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Abstract

The dynamic nature of citation networks makes the task
of ranking scientific articles hard. Citation networks
are continually evolving because articles obtain new
citations every day. For ranking scientific articles,
we can define the popularity or prestige of a paper
based on the number of past citations at the user
query time; however, we argue that what is most
useful is the expected future references. We define
a new measure, FutureRank, which is the expected
future PageRank score based on citations that will be
obtained in the future. In addition to making use of
the citation network, FutureRank uses the authorship
network and the publication time of the article in order
to predict future citations. Our experiments compare
FutureRank with existing approaches, and show that
FutureRank is accurate and useful for finding and
ranking publications.

1 Introduction

Ranking scientific publications is an extremely challeng-
ing task, due in part to the tremendous diversity of top-
ics and disciplines, and in part due to the dynamic na-
ture of the evolving scientific literature network. There
is a long history of research in the bibliometrics which
tries to measure the impact of a publication. Like-
wise there is much recent work in ranking of web pages,
and many algorithms have been proposed, including the
well-known PageRank algorithm [25] and hubs and au-
thorities model [11]. While both of these approaches
work well in the context for which they were designed,
ranking based on the current citations and links, nei-
ther of these approaches attempt to model the dynamic
and evolving nature of the networks. In fact, they were
originally designed for static networks. Since only the
current snapshot of the network is important for these
models, crawling the network frequently and recomput-
ing the scores by the models can help to overcome the
dynamic nature of the networks. However, for cita-
tions network and ranking scientific articles, the pre-
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vious, current, and future pictures of the network are
all important.

In the context of researchers trying to retrieve rele-
vant work to cite, or perform a literature review based
upon which to build their research, the publication time
of an article plays an important role and should be con-
sidered in the ranking. In order to retrieve relevant
research, recent work is very important for finding new
research directions, new solutions and approaches, and
also finding the overlap of their work and other work. In
order to do this, researchers need to find good articles
published recently.

So the question that we are interested in answering
is ”which article is the most useful article at the user
query time and should obtain the highest score in a
ranking model?”. One of the simplest and oldest
approaches to compute the quality of a scientific article
is counting the number of citations. Unfortunately,
newly published articles do not have many citations
to evaluate their quality. The popularity (number of
citations) or prestige (PageRank) of a paper is defined
based on the current citations at the user query time.
But we differentiate current citations from usefulness
which can be defined as the number of citations in
the future. In other words, usefulness is based on
the future popularity and prestige. Future popularity
is well-defined (but unobserved), and we define future
prestige by introducing a measure we refer to as the
future PageRank score. The future PageRank score is
the traditional PageRank score computed based only on
the citations that will be obtained in the future.

While this definition of useful makes sense, obvi-
ously, it is also problematic in the sense that it is based
on the information which is not available at the user
query time. So, in order to make use of it, we need to
make predictions about the citations which a paper will
obtain in the future.

From a network perspective, articles can be seen as
nodes in a network and citations show the directed edges
among the nodes. Each article node links to another
article node in the network if it cites the other article.
Hence, the network will be a directed network and the
problem is to rank nodes in this network. This is a
traditional scientific article ranking problem, while there
is more information, in which we can extend the network



to have a more complex network that can capture more
information. As mentioned before, publication time is
an important aspect of this network and we are dealing
with a dynamic network.

In this work we extend the network by other avail-
able information such as authors and the publication
time of the articles, and target to predict the future
citation of the article in order to have better ranking
model.

The rest of this paper is organized as follows: in
the next section we review the related work. Section 3
describes FutureRank, our proposed model for ranking
scientific articles. Then, section 4 shows the experi-
mental results and evaluations. Finally in section 5, we
conclude and describe future research directions.

2 Related Work

Ranking scientific articles is an important and challeng-
ing problem and there is a long tradition of work on
the topic. One of the important early steps in this area
was the work of Garfield [6] in 1970’s. He proposed a
measure for ranking journals and called it the Impact-
Factor. It is calculated based on a three-year period.
For example, the impact factor of year i for a journal j
is calculated as follows:

A = the number of times articles published in journal j
in years i−1 and i−2 were cited in indexed journals
during year i.

