The left robot has 3
available trajectories (dotted arrows) and the right one has 4. Coverage region
of one trajectory of each robot is shown in gray. The highlighted trajectories of
the left and right robots cover 3 and 4 targets respectively.

For example, resilient resource allocation algorithms employ
game theoretic strategy [15], [16], while adversarial coverage
maximization algorithms use submodularity and greedy tech-
nique [8], [13], [14]. In a recent work, Zhou et al. [1] introduced
a new variant of the coverage maximization problem that takes
into account the resilience of the multi-robot system. In this
problem setup, a team of robots aim to cover a set of targets
(Fig. 1). For each robot, there is a set of candidate trajectories,
one of which the robot will follow. The list of targets covered by
each robot trajectory is provided. It is assumed that at most «
robots may fail, but it is unknown which robots are going to fail.
The objective of the problem is to select one trajectory for each
robot such that the target coverage is maximized in the case of
a worst-case failure of « robots. We call this problem Resilient
Coverage Maximization (RCM) problem. The RCM problem is
known to be NP-hard [9].

Building on a recent work of Tzoumas et al. [13] that studies
generalized resilient optimization subject to matroid constraints,
Zhou et al. [1] presented an approximation algorithm for the
RCM problem that involves two phases. In the first phase, the al-
gorithm determines the worst-case subset of « robots that could
fail, and selects their trajectories. In the next phase, assuming
that the robots selected in the first phase will actually fail, the
rest of the robot trajectories are selected greedily such that, for
each greedy selection, the marginal gain in target coverage is
maximized. We call this algorithm the 2 Phase Greedy (2PG)
algorithm. The running time of the 2PG algorithm is O(P?),
where P is the sum of the number of candidate trajectories of
all the robots.

In this letter, we propose two algorithms for the RCM problem
that outperform the 2PG algorithm both in terms of accuracy and
running time. Here, by accuracy of a solution, we mean how
much target coverage the solution achieves with respect to an
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optimal solution. Our proposed algorithms are called Ordered
Greedy (OrG) algorithm and Local Search (LS) algorithm.

The OrG algorithm produces an ordering of the robots accord-
ing to some sorting criteria, and greedily selects the trajectories
of each robot sequentially according to the sorted order such
that, for each robot, marginal increase in target coverage is
maximized. The running time of the OrG algorithm is O(P). Ex-
perimental results show that the accuracy of the OrG algorithm
is slightly better than the 2PG algorithm, and it runs significantly
faster than the 2PG algorithm.

In the LS algorithm, we start with an initial solution of the
RCM problem. Then, in each iteration, we consider a set of
neighbors (to be defined later) of the current solution, estimate
the accuracy of the neighbors, and select the neighbor with
highest estimated accuracy. The algorithm terminates when we
find a local optima. Empirical studies show that the accuracy of
the LS algorithm is significantly better than the 2PG algorithm,
while the two algorithms are close to each other in terms of
running time.

In the case of both algorithms, we consider several design
choices and compare the accuracy of the variants of the algo-
rithms that arise from different design choices. In the case of
OrG algorithm, the design choice is the sorting criteria used to
sort the robots. For the LS algorithm, design choices include the
initial solution and the attack model.

In summary, we make the following contributions:

® We propose two algorithms for the RCM problem, namely,

the OrG algorithm and the LS algorithm, which perform
better than the state-of-the-art 2PG algorithm in terms of
accuracy and running time.

® We conduct extensive experiments with synthetic datasets

to evaluate the accuracy and running time of our proposed
algorithms with respect to the 2PG algorithm and a brute
force optimal algorithm.

e We perform a case study on the persistent monitoring

problem to demonstrate the effectiveness of our proposed
algorithms in a realistic application scenario.

