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Abstract. We introduce a heuristic search technique for multi-agent
pursuit-evasion games in partially observable Euclidean space where a
team of tracker agents attempt to minimize their uncertainty about an
evasive target agent. Agents’ movement and observation capabilities are
restricted by polygonal obstacles, while each agents’ knowledge of the
other agents is limited to direct observation or periodic updates from
team members.
Our polynomial-time algorithm is able to generate strategies for games in
continuous two-dimensional Euclidean space, an improvement over past
algorithms that were only applicable to simple gridworld domains. We
show experimentally that our algorithm is tolerant of interruptions in
communication between agents, continuing to generate good strategies
despite long periods of time where agents are unable to communicate
directly. Experimental results also show that our technique generates
effective strategies quickly, with decision times of less than a second for
reasonably sized domains with six or more agents.

Keywords: visibility-based pursuit-evasion, multi-agent planning, game
theory

1 Introduction

This paper introduces a strategy generation technique for multi-agent pursuit-
evasion games in continuous, partially observable Euclidean space. We provide a
polynomial time algorithm capable of generating online strategies for a team of
cooperative tracker agents that wish to pursue an evasive target. The goal of the
tracker team is to minimize their uncertainty about the target’s location by the
end of a fixed time period. The domain may have arbitrarily shaped polygonal
obstacles that limit movement as well as observability.

Minimizing uncertainty about a target’s location is different from the goal
of most other pursuit-evasion formalisms. The tracker team must work both to



maintain visibility on the target, but also to move to strategic locations prior to
visibility loss so that recovery will be possible. Past approaches that seek only
to maintain visibility on the target for as long as possible [10, 11], or discover
the location of a hidden target [15, 7], may not be suited for scenarios where
the target frequently passes in and out of visibility. Since we want to generate
strategies quickly, this also rules out many techniques that are based on deep
combinatorial search.

Prior work on this problem included a game-tree search algorithm that could
generate strategies for simple gridworld domains, where time was divided into
discrete time steps and agents were only permitted to move in one of four car-
dinal directions [13]. That work also assumed that agents would be in constant
communication, since it generated trajectories using a heuristic method that
required knowing the location of every agent on the team.

In this paper we introduce the Limited-communication Euclidean-space Looka-
head (LEL) heuristic, a method for evaluating tracker strategies in games where
agents can move freely in two-dimensional Euclidean space and where there may
be long periods of time when communication between agents is interrupted.

Our contributions include–

• An algorithm for computing the LEL heuristic in two-dimensional Euclidean
space with polygonal obstacles, where communication between agents may
be interrupted for long periods of time.

• An efficient method for computing the set of trajectories for each agent that
are consistent with a trackers’ observation history, which consists of direct
observations and information shared periodically by other tracker agents.

• Complexity analysis showing that our algorithm for computing LEL runs in
polynomial time with respect to the size of the domain and number of agents.

• Experimental results showing that our algorithm quickly generates strategies
for the continuous domain that are twice as effective at retaining visibility
on the target when compared to a strategy that follows the shortest path to
the target.

This paper is organized as follows: in the next section we provide a formal
description of the multi-agent pursuit-evasion game addressed in this paper, and
describe how to generate observation histories for each agent. In sections 3 and 4
we provide a definition for LEL and describe our algorithm. Section 5 discusses
experimental results for our implementation, including the effect of interruptions
in communication. Related work on similar pursuit-evasion games is discussed
at the end of the paper.

2 Formalism

We define a multi-agent, imperfect-information game where a single target agent
a0 is pursued by a team of n tracker agents {a1, a2, . . . an}. The goal of the
tracker team is to minimize its uncertainty about the target’s location by the
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Fig. 1. Example pursuit scenario with two tracker agents and a single target agent.
Shaded areas represent the region that can be observed by the tracker agents.

end of the game. Agents’ movement and observation capabilities are formally
defined below.

2.1 States and Histories

We assume that each agent ai is a holonomic point robot with a fixed maximum
velocity vi. Agents can be located anywhere in the region Cfree ⊆ R2, defined
as free space. The domain may have multiple obstacles, where each obstacle is
a polygon in R2, and Cfree is the set of locations not intersecting any obstacles.

The game’s state s ∈ S is a set of locations for each agent, {l0, l1, . . . ln},
and a time tk. Each game has an initial state s0, and a time tend indicating
when the game ends. A game’s history h ∈ H at time tk ≤ tend is the set of
trajectories followed by each agent {f0, f1, . . . fn} from time t0 until tk, where
fi(t) denotes the location of agent ai at time t. Since agents can move freely
in two-dimensional Euclidean space, the set of all states S, and set of all game
histories H, are both infinite.