B = the number of articles, reviews, proceedings or
notes published in journal j years i− 1 and i− 2

ImpactFactor(j, i) = A/B. Thus, the impact factor is
an approximation of the average number of citations
within a year given to the set of articles in a journal
published during the two preceding years. He also
applied a similar idea of counting citations to evaluate
scientists [7].

Based on this early work, many different versions of
impact factors have been proposed [16, 26, 8, 12, 13, 14,
15, 21, 22]. However all of the approaches were based
on counting citations, and the problem with counting
citations is that it is only based on the popularity of the
articles but not the prestige which is usually measured
by scores similar to PageRank.

After the revolution in ranking web pages by PageR-
ank [25] and its application to different domains ([2, 9,
5, 23, 10, 19, 20]), many researchers explored applying
a PageRank approach to the citation network in order
to rank scientific articles [3, 4, 18]. Their results con-
firmed that the ImpactFactor finds the popularity while
PageRank score shows the prestige.

In addition to analysis of the citation network,
research has looked at making use of the co-authorship

network. For example, Liu et al. [17] also applied
PageRank to the co-authorship network in order to rank
scientists.

Zhou et al.[28] used the idea of mutual reinforce-
ment between hubs and authorities introduced in HITS
algorithm [11], and they made use of three networks: the
citation network, the co-authorship network, and the
authors’ social network. In the authors’ social network,
two authors are linked if they published a paper to-
gether or attended the same conference together. They
used the mutual reinforcement idea, but their model
was simulating the PageRank random walk in the com-
bination of these three networks. In fact, the Co-Rank
model contains two independent random walks in cita-
tions network and authors’ social network and a random
walk between the two networks on the authorship net-
work. If at any given moment the random walk is on
the author side, then it can either make m intra-class
steps or k inter-class steps. Similarly, if it is on the doc-
ument side, then it can either make n intra-class step
while another option is to make k inter-class steps:

M =

[
(1− λ)(ÃT )m λDAT (ADTDAT )k

λADT (DATADT )k (1− λ)(D̃T )n

]

in which A denotes the adjacency matrix of authors’
social network, D shows the adjacency matrix of doc-
ument citations, and AD shows the adjacency matrix
of authorship network from authors to documents (DA
just shows the reverse direction of AD). Then, they con-
catenated the two vectors of ranks (vector a for articles
and vector d for documents) into a vector v such that
v = [aT , dT ]T . Finally, by solving v = MvT , the final
scores are computed. The model provides a co-ranking
of articles and authors, and was evaluated based on the
author ranking. Nie et al. also consider articles as Web
objects and collect Web information for object, then
rank Web objects in terms of their popularity and rele-
vance to the user query. [24].

A problem with all of the above approaches is that
they rank articles based on the prior popularity or pres-
tige, so that recent articles will always obtain lower
scores. Walker et al [27] introduced CiteRank, a method
which uses the publication time of the articles and de-
fines a random walk to predict number of future cita-
tions and then uses this to rank the articles. CiteRank
models the citation process in which researchers start
their search from a recent paper or reviews and follow a
chain of citations until satisfied. In the proposed model,
the probability of jumping to an article is proportional
to its publication time which is computed by:

ρi = e−agei/Tdir



Figure 1: Average number of citations in the
dataset(arXiv), which articles obtain, based on the
number of years prior from publication date

in which agei is the age of the i-th article. The CiteRank
traffic of the paper is then defined as follows:
−→
T = I.−→ρ + (1− α)W.−→ρ + (1− α)2W 2.−→ρ + ...

which shows the probability of encountering an article
via all possible paths (W is the adjacency matrix of the
citation network). Their experiment shows that the best
correlation between the predicted citation by CiteRank
and the number of future citations was around 0.68.

3 Our Proposed Model

In this section, we describe our proposed ranking model
for scientific articles and authors. As mentioned in
introduction, we would like to rank papers based on
predicted future citations, as this will help researchers
find good articles more easily. In order to do this,we
need some measures for defining a useful article. As
mentioned in the related work section, one traditional
measure is based on the popularity or the number of
citations, but a better measure would be the PageRank
score, or estimated prestige of the article.