II. PROBLEM FORMULATION
A. Framework

We adopt the framework introduced by Zhou et al. [1] for
the resilient multi-robot coverage problem. According to the
proposed framework, there is a set of mobile robots, R, which
aim to cover a set of targets, 7. The targets can be mobile or
stationary, distinguishable or indistinguishable, and can have
a known or unknown motion model. It is assumed that the
robots have perfect localization and can communicate with each
other at all times. Using sensors, communication, and filtering
techniques, the robots are able to calculate the estimated position
of the stationary or moving targets as described in the framework
proposed in [1].

Time is divided into rounds of finite duration. We consider
each round independently. At the beginning of a round, each
robot generates a set of candidate trajectories, one of which will
be followed in the current round. The set of trajectories of a
robot 7 is denoted be P,. The set of all robots’ trajectories is
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denoted by Pg, i.e., Pr := U,crPr. Let P be the number of all
trajectories, i.e., P = |Pg|. Here the notation |.4| denotes the
cardinality of set A.

Target Coverage function: The coverage of a trajectory p is
defined as the set of targets that p covers, which we denote by
C(p). The target coverage function, F, takes as input a set of
trajectories P and returns the number of unique targets covered
by the trajectories in P, i.e., F(P) := |U,cp C(p)|-

Note that, the above definition of the target coverage function
accounts for unweighted targets. If the targets are weighted,
the target coverage function computes the sum of the weights
of the targets covered by the trajectories in P, i.e., F(P) :=
Zteupgp c(p) W(t), where w(t) denotes the weight of target
t. Our proposed algorithms can handle applications having
weighted targets with no modification as we demonstrate in the
persistent monitoring case study.

In both unweighted and weighted cases, the target coverage
function F is monotone and submodular [17]. Other examples of
monotone and submodular target coverage functions are mutual
information and entropy [18].

Attack Model: Throughout this letter, we use the words
failure and attack interchangeably. We assume that at most «
robots can fail (or, get attacked) at a time. We consider an optimal
(i.e., worst-case) attack model as defined below. Given a set of
trajectories P, the target coverage function F, and an integer o
denoting the maximum attack size, an optimal attack on P of
size « is defined as follows.

A% (P) :=argmin F(P\A) st |A| <«
ACP

In other words, an optimal attack on P of size « is a subset
of P of size at most « such that removal of the subset from P
results in maximum decrease of the target coverage. In the above
definition, the notation A\B denotes the set of elements in .4
that are not in .

B. Problem Definition

Given a set of targets, a set of robots R, the trajectories for
the robots Pg, the attack size «, and a target coverage function
F, the Resilient Coverage Maximization (RCM) problem aims to
select a set of trajectories according to the following objective
function.

argmax F(S\AL(S))
SCPr

st |SNP =1, VreR (1)

In other words, the solution subset contains one trajectory per
robot (enforced by the constraints), such that in the case of an
optimal attack of size «, the target coverage of the remaining
robots is maximized.

C. Supplementary Definitions

A Feasible Solution is a subset of Px that satisfies the con-
straints in (1). In other words, a feasible solution corresponds to
a valid assignment of trajectories to robots, i.e., one trajectory
per robot. The feasible solution that maximizes the objective
function (1) is called the Optimal Solution. We denote the
optimal solution by &*. The Residual Coverage of a feasible
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Algorithm 1: Ordered Greedy Algorithm.

Algorithm 2: Local Search Algorithm.

Input: R, Pr, o, F

Output: Set of trajectories, S

1 < T, T, .., TR > SOI‘t(PR,F)
20 S« 0

3: fori + 1to|R|do

4. p* ¢+ argmax,.p F(SUp)

5 S+ Sup* )

6: end for

7: return S

solution S is the number of targets covered by S after the
optimal attack set is removed from S. The residual coverage
of S is denoted by R(S). According to the above definition,
R(S) = F(S\AL(S)).