2.2 Reachability and Observability

Agent ai can travel from location lj to location lk only if a path exists from lj
to lk, and every location in that path is contained in Cfree. Thus, agent ai’s
reachability function is

Ri(lj , t) = {lk : locations 〈lj , lk〉 are connected

in Cfree by a path of length d ≤ t/vi}



which is the set of locations agent ai can reach in time t starting from location
lj . This can be generalized to

Ri(L, t) = {lk : lj ∈ L ∧ lk ∈ Ri(lj , t)} (1)

which is the set of locations agent ai can reach in time t starting from anywhere
in L ⊆ R2.

Agent ai can observe location lk from location lj only if lk is contained
within the observable region Vi(lj). We define the observable region as the set
of locations within ai’s sensor range, ri, where the line-of-sight is not obstructed
by an obstacle. Thus, agent ai’s observability function is

Vi(lj) = {lk : locations 〈lj , lk〉 are connected in Cfree

by a straight line segment of length d ≤ ri}

which is the set of locations observable to agent ai while located at lj . Observ-
ability can also be generalized as

Vi(L) = {lk : lj ∈ L ∧ lk ∈ Vi(lj)} (2)

which is the set of locations agent ai can observe while located somewhere in
L ⊆ R2. An example state of the game that illustrates observability is shown in
figure 1.

Agent ai may recall its past location fi(t) for any time t ≤ tk, but it does not
know the trajectory fj followed by any other agent aj 6=i. Agent ai only knows
the location of the other agents based on the initial state s0 and its observation
history, defined in section 2.3.

2.3 Observation Histories

During a game, agent ai’s observation history is a finite set of observations Oi =
{o0, o1, . . . ok} where each observation is a tuple 〈aj , L, t〉, meaning fj(t) ∈ L, or
“agent aj is located in region L at time t.” If observation o ∈ Ω appears in agent
ai’s observation history at time t, then the information in o is available to ai at
any time t′ ≥ t. As with states and histories, the set of possible observations, Ω,
is infinite.

Observations are made at discrete time intervals, such that the number of ob-
servations in a particular observation history remains finite. Since agents are free
to move between observations, we define a set of rules for computing the possible
trajectories followed by each agent that are consistent with prior observations.

Given an observation history, an agent is able to determine the region where
another agent may be located, even if that agent’s actual location is not known.
Given Oi, the set of locations guaranteed to contain agent aj at time t is

R+
j (Oi, t) = Rj(L, t− t′) (3)

where 〈aj , L, t′〉 is the most recent observation in Oi describing agent aj at some
time t′ ≤ t. This expands the set of locations where aj might be, as illustrated
in figure 2.
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Fig. 2. (left) Example scenario where a single tracker has lost sight of a target. The
hidden region is represented as a hatched area. (right) Set of polygons generated by
expanding the boundary of the hidden region.

If agent ai happens to observe agent aj at time t, meaning fj(t) ∈ Vi(fi(t)),
then the tuple 〈aj , {fj(t)}, t〉 is added to agent ai’s observation history. If ai
does not directly observe aj , the observation history is updated with a set of
locations instead. Agent ai can compute this hidden region as

hiddenj(Oi, fi, t) = R+
j (Oi, t) \ Vi(fi(t)) (4)

which is the set of locations that aj can reach by time t, minus the loca-
tions observed by agent ai. If ai does not directly observe aj at time t, then
〈aj , hiddenj(Oi, fi, t), t〉 is added to agent ai’s observation history.

Each tracker will receive periodic updates from the other agents on their
team. An update from tracker aj informs the other trackers of aj ’s current
location, as well as aj ’s observation history Oj . This can be merged with ai’s
latest observations by computing

mergek(Oi,Oj , t) = R+
k (Oi, t) ∩R+

k (Oj , t) (5)

where 〈a0,merge0(Oi,Oj , t), t〉 represents ai and aj ’s combined knowledge of the
target at time t. This observation, and 〈aj , {lj}, t〉 are both added to tracker ai’s
observation history as the result of the update.

Agent ai’s observation history Oi and past trajectory fi map to an infor-
mation set Ii(t) ⊆ H, which is the set of possible game histories given ai’s
knowledge at time t. History h is in Ii(t) if and only if 〈fi,Oi〉 is consistent with
h. Formally,

Ii(t) ={h : (fi ∈ h) ∧ ∀fj∈hC(Oi, fj)}

where C(Oi, fj) is the consistency relationship

C(Oi, fj) = 〈aj , L, t〉 ∈ Oi → fj(t) ∈ L.



As with states and histories, the set of all possible information sets at time t > t0
is infinite.