Figure 1 shows, for arXiv, a collection of high energy
physics publications[1], average number of citations to
articles in the same year (past year = 0), previous year
(past year = 1), and so on). As we can see, while the
aggregate number of citation increases each year and
the number of citations that an article obtains in each
individual year decrease exponentially, most references
are to articles published in the previous year. Any algo-
rithm which does not take recency of publication date
into account in ranking articles is not going to be able
to capture this effect.
In addition, useful articles are often written by well-
known researchers, and therefore, another source of use-
ful information is the authorship network, from which

author reputation and contribution can be extracted.
Our model for ranking the scientific articles is based on
the following assumptions:

• Important articles are cited by many important
articles.

• Good research papers are written by researchers
with high-reputations and researchers have high-
reputation since they write good research articles.
This illustrates mutual reinforcement between arti-
cles and the authors.

• Recently published articles are more useful, or in
other words, they will obtain more citations in the
future.

• Among old papers, recently cited articles are more
useful.

There is one situation which at the first glance may
not fit to our assumptions, and it is for the case of well-
known classic papers which are not very recent but their
citations do not decrease, because everybody cites them.
Actually, these types of papers will still achieve good
ranks based on our assumptions. While these papers
are not recent, recent papers tend to have high ranks
and many recent papers cite these classic papers. Then,
in any authority transfer model, the citing papers will
propagate their score to the referenced papers, so the
classic papers will still have a high score because of their
recent citations.

3.1 Network Structure Figure 2 shows an abstract
representation of a scientific publication network. The
network has two types of nodes, papers and authors.
In addition, there are two types of edges, authorship
edges, which are undirected edges between papers and
their authors, and citation edges, which are directed
links from a paper to each of its references. In order to
rank nodes in this network, we can see the network as
a combination of two networks. The first network only
contains the paper nodes and citation edges between
them, so PageRank can be used here for authority
transfer from articles to their references. The second
network is the network of papers and authors but
only contains authorship edges. It is obviously a
bipartite network, and it can be mapped onto a HITS-
type network where articles are authorities and authors
are hubs, and the network can simulate the mutual
reinforcement between articles and authors using a
HITS-style propagation algorithm. Figure 3 shows the
mapping.

Networks are often represented as sociograms or
adjacency matrices, and we use a matrix representation



Figure 2: An example of the scientific article network.
There are two types of nodes, papers (rectangles) and
authors (circles) and two types of edges, authorship
edges, between authors and papers, and citation links,
between papers.

as well and store ranking scores in vectors. If P is the
set of papers and A is the set of authors, the matrix
MC is the |P | × |P | citation matrix where

MC
i,j =

{
1 if pi cites pj ;
0 otherwise;

Furthermore, for any paper pi which does not cite any
other article in the dataset, we define MC

i,j = 1, for all j.
Essentially, we create virtual links from dangling nodes
to every other node.

In addition, we define the matrix MA which is the
|P | × |A| authorship matrix:

MA
i,j =

{
1 if ai is the author of pj ;
0 otherwise;

3.2 Proposed Ranking Algorithm: FutureRank
Since two networks share nodes, we cannot compute
rankings for each of the networks individually with dif-
ferent models. Instead, we propose a new ranking algo-
rithm, which we refer to as FutureRank, which operates
on both networks, passing information back and forth
between the networks. The ranking algorithm is an it-
erative algorithm which runs one step of PageRank, one
step of HITS and combines their results. It then repeats
the above steps until convergence. We denote the vector
of paper scores by Rp, and the vector of author ranks by
Ra. The score of authors is computed by the following
formula:

RA = MA ∗RP

Figure 3: Network Decomposition: A single mode net-
work of citations and a bipartite network of authorship

which is the hub score in the authorship network. In
other words, articles transfer their authority score to
their authors, and an author collects the authority score
of all of his/her publications. However, the rank of
papers is computed by a more complicated formula as
follows:

RP = α ∗MC ∗RC

+ β ∗MAT ∗RA

+ γ ∗RTime

+ (1− α− β − γ) ∗ [1/n].