III. ORDERED GREEDY ALGORITHM

In this section, we present a greedy algorithm for the RCM
problem that require O(P) evaluations of the target coverage
function F. The algorithm is named Ordered Greedy Algorithm
(OrG) and is presented below (Algorithm 1). In this algorithm,
first we sort the robots according to some sorting criteria (Line
1). Then, for each robot (according to the sorted order), we greed-
ily select the trajectory that maximizes the marginal coverage of
the targets (Line 4-5).

To perform the sorting of the robots, for each robot r, we
calculate a numerical value V(r), according to some sorting
criteria, and then sort the robots in increasing or decreasing order
of the assigned numerical value. Each criteria results in two
variants of the OrG algorithm: one for increasing order, and one
for decreasing order. We use the following metrics as the sorting
criteria.

e Size of Union of Target Coverage: The numerical value of
robot 7 is the number of unique targets covered by all the
trajectories of 7, i.e., V(r) = | Upep, C(p)|. The resultant
OrG algorithms are named OrG-U-I and OrG-U-D (for
increasing and decreasing sorting order, respectively).

o Maximum Individual Target Coverage: The numerical
value of robot r is the cardinality of the trajectory of r
that covers the maximum number of targets, i.e., V(r) =
maxpep, |C(p)|. The resultant algorithms are named OrG-
M-I and OrG-M-D.

We also consider another variant where the ordering of the
robots is random (OrG-R). Note that, each of the above algo-
rithms requires O(P) evaluations of F. Here, P is the sum of
number of candidate trajectories of all robots. To calculate the
numerical values of the robots, we need P evaluations of F. Also,
in Line 4 of Algorithm 1, the call to F is executed P times in
total. Thus, the total number of evaluations of F for the OrG
algorithm is O(P).

IV. LOCAL SEARCH ALGORITHM

In this section, we describe an algorithm based on the local
search technique. In a traditional local search algorithm, we start

Input: R, Pr, o, F
Output: Set of trajectories, S

I: § « INIT(Pg,F)
20z« F(S\AL(S))

3: while TRUE do

4: f < FALSE

5: for all neighbor S of S do
6: A — AL(S)

7: 5« F(S\A)

8: if Z > z then

9: 1.8,z «+ TRUE,S, #
10: break
11: end if
12: end for
13: if f = FALSE then
14: break
15: end if

16: end while
17: return S

with an initial solution. In each iteration, we make small local
changes to the current solution to form a set of neighbor solu-
tions. Then we evaluate the objective function on the neighbors
to determine if any improvement over the current solution is
possible. If a better solution is found, the search moves to that
direction. Otherwise, the algorithm terminates.

A tricky aspect of adopting a local search based approach to
the RCM problem is that evaluating the objective function for a
given solution is not straightforward. In this problem, the objec-
tive value of a feasible solution S is F(S\AZ (S)). Thus, given
a feasible solution S, in order to evaluate the objective function
for S, we need to construct an optimal attack on S. However,
constructing an optimal attack on S is an NP-hard problem,
because the Maximum k-Coverage Problem, which is known
to be NP-hard, can be reduced to the problem of constructing
an optimal attack [20]. Consequently, in this algorithm, we use
computationally feasible greedy attack models, instead of an
optimal attack model, to drive the local search. We denote the
greedy attack function by A, which is further discussed later in
this section.

Now we describe the local search algorithm (Algorithm 2) in
detail. We start with an initial feasible solution S (Line 1) and
the corresponding objective value z (Line 2). In each iteration
of the local search (Line 3—16), we consider all neighbors of the
current solution S (Line 5). Any feasible solution which differs
from S by exactly one trajectory is defined to be a neighbor
of S. For each neighbor S of S, we construct a greedy attack
on S, denoted by A (Line 6), and calculate the corresponding
objective value 2 (Line 7). If the neighbor solution is better than
the current solution (Line 8), we restart the iteration with updated
solution and objective value (Line 9—-10). If no neighbor leads
to a solution better than the current solution, the local search
terminates (Line 4, 13—14), and the current solution is returned
(Line 17) as the solution of the RCM problem.
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Note that, z (computed in Line 7) is rather an estimation
of the residual coverage of S, because we use a non-optimal
greedy attack model A instead of the optimal attack model A*
to compute the residual coverage. We use A instead of A* so
that the LS algorithm runs in polynomial time.