In practice, we only require the most recent observation from each history.
This is sufficient both to compute the LEL heursitic introduced in section 3 and
to maintain an accurate hidden region for the target. Therefore, older observa-
tions may be discarded.

2.4 Strategies

A pure strategy σi for agent ai is a function mapping the agent’s information
set, Ii(t) to the move it should perform at time t. Since changes to agent ai’s
observation history occur only at regular time intervals, σi(Ii(t)) should specify
a trajectory f for agent ai to follow from time t until the next update occurs to
Oi. Trajectory f is feasible for ai at time t if and only if f(t) is equal to fi(t)
and

∀j,k[(t ≤ tj ≤ tk)→ f(tk) ∈ Ri(f(tj), tk − tj)].

A strategy profile σ = (σ0, σ1, . . . σn) assigns a single pure strategy to each
agent. Since the game is deterministic, each strategy profile σ should produce a
unique history h(σ) at the end of the game. The expected value of profile σ is

E(σ) = u(h(σ))

where u(h) is the size of the region guaranteed to contain the target based on the
trackers’ observation histories at the end of a game with history h. This value
can be computed given the observation history Oi(h) generated by history h,

u(h) = |
n⋂

i=1

R+
0 (Oi(h), tend)|. (6)

The utility for the tracker team is −E(σ), meaning the highest possible
utility is zero, which happens when the target is directly observable at the end
of the game. We leave the objective function for the target undefined, but set
out to maximize −E(σ) under a worst-case assumption: i.e. we assume that the
target will always pick a strategy that minimizes the trackers’ utility. This is
equivalent to playing a zero-sum game against an opponent that always chooses
the best-response to the player’s strategy.

3 LEL Heuristic

This section introduces the Limited-communication Euclidean-space Lookahead
(LEL) heuristic, which can be used to evaluate trajectories for the tracker team.
LEL works by estimating how large the hidden region will be in the game’s future
if a tracker agent follows a particular trajectory. The hidden region is the set of
locations where the target could be located based on the information provided



in an agent’s observation history. The size of this region at the end of the game
is equivalent to the tracker team’s utility, as defined in equation 6.

LEL is inspired by the relaxed-lookahead (RLA) heuristic, which evaluated
trajectories for tracker agents in a gridworld version of the game [13]. Trajectories
generated using RLA were limited to movements between grid locations in one of
four cardinal directions. RLA also required continuous communication between
agents, since all agents were required to know the exact location of the other
agents on their team. LEL overcomes these limitations by estimating the size
of the hidden region using only an agent’s observation history, as described in
section 3.1, and by using a very different algorithm to compute the reachability
and visibility information for each of the agents, described in section 4.

Below, we provide a formal definition and algorithm for computing LEL in
games where agents can move freely over two-dimensional Euclidean space, and
where communication between agents can be disrupted. LEL requires that each
agent has maintained an observation history according to the rules defined in
section 2.3.

3.1 LEL Definition

Given observation history Oi, the target is guaranteed to be located somewhere
in R+

0 (Oi, t) at time t. The region visible to the tracker team is bounded by

V +(Oi, t) =

n⋃
j=1

Vj(R
+
j (Oi, t)) (7)

which contains every location that a tracker agent could observe at time t, given
any trajectory consistent with Oi. If the target is not visible at time t, then agent
ai can approximate the hidden region where it may be located by computing

R+
0 (Oi, t) \ V +(Oi, t) ⊆ hidden0(Oi, fi, t)

which is the set of locations that the target can reach by time t that are guar-
anteed to be unobservable by the tracker team. This is a subset of the actual
hidden region defined in section 2.3. The value returned by the LEL heuristic is
the average size of this region over a given time interval,

ulel(Oi, t, d) =
1

d

t+d∑
k=t

∣∣R+
0 (Oi, k) \ V +(Oi, k)

∣∣ (8)

where t is the current time, and d determines how far into the future to compute
the approximation. We will refer to d as the prediction depth of the heuristic,
since we are estimating the average size of the hidden region out to time d and
no further. In section 4 we present an algorithm to quickly evaluate LEL.
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Fig. 3. Trajectories generated using the LEL heuristic in a domain with two tracker
agents and an evasive target. The tracker agents start in the lower left and move past
obstacles while attempting to surround the target from both sides.

3.2 Using LEL to Select Trajectories

To select a trajectory for agent ai at time t, several candidate trajectories should
be sampled using the LEL heuristic. Let l′ be the location of a possible way-
point for agent ai and let tk be the desired arrival time. The value of the LEL
heuristic for this candidate trajectory is ulel(Oi + 〈ai, {l′}, tk〉, tk, d). This value
can be compared against other possible waypoints, and the tracker should select
the waypoint which returns the smallest LEL value, since it corresponds to a
trajectory where the predicted size of the hidden region is the smallest.