This formula is the weighted sum of the following three
scores:

• MC ∗ RC is the PageRank score in the citation
network,

• MAT ∗RA is the authority score in the authorship
network (MAT shows the transposition of MA),

• The last term, RTime, is a “personalized” PageR-
ank vector. In the original PageRank model, the
personalized vector is a pre-computed score vec-
tor to rank the results in favor of user preferences,
where the default value is 1

n for all nodes (n is the
number of nodes in the network). The values in
our personalized vector are pre-computed based on
the current or query time, Tcurrent, the publication
time of the papers, and favor recently published
papers:

RTimei = e−ρ∗(Tcurrent−Ti)



where Ti is publication time of pi. Tcurrent − Ti
shows the number of years prior from the publica-
tion time of pi.

The initial value of RPi is 1
|P | and similarly the initial

value of each RAi is 1
|A| . This initialization keeps the

sum of the paper ranks equal to 1, as well as the
sum of author ranks. This property will hold after
each iteration too, since the computation performs an
authority propagation and sum of the weights, α+ β +
γ + (1− α− β − γ), is equal to one.

4 Evaluation

In this section, we evaluate several variants of our pro-
posed FutureRank method on a collection of scientific
papers. We compare with several alternate, previously
proposed approaches, and evaluate according to several
performance criteria. We conclude with a discussion of
running times and convergence.

4.1 Data Set We evaluated our algorithms on a
real dataset of scientific articles, the arXiv (hep-th)
dataset[1]. The dataset contains articles published on
high energy physics from 1993 to 2003. The dataset
contains approximately 28, 000 articles, with 350, 000 ci-
tations. There are about 15, 000 authors. We extracted
authors from the description file for each article, and in
the extraction phase, two authors are considered identi-
cal if their full names match; this is a strong matching
criteria, and more sophisticated author name resolution
strategies should improve our performance. There were
a few citations from an article to another article pub-
lished later; these were removed.

4.2 Evaluation Setup For evaluation, we split the
dataset into two sets: the first set, the query data,
contains all papers published before 2001 and the second
part, evaluation data, contains all papers published in or
after 2001. We used the first set in our experiments for
computing the ranks, and then used the second partition
as the future data for evaluating the ranking.

In order to construct the evaluation, we can view
the system from the stand point of a user in 2001,
who is searching for research papers. At this point,
the only available information is the information in
the first partition of the dataset. As the definition of
usefulness, the most useful paper for that user should be
the paper that will obtain the highest future PageRank,
e.g., the highest number of citations after 2001. For
the evaluation, we compute future PageRank as the
PageRank scores of articles only based on the citations
in and after 2001. In order to do this, we create a new
network of all papers from 1993 to 2003, but only make

Figure 4: (a) Hypothetical figure of entire Dataset in
which the horizontal line shows the time line and edges
show the citations of older articles by earlier articles
(b) The full dataset; the horizontal line shows the time
line and edges show the citations of articles by later
articles; (c) the query data, which only contains edges
originating before 2001, and (c) the evaluation data,
which only contains edges originating after 2001.

use of the citations edges originating from the articles
published in and after 2001.

To illustrate the setup, figure 4(a) shows a hypo-
thetical figure of a full dataset. The horizontal bar in
the figure shows the time line, and each arrows show
a citation from an article to another one. The figure
shows the information available in the query dataset and
the dashed arrows show the future citations which are
available only in the evaluation data. The query set and
evaluation set are also shown separately in Figure 4(b)
and 4(c), respectively. Then, the PageRank in the eval-
uation network is computed. The PageRank scores of
articles published prior 2001 are the true scores, which
we are using as the evaluation data and call it future
PageRank. The goal of FutureRank is to predict a rank-
ing which is consistent with this score. However, the
prediction should be done based only on the informa-
tion available to at the user query time, which in this
case is only the nodes and edges prior to 2001.