Several variants of the LS algorithm arise when we use dif-
ferent attack models (Line 2, 6) and different initial solutions
(Line 1). We consider the following two greedy attack models.
In both models, the attacker takes as input a feasible solution S,
and returns a subset of S of size a.

e Attack Model 1 (A1): We initialize a set X as empty set. In
each iteration, we determine the trajectory in S\ X’ addition
of which maximizes the marginal increase in target cover-
age of X', and add that trajectory to X'. After «iterations, we
return X. Note that, Al seeks to maximize the coverage of
X, and the coverage of X selected by Al is within a factor
of 1 — % of the optimal [21].

e Attack Model 2 (A2): We initialize a set X’ to S. In each
iteration, we determine the trajectory in X removal of
which maximizes the marginal decrease in target coverage
of X', and remove that trajectory from X. After « iterations,
we return S\ X

We consider two initial solutions as follows.

e [nitial Solution 1 (I1): The output of the Oblivious Greedy
algorithm (to be described in Section V-A).

e Initial Solution 2 (I2): The output of the OrG-U-I algo-
rithm. We choose OrG-U-1because it empirically performs
better than the other OrG variants.

Two attack models and two initial solutions yield four variants
of the LS algorithm. We append the attack type and initial
solution type to name the LS variants. For example, LS-AI-12
is the variant of the LS algorithm that uses attack model A1 and
initial solution 12.

Note that, in the LS algorithm, the number of evaluations of F
is dominated by the number of calls to the attack function in Line
6. In the case of both of the above attack models, constructing a
greedy attack requires O(aR) calls to F, where R is the number
of robots. There are O(P) neighbors of the current solution S.
Consequently, for both attack models, the LS algorithm requires
O(IaRP) evaluations of F, where [ is the number of times the
local search iterates. However, we reduce the running time of
the LS algorithm by a factor of O(R) as described in the next
section.

A. Acceleration of the Local Search Algorithm

To accelerate the LS algorithm, we reduce the time required
to compute the attack functions Al and A2. First we analyze
the time complexity of a straightforward way of computing the
attack functions. Let t* denote the maximum number of targets
covered by one trajectory. Recall from previous section that
constructing greedy attack A1 or A2 requires O(aR) evaluations
of target coverage function. The time complexity of calculating
the target coverage of a set of trajectories, P, is O(Rt*), because,
in our application, |P| < R. Thus, a straightforward implemen-
tation of the attack function takes O(owR?t*) time.
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Now we present a way to accelerate the process of computing
the attack functions Al and A2. The main idea is to store
precalculated results in an auxiliary data structure, and thus avoid
computing the attack function from scratch within each greedy
iteration. Let 7" denote the number of targets. We maintain an
array Y of size T, which stores, for each target ¢, how many
trajectories in X’ covers t. We update the auxiliary array once
in each greedy iteration when a trajectory is added to X (Al)
or deleted from X" (A2), which takes O(¢*) time. Note that, by
using the array Y, we can determine the marginal increase or
decrease in target coverage of X', when a trajectory is added to
or removed from X, in O(t*) time. Consequently, each greedy
iteration of the attack functions takes O(Rt*) time. This makes
the overall computation time of the attack functions O(aRt").
Thus, using the above described acceleration technique, we
achieve a performance speedup of a factor of O(R) over the
straightforward implementation.

V. EXPERIMENTS

In this section, we empirically evaluate our proposed algo-
rithms and present the experimental results. First, we discuss
the experimental setup (Section V-A). Next, we compare the
accuracy (Section V-B) and running time (Section V-C) of our
proposed algorithms with the 2PG algorithm. We present the
results of a sensitivity analysis in Section V-D. Finally, we list
the key findings of the experiments (Section V-E).