Furthermore, as discussed earlier, it is important
to model the effect of publication time in the article
ranking. For this, in section 3.2, we introduced the
personalized vector RTime. In order to find the best
value of ρ for computing the value of RTime, we find
the best exponential trend line, which fits Figure 1.
Ignoring the data for past years= 0, the best exponential
function which matches the data in Figure 1 is

c ∗ e−0.62∗x,



so the best value of ρ will be −0.62. Interestingly,
this result confirms exactly the result of [27], which
Tdir = 1.6 = 1

0.62 is the best value. The authors of [27],
ran CiteRank for all possible values of Tdir, then found
Tdir = 1.6 years as the best value, while we simply find
the best trend line fit to the dataset. Interestingly, both
works obtain the same value, while we can find the best
value simply by counting the citations in different years
for each dataset without making use of the evaluation
data, while they ran the ranking process and needed
test data to find the value of the parameter which gave
the best precision.

4.3 Ranking: Evaluation and Approaches For
evaluating the ranking, we use two approaches: 1) the
precision-recall curve, and 2) the Spearman’s rank cor-
relation between the rankings provided by the models
and the future PageRank computed on the test data.

We compared and evaluated four different versions
of FutureRank with previous works:

• FutureRank: Our proposed model which use all
available information (author, citation and publi-
cation time):

RP = α ∗MC ∗RC

+ β ∗MAT ∗RA

+ γ ∗RTime

+ (1− α+ β + γ) ∗ [1/n]

RA = MA ∗RP

• FutureRank(CT): A variant of our proposed
model which only uses citation and publication
time, but does not use the author information
(β = 0).

RP = α ∗MC ∗RC

+ γ ∗RTime

+ (1− α− γ) ∗ [1/n]

RA = MA ∗RP

This is the same information that CiteRank[27]
uses. As it is clear from the formula, this version is
not using the authorship network and the mutual
reinforcement between authors and publications.

• FutureRank(CA): A variant of our proposed
model which only uses citation and authorship
information (γ = 0).

RP = α ∗MC ∗RC

+ β ∗MAT ∗RA

+ (1− α− β) ∗ [1/n]

RA = MA ∗RP .

This model do not use the publication time of
the articles, so it uses the same information as
CoRank[28].

• PageRank: which is the traditional PageRank
Model for α = 0.9, and random jump with proba-
bility of 0.1 (α = .9, β = 0, and γ = 0).

RP = α ∗MC ∗RC

+ (1− α) ∗ [1/n]

RA = MA ∗RP

Furthermore, in order to evaluate the algorithms for
finding the precision and also computing the precision-
recall curve, we need to construct ground truth. Ground
truth, especially for ranking algorithms, is challenging.
In order to evaluate, we took the top 50 papers sorted
by future PageRank as the true result set. We measure
the precision of our algorithm by comparing this top 50
with the top 50 of returned by our proposed algorithms.
We compute the precision as:

Precision =
|FutureRanktop50 ∩ Future PageRanktop50|

50

which is the precision of the top 50 of FutureRank
results. Later, we also evaluate with different values
for the size of this set.

4.4 Effect of Parameters on Precision We began
by investigating the sensitivity of the performance of
the FutureRank to different settings for the parameters
which weight the citation (α), author (β) and publica-
tion time information (γ).

Figure 5 shows the precision of FutureRank for
different values of α, β, and γ. The x-axis shows the
value of γ and the vertical axis shows the value of α.
Since α + β + γ is always equal to 1, at any point in
the heatmap, the value of β is 1− α− γ (The top right
triangle of the map is empty, because the sum of α,β,
and γ cannot be more than 1). The lighter the color in
the heatmap, the higher the precision.

Figure 5 shows the possible configurations of Fu-
tureRank. For example, the accuracies shown on each
edge of the heatmap triangle show the combination of
using only two type of information. All values on the



Figure 5: The precision of FutureRank for different
settings of the three weighting parameters, α, β, and
γ. In any point in the figure, the value of β is equal to
1− α− γ.

horizontal edge obtained for γ = 0, so it means the hor-
izontal edge shows all possible configurations of Futur-
eRank(CA),while the hypotenuse shows all possible con-
figurations of FutureRank(CT). Each corner also shows
the precision of FutureRank which only use one type of
information (on of α, β, and γ is equal to 1 and the two
others are zero). The nice observation is that the space
has a single optimal region, rather than a more complex
collection of optimal configurations.

The highest precision of FutureRank is obtained at
α = 0.19, β = 0.02 and γ = 0.79. However, one should
take care in interpreting these values. This combination
of values does not mean the effect of time RT ime is three
times more important than the citation. This happens
because we take the weighted sum of three ranks and
all of these ranks are between 0 and 1, but because the
sum of all scores in each vector RP , RA, and Rtime

must sum to 1 individually, the ranges of scores in the
different vectors are different. For example, the sum of
author scores should be 1 as well as the sum of papers
scores, but there are about twice as many papers as
authors. This means that the average score of papers
will be less than the average score of authors.

4.5 Further Comparison of Proposed Algo-
rithms Next, we evaluated the effectiveness of the pro-
posed algorithms in further detail. We begin by ex-
ploring the precision-recall trade-offs for each. Figure 6
shows the precision-recall curves of four models:

1. FutureRank: Here the best curve is obtained by
α = 1.9, β = 0.02, and γ = 0.79

Figure 6: Precision-Recall based on precision in top 50
results.

2. FutureRank(CT): Here the best curve is ob-
tained by α = 0.2,β = 0, and γ = 0.8.

3. FutureRank(CA): Here the best curve is ob-
tained by α = 0.2, β = 0.8,, and γ = 0.

4. PageRank

As we can see from the diagram, FutureRank pro-
vides significant improvement in ranking scientific arti-
cles; the first 25% of retrieved articles by FutureRank
are correct, which means the precision is 100% among
them.

The focus of the CoRank algorithm [28] was on
ranking authors, so authors of the paper do not present
an evaluation for article rankings. FutureRank(CA) uses
the same information as CoRank.

While the results in both figures 5 and 6 are based
on the top 50 results, figure 7 shows the precision of
FutureRank top k results for different values of k.

We were also interested in comparing more directly
to CiteRank [27]. The authors of CiteRank did not re-
port any precision-recall numbers but they computed
the correlation coefficient between the number of cita-
tions in the evaluation set (in the future) and the ci-
tation traffic estimation by CiteRank. The best corre-
lation between the predicted citation by CiteRank and
the number of future citations was around 0.68, while
the correlation between the FutureRank score and the
future PageRank score is 0.83. This is encouraging, but
these correlation values are not comparable since they
are correlation of two different measures.

Hence, instead, we choose another measure for
comparison, the Spearman’s rank correlation between
the rankings provided by two models and the ranking by
future citations in the evaluation data. The CiteRank
article showed the highest Spearman’s rank correlation



Figure 7: The precision of top k results of FutureRank
comparing to the top k results of future PageRank

Figure 8: Correlation between the ranking on the vali-
dation data and the results of CiteRank and FutureRank

between the CiteRank ranking and the ranking by the
number of citations in the future was 0.57, while the
highest correlation between FutureRank and the ranking
by the number of citations in the future is 0.75 which
shows a significant improvement (In the evaluation data,
we sorted articles by their publication date if two articles
had the same number of citations in the evaluation
data). We also computed the correlation between the
FutureRank ranking and the ranking by the future
PageRank, which is, in our minds, a more desirable
measure. The obtained correlation is 0.59, which is still
more than the correlation obtained by CiteRank for the
simpler measure of the number of future citations.

The parameter settings for correlation values are
shown in Figure 8 are as followings:

1. FutureRank: Here the best correlation is ob-
tained by α = 0.4, β = 0.1, and γ = 0.5

2. FutureRank(CT): Here the best correlation is

obtained by α = 0.5,β = 0, and γ = 0.5.