A. Experimental Setup

Evaluation Metric: We use two metrics to empirically eval-
uate our proposed algorithms: accuracy and running time. The
accuracy of a feasible solution S is the ratio of the residual
coverages of S and §*, where S* is the optimal solution. Thus,
the accuracy of a feasible solution S is a measure of the quality
of S with respect to the optimal solution S*. If, in an experiment,
the optimal solution is known, we directly report the accuracy
(with respect to the optimal solution) of the solutions found by
the algorithms which are being compared. On the other hand,
if the optimal solution is unknown, we compute the residual
coverages of the solutions found by the algorithms and report the
relative accuracy with respect to the 2PG algorithm. Note that,
a higher residual coverage corresponds to higher accuracy, and
vice versa, since the ratio of residual coverages of two feasible
solutions equals the ratio of their accuracy.

Compared Algorithms: We empirically compare the perfor-
mance of our proposed algorithms (OrG and LS) with the 2PG
algorithm. We additionally consider two baseline algorithms as
follows:

® Brute Force algorithm: The Brute Force (BF) algorithm

determines the optimal solution of the RCM problem. In the
BF algorithm, we formulate the RCM problem as an Integer
Linear Program (ILP), and use a commercial MILP solver
(Gurobi [19]) to solve the ILP. The ILP formulation of the
RCM problem is given in Appendix IX. Note that, this ILP
formulation has an exponential number of constraints with
respect to the number of robots. Hence, it can be used to
solve only very small instances of the RCM problem.
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(a) Oblivious Greedy Algorithm (R = 15, T = 150)

(b) Ordered Greedy Algorithm (R = 15, T = 150)
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(c) Local Search Algorithm (R = 15, T = 150)
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Platform: The algorithms are implemented using C++. The
experiments are conducted on a core-i7 2 GHz PC with 8§ GB

Relative Accuracy with respect to 2PG Algorithm: In this
experiment, we construct a dataset with 15 robots, 150 targets,
l; = 40m, and [ = 10 m. We vary the attack size in increments

Fig. 2. Comparison of accuracy of (a) ObG algorithm, (b) OrG algorithm, and (c) LS algorithm with 2PG algorithm.
size, a.
RAM, running Microsoft Windows 10.
B. Comparison of Accuracy

Fig. 3. Dataset and trajectory generation.

® Oblivious Greedy algorithm: In the Oblivious Greedy
(ObG) algorithm, we select, for each robot, the trajectory
that covers maximum number of targets. Formally, the so-
lution found by this algorithmis | J, . argmax,.p F({p}).
The ObG algorithm makes P calls to the target coverage
function F.

Dataset: In our experiments, we use a synthetic dataset gen-
erated as follows. First, we select the locations of the targets
and robots within a 100 x 100m? 2D region with uniform
probability. For each robot, we consider 7 elliptical candidate
trajectories each of length [; as shown in Fig. 3. The candidate
trajectories are centered around the current direction of the robot
(towards X in Fig. 3). A trajectory 7 covers all the targets located
within a distance of [ from 7. In Fig. 3, we show the coverage
region of the bold trajectory in grey, and the covered targets
in green. The trajectory generation procedure described above
is suitable for kinodynamic planning and commonly used in
standard literature [9]. The procedure imitates a scenario in
which a set of targets on the ground are being covered by a
set of UAVs with downward facing cameras.

Parameter Set: We use different sets of parameter values for
different experiments. For example, in the experiments where
we compute a brute force solution, we use only 6 robots to
keep the total running time low. For other experiments, we use
higher number of robots. Also, we set [y and [; according to
the number of robots to ensure that there is sufficient overlap
among the trajectories. The values of the parameters used in each
experiment is mentioned in the corresponding subsection. Each
experiment is conducted 100 times and the average is reported.

of 3 and report the average relative accuracy (in percentage)
of our proposed algorithms with respect to the 2PG algorithm
under an optimal attack model (Fig. 2). The standard deviation
is shown using the shades.