3. FutureRank(CA): Here the best correlation is
obtained by α = 0.65, β = 0.35,, and γ = 0.

The highest correlation between FutureRank(CA) and
the number of future citation is 0.33 which confirms its
precision recall curve. This shows the importance of
publication time which approaches like CoRank do not
use. Furthermore, the highest correlation between the
number of citations and FutureRank(CT), which only
used the same information that CiteRank uses, is 0.72.
In fact, FutureRank(CT) is a configuration of Futur-
eRank(β = 0) which runs the PageRank algorithm with
a personalized vector to favor recently published arti-
cles. Even this simple model of FutureRank, obtains
much higher correlation compared to the CiteRank algo-
rithm. This also shows that in term of precision-recall,
FutureRank will significantly outperform CiteRank, al-
though the precision-recall curve of CiteRank was not
available for comparison. In fact, we obtained the best
precision-recall curve and the best correlation value with
different parameter configurations for each model.

Figure 6 showed that the precision-recall curves of
FutureRank(CT) and FutureRank are very similar and
cross each other several times. Although the top results
of both configurations of our model are very similar, the
correlations obtained for FutureRank is slightly better
than those of FutureRank(CT).

The top 20 results of FutureRank within PageRank
and FutureRank(CA) is shown in Table1, which can
be compared to future PageRank, the ”ground truth”
ranking, on the evaluation data.

For FutureRank and future PageRank, the number
of citations a paper obtained before 2001 (part of the
available information to the FutureRank), the number
of citations a paper obtain in and after 2001 (the future
information which was not available to the FutureRank
model), as well as the publication date are shown in that
table. Since the top results of FutureRank and Futur-
eRank(CT) are almost equal, results of FutureRank(CT)
are not shown in the Table1. A case in point, while arti-
cle 9906064, ”An Alternative to Compactification”, has
only 414 citations before 2001, it obtained a good rank
(3) by FutureRank. Considering that it published re-
cently on 1999 and obtained this number of citations
in less than two years, it confirms that the paper will
obtain many citations in the future and is a very useful
paper at the user query time (in 2001). Both the num-
ber of citations (617 citations) which this paper obtain
after 2001 and the fact that it obtains the second po-
sition in the ranking by future PageRank confirm the
accuracy of FutureRank.



Table 1: Top 20 articles retrieved by FutureRank, which
are published before 2001

ar
X

iv
ID

T
it

le

P
ub

lic
at

io
n

D
at

e
#

C
it

at
io

ns
be

fo
re

20
01

#
C

it
at

io
ns

af
te

r
20

01
P

ag
eR

an
k

Fu
tu

re
R

an
k(

C
A

)

Fu
tu

re
R

an
k

Fu
tu

re
P

ag
eR

an
k

9711200 The Large N Limit of Superconformal
Field Theories and Supergravity

11/28/1997 1540 874 10 3 1 1

9802150 Anti De Sitter Space And Holography 2/23/1998 1137 638 28 6 2 4
9906064 An Alternative to Compactification 6/9/1999 414 617 92 129 3 2
9802109 Gauge Theory Correlators from Non-

Critical String Theory
2/17/1998 1054 587 37 8 4 5

9908142 String Theory and Noncommutative Ge-
ometry

8/23/1999 471 673 131 26 5 3

9407087 Monopole Condensation 7/19/1994 1082 217 1 1 6 10
9610043 M Theory As A Matrix Model: A Con-

jecture
10/8/1996 922 277 14 7 7 8

9510017 Dirichlet-Branes and Ramond-Ramond
Charges

10/5/1995 937 218 4 5 8 14

9711162 Noncommutative Geometry and Matrix
Theory: Compactification on Tori

11/21/1997 449 339 106 91 9 7

9905111 Large N Field Theories 5/17/1999 352 455 174 80 10 6
9503124 String Theory Dynamics In Various Di-

mensions
3/21/1995 981 133 2 4 11 46

9408099 Monopoles 8/19/1994 856 150 6 2 12 25
9510135 Bound States Of Strings And p-Branes 10/19/1995 675 100 13 9 13 77
9510209 Heterotic and Type I String Dynamics

from Eleven Dimensions
10/30/1995 546 242 40 18 14 9

9611050 TASI Lectures on D-Branes 11/11/1996 594 107 76 23 15 29
9409089 The World as a Hologram 9/20/1994 266 161 95 31 16 15
9711165 D-branes and the Noncommutative Torus 11/24/1997 297 159 211 108 17 33
9204099 The Black Hole in Three Dimensional