The experimental results show that the accuracy of the ObG al-
gorithm is consistently lower than the 2PG algorithm (Fig. 2(a)).
In the case of OrG algorithm, the OrG-1 variants have higher ac-
curacy than their OrG-D counterparts (Fig. 2(b)). The accuracy
of the 2PG and OrG-R algorithms lie in between the OrG-I and
OrG-D variants.

We claim that the increasing sorting order leads to an even
distribution of the targets to trajectories. Consequently, the
reduction of target coverage after an optimal attack is smaller
in the case of OrG-I variants as opposed to the OrG-D ones.
We empirically verify the correctness of the above claim by
conducting an experiment where we compare the standard de-
viations of the marginal coverages in each greedy iteration of
OrG-U-I and OrG-U-D. We find that the standard deviation of
the OrG-D variant is on average 60% higher than the OrG-1
variant, which provides empirical evidence in support of our
claim. We do not show the experimental results in detail for
brevity of presentation.

In the case of LS algorithm, experimental results depicted in
Fig. 2(c) show that attack model 2 (A2) leads to better accuracy
than attack model 1 (A1). Also, initial condition 2 (I12) gives
higher accuracy in comparison to initial condition 1 (I1). Thus,
LS-A2-12 has the highest accuracy among the LS variants. Also,
the accuracy of LS-A2-12 is significantly higher than the 2PG
algorithm across all attack sizes.

In the above experiments, we observe that in the case of OrG
and LS algorithms, the accuracy decreases as we increase «.
We conjecture that when « is large, the room for optimization
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Accuracy wrt Brute Force Algorithm (R = 6, T = 60)
100 T

S
E]
£
2
S
€
B
>
3
g
5
8

< 2P6 —F—

ObG =

LS-A2-12 medom

O1G-U-| =

80 1
2 3 4

Attack Size

Fig. 4. Comparison of accuracy of proposed algorithms with BF algorithm.

is limited. In other cases, there is more room for optimization,
and consequently, our proposed algorithms perform relatively
better.

For brevity of presentation, from now on, instead of reporting
the accuracy of all the variants of our proposed algorithms, we
only report the results for the OrG and LS variants with highest
accuracy, namely, OrG-U-I and LS-A2-12 respectively, along
with the ObG and 2PG algorithm.

Accuracy with respect to Brute Force Algorithm: In this
experiment, we determine the accuracy of our proposed algo-
rithms. Note that, the accuracy of a feasible solution S is the ratio
of the residual coverages of S and S*, the optimal solution. We
compute the optimal solution using the BF algorithm, which
requires very high computational time. Consequently, in this
experiment, we consider small instances of the RCM problem
with 6 robots, 60 targets, and [; = 50 m and [, = 15m, and use
attack sizes 2, 3, and 4.

The experimental results in Fig. 4 show that the LS algorithm
has the highest accuracy, followed by OrG, 2PG, and ObG
algorithms in the above order, which is in accordance with the
experimental results presented in the previous section. Note that,
the accuracy of the BF algorithm is 100%.

Relative Accuracy with respect to 2PG Algorithm for
Large Problem Instances: In this experiment, we evaluate the
accuracy of our proposed algorithms for large instances of the
RCM problem. In the case of large problem instances, it is not
feasible to compute the residual coverage, because constructing
an optimal attack requires exponential time with respect to the
number of robots. Consequently, we resort to a non-optimal
greedy attack model to compute an estimation of the residual
coverage. We use attack model 2 (A2), outlined in Section IV,
which is a greedy approximate attack model computable in
polynomial time.

In this experiment, we use 64 robots, 1000 targets, [, = 25m,
and [, = 5m, and vary the attack size in factors of 2, and
report the relative accuracy with respect to the 2PG algorithm.
The experimental results (Fig. 5) show that the accuracy of the
proposed algorithms with attack model A2 is equivalent to the
accuracy found in previous sections using an optimal attack
model. The LS algorithm still has the best accuracy among the
compared algorithms.
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Accuracy for Non-Optimal Attack (R = 64, T = 1000)
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Fig. 5. Comparison of accuracy with Non-optimal Attack Model.

Running Time (T= 1000, alpha = 10)
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Fig. 6. Comparison of running time.

C. Comparison of Running Time

In this experiment, we vary the number of robots from 100
to 5000, and use 1000 targets and an attack size of 10. The
experimental results (Fig. 6) show that the ObG algorithm has
the lowest running time, followed by the OrG algorithm. The LS
algorithm and the 2PG algorithm run slower than the former two
algorithms, and the LS algorithm outperforms the 2PG algorithm
as the number of robots goes past 1000. The experimental results
are in accordance with the time complexity analysis presented in
the previous sections. Through another set of experiments (not
presented in the letter for brevity), we find that other variants
of the OrG and LS algorithms have similar running time as
the counterpart compared above. We also find that, increasing
the number of candidate trajectories increases the running time
linearly, and increasing the number of targets increases the
running time slowly.

D. Sensitivity Analysis

In the above experiments, we have assumed that the actual
number of robot failures equals the attack size, a. However, in
reality, the actual number of robot failures may be more or less
than «. For example, in a practical deployment of 10 robots
which assumes o = 2, there may be no robot failure. Hence, we
present experimental results where the number of robot failures
differs from the attack size.

In this experiment, we consider a scenario with 15 robots,
150 targets, and attack size, « = 6. We vary the number of robot
failures (worst-case failure) in increments of 2 and report the
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relative accuracy of our proposed algorithms with respect to the
2PG algorithm.

The experimental results show that, the accuracy of the pro-
posed algorithms (OrG-U-I and LS-A2-12) drops sharply if the
number of robot failure exceeds . If the number of robot failures
is within the assumed maximum attack size (i.e., less than or
equal to «), the proposed algorithms give better accuracy than
the 2PG algorithm.

E. Key Findings

The key findings of the experiments are listed below:

® In the case of OrG algorithm, OrG-I variants show higher
accuracy than OrG-D variants. In the case of LS algo-
rithm, LS-A2 variants have higher accuracy than LS-A/
variants. OrG-U-I and LS-A2-12 have the highest accuracy
within their respective class. Both LS-A2-12 and OrG-U-1
have higher accuracy than 2PG algorithm, with LS-A2-12
slightly outperforming OrG-U-I (Section V-B).

® The compared algorithms exhibit similar empirical per-
formances, when evaluated using attack model A2 and
an optimal attack model. This result advises the use of
computationally light attack model A2 in the case of large
problem instances (Section V-B).

® ObG and OrG algorithms run orders of magnitude faster
than 2PG and LS algorithms, while 2PG and LS algorithms
have comparable running time. The empirical running
times are in accordance with the theoretical time complex-
ity analysis (Section V-C).

e [f the number of actual robot failures is less than «, the
performance of the proposed algorithms do not suffer. This
result suggests that when the true attack size is unknown,
it is better to overestimate « than underestimating it (Sec-
tion V-D).

VI. CASE STUDY: RESILIENT PERSISTENT MONITORING

In this section, we evaluate our proposed algorithms in the
context of a practical application scenario, i.e., the Resilient
Persistent Monitoring (RPM) problem. In a typical setup of
the persistent monitoring problem, multiple robots monitor a
2D grid-based environment with obstacles. Each non-obstructed
grid-cell ¢ in the environment has a latency value (denoted by
I.) in the range [0, I, ]. The latency of a cell vary according to
the last time the cell was visible from some robot. If a cell c is
visible from some robot in the current time step, [ is set to 0.
Otherwise, if ¢ is visible from no robots in the current time step,
l. increases linearly at each time step, until it reaches l,;,45. In
the traditional persistent monitoring problem, for each robot, we
select one trajectory from a set of candidate trajectories, such
that, the overall decrease in latency (i.e., sum of reduction in
latency values of all cells) is maximized. In the RPM problem, we
select the trajectories such that in the case of a worst-case failure
of at most « robots, the overall decrease in latency achieved by
the rest of the robots is maximized.