Space Time
5/8/1992 291 89 69 37 18 62

9410167 Unity of Superstring Dualities 10/25/1994 672 76 5 12 19 94
9603142 Eleven-Dimensional Supergravity on a

Manifold with Boundary
3/22/1996 314 180 167 70 20 17



Table 2: Top 20 authors retrieved by FutureRank and
the number of their articles in the dataset

Rank Name # of Publications
1 Edward Witten 100
2 Ashoke Sen 89
3 A.A. Tseytlin 111
4 Zurab Kakushadze 63
5 Joseph Polchinski 47
6 Juan M. Maldacena 21
7 Donam Youm 55
8 Nathan Seiberg 45
9 Cumrun Vafa 78
10 John H. Schwarz 47
11 Michael R. Douglas 52
12 Andrew Strominger 65
13 Nathan Berkovits 59
14 P.K. Townsend 56
15 Sergei V. Ketov 51
16 Miao Li 52
17 C.N. Pope 129
18 Shinichi Nojiri 94
19 N. Seiberg 23
20 Ichiro Oda 37

Finally, the top 20 authors retrieved by FutureRank
and the number of their publication are listed in Table2.

4.6 Running Time and Convergence We ran our
experiments on a machine with Intel(R) Core(TM)2
Duo T7300 2GHz CPU and 2 GB memory. We tested
for convergences of our algorithms if the difference be-
tween the computed scores between two consecutive it-
erations was less than some threshold minDifference.
The difference of two consecutive steps’ scores is com-
puted as follow:

Difference =
∑
pj∈P

(RPj
i −RPj

i−1
)2

+
∑
aj∈A

(RAj
i −RAj

i−1
)2

While the convergence rate was different for difference
values of the model parameters, the model converges
very fast in most cases. Figure 9 shows the difference
between the score values in two consecutive steps.
FutureRank and FutureRank(CT) have very similar
behavior and apparently, both of them converge much
faster than FutureRank(CA).

We also show the top 50 results precision in Figure
10. It shows the precision converges after three itera-
tions and there is no change in the top results, which

Figure 9: Score Convergence. The vertical axis shows
the difference between the score values in two consecu-
tive steps, so zero difference shows the convergence

Figure 10: Precision of top 50 results after each iteration

means even four iterations are enough, while the results
reported in CiteRank article were obtained after 20 it-
erations. Hence, in addition to better precision and cor-
relations, in terms of running time, FutureRank is much
faster than the CiteRank.

5 Conclusion and Future Work

In this paper, we presented the FutureRank algorithm
which is able to combine information about citations,
authors and publication time to effectively rank scien-
tific articles by predicting their future ranking of a pa-
per. While the goodness of a paper at any time can
be measured by the number of the citations that it has
obtained, the number of the citations that a paper will
obtain in the future measures how useful the paper is
at the user query time and is a better criteria to use
for retrieving articles that will help researchers in their
work. Our experimental evaluation has shown the preci-
sion of FutureRank, and FutureRank achieves significant
improvement over other recently proposed algorithms.



The precision-recall curve showed that using publica-
tion time information significantly outperforms the tra-
ditional PageRank and FutureRank(CA). We also get
a much higher correlation score, in addition to faster
model convergence, and a practical solution to estimate
the parameter model as compared to the CiteRank.

For future work, we plan to test the FutureRank on
additional datasets in order to determine how robust it
is to the different values of parameters α, β, and γ in
different datasets. We also plan to investigate extending
the network by adding additional node types, for exam-
ple information about venues, such as conferences and
journals. Furthermore, the FutureRank model is a gen-
eral model which can be applied on different problems
in the different areas. For example, the news domain is
an interesting domain which has similar network struc-
ture. We can create a bipartite network of news articles
and named-entities. The mutual reinforcement between
news articles and named-entities mentioned is like the
mutual reinforcement between scientific articles and au-
thors. In addition, the number of related news items
shows the importance of a news articles which is similar
to the effect of citation in scientific article ranking.
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