Note that, our proposed algorithms for the RCM problem can
be suitably modified to solve the RPM problem. Essentially,
RPM problem is a weighted version of the RCM problem, in
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Fig. 7.  Sensitivity analysis.

Fig.8. Topdown and perspective views are shown in left and right respectively.
Blue circles and red boxes represent robots and obstacles respectively. Purple
arrows show the direction of the current trajectory of robots. Shades between
green and black represent latency of the cells, where green and black stands for
0 and 1,44 respectively.
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Fig. 9. Comparison of accuracy for RPM problem.

that each cell serves as a target object and the weight of a cell
c is equal to the reduction in the latency of ¢ when ¢ becomes
visible, i.e., [.. Hence, in the RPM problem, the target coverage
function F computes the sum of the latency values of the cells
covered by a set of trajectories.

We use a 2D environment having 200 x 200 cells, and 100
obstacles which occupy approximately 15% of the environment.
There are 64 robots, each with a 360° view of the environment
occluded by obstacles, and a visibility range of 15 times the
length of a cell. Each robot has 4 linear candidate trajectories,
{forward, backward, left, right}, one of which it will select.
lmaz 18 set to 100 and the latency of non-visible cells are set to
increase by 1 unit per time step. Two sample partial snapshots
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of the environment implemented using OpenGL!' are shown in
Fig. 8.

The experimental results are presented in Fig. 9. Because
the problem instance is fairly large, we use non-optimal attack
model A2 instead of the optimal attack model, and use the same
set of parameters as used in the last experiment of Section V-B.
Experimental results show that the performance of the algo-
rithms is consistent with the findings of Section V.

VII. CONCLUSION

In this work, we have proposed two algorithms for the cover-
age maximization problem with multiple robots in an adversarial
setting. Our proposed algorithms have outperformed the state-
of-the-art algorithm in terms of accuracy and running time. We
have demonstrated the effectiveness of our proposed solutions
by conducting empirical studies.

In future, we intend to evaluate real-world deployment of our
proposed algorithms in surveillance and patrolling. One may
also consider reformulating the problem with a computationally
feasible non-optimal attack model, and reevaluate the perfor-
mance of the discussed algorithms.

APPENDIX
ILP FORMULATION

First we introduce some notations related to the ILP formula-
tion of the RCM problem. The set of trajectories that cover target
tis denoted by Vi, i.e., N; = {p € Pg : p covers t}. The set of
all subsets of R of size at most « is denoted by V. Essentially,
each element of W represents an attack of size at most «.. The
set of all trajectories pertaining to a given a subset R of the
robots, i.e., R C R, is denoted by Vg, i.e., Vg = U,crP,. Now
we introduce the variables used in the ILP formulation of the
RCM problem.

e For each candidate trajectory p € Pg, we use one binary
variable x,,, which indicates if the candidate trajectory p is
selected.

e For each pair (¢, w) such that t € T and w € W, we use
one binary variable y; ,,, which indicates whether the target
t is covered when the robots in the set w fail.

® One integer variable z which indicates the maximum target
coverage achieved under an optimal attack model.

The ILP formulation is presented below. The set of constraints
in 2 enforce that exactly one candidate trajectory is selected for
each robot. Constraints 3 ensure that, if a target ¢ is covered
under attack w, i.e., ¥, = 1, at least one candidate trajectory,
which covers ¢ and which pertains to no robot in w, is selected.
Constraints 4 along with objective are used to maximize the
post-attack coverage over all possible attacks. The binariness
and integrality conditions of the variables are omitted for brevity
of presentation.

Thttps://youtu.be/XdQ5h5aOMAA
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