If a tie occurs when selecting a trajectory for agent ai, the tie can be broken
by re-computing LEL using the location of just one tracker agent. To do this,
substitute Vi(R

+
i (Oi, t)) for V +(Oi, k) in the heuristic and compute,

utb(Oi, t, d) =
1

d

t+d∑
k=t

∣∣R+
0 (Oi, k) \ Vi(R+

i (Oi, k))
∣∣ (9)

which is equivalent to what the LEL heuristic would return if there were no
other tracker agents on the team. This only needs to be computed in case of a
tie, which happens when some subset of the tracker team is able to observe all
of the locations that the target can reach. In this case, the tie-breaker ensures
that the remaining tracker agents move into a reasonable position.

In our experiments in section 5, a total of nine waypoints were evaluated
by each agent per update: eight waypoints forming a uniform circle of radius
r around the agent’s current location, and a single waypoint to represent no
movement. While more waypoints could have been evaluated, evaluating only



these nine was sufficient to tell the agent which direction to move. Since our
algorithm is able to re-compute the LEL heuristic very quickly, we set the arrival
time for each waypoint (determined by the radius r) to only a brief moment in
the future.

The trajectories in figure 3 were generated by evaluating one extra waypoint
per update, created by interpolating the two best waypoints from the original
nine. If the LEL value for this new waypoint was better than the others, it
was chosen instead. This had the advantage of generating slightly smoother
trajectories by performing a small additional computation.

4 Algorithm

Our algorithm for LEL is divided into two stages: first we generate reachability
and observability information for each of the agents in the domain, then we com-
bine that information to compute the LEL heuristic. The agent must also have
updated its observation history according to the rules described in section 2.3.

We assume that the boundaries of any region L are represented by a set of
polygons in R2. These polygons can be disjoint and have holes in them, allow-
ing a close linear approximation of most regions that will appear in the game.
Obstacles in the domain are represented using these polygons, as is the hidden
region that describes an agent’s knowledge of the target.

In this section, we provide an algorithm that quickly computes a numerical
approximation of LEL by taking advantage of the Fast Marching Method [14],
which can quickly compute shortest-path distances over two-dimensional Eu-
clidean space. Since multiple calls to the LEL heuristic will result in redundant
work, improvements can be made by caching some of the reachability informa-
tion, a process that is discussed at the end of the section.

4.1 Mapping the Environment

Computing LEL requires a set of reachability functions {rdist0, rdist1, . . . rdistn}
where each function rdistj(l) returns the Euclidean shortest-path distance from
agent aj ’s location at time t to location l. If ai does not know the location
of agent aj , then ai must compute the shortest-path distance from R+

j (Oi, t),
which is the set of locations guaranteed to contain aj at time t based on ai’s
observation history.

Evaluating rdisti(l) explicitly can be done in logarithmic time using a shortest-
path map [9], but our implementation achieves linear time complexity by using
the Fast-Marching Method. The Fast-Marching Method is able to compute the
Euclidean shortest-path distances for a set of locations in a Cartesian grid, eval-
uating all possible trajectories, including trajectories that do not pass through
the grid points [14]. Thus, we can provide a close numerical approximation of
LEL by evaluating the set of locations Lraster, where Lraster is a two-dimensional
grid of width w and height h. The Fast-Marching Method is able to correctly
compute rdisti(l) for all l ∈ Lraster in time O(m), where m = w · h.



Computing LEL also requires the visibility functions, {vdist1, vdist2, . . . vdistn}
where each vdistj(l) returns the shortest-path distance from agent aj ’s location
at time t to the nearest location that can observe l. This is defined in terms of
rdisti below

vdisti(l) = min
l′∈Vpoly(l)

rdisti(l
′).

where Vpoly(l) is a polygon containing the set of locations visible from l.
Evaluating vdisti(l) is considerably more challenging than evaluating rdisti(l),

since it requires computing the minimum distance over an set of locations in
Vpoly(l). Rather than computing this explicitly, we can use a sampling technique
to approximate the visibility distance, described below in algorithm 1.

Algorithm 1 Approximate agent ai’s visibility map vdisti.

Lsample = finite subset of Cfree

for all l ∈ Lraster

vdisti(l) = ∞
for all l ∈ Lsample

for all l′ ∈ (Lraster ∩ Vpoly(l))
vdisti(l

′) = min(rdisti(l), vdisti(l
′))

Since each visible region, Vpoly(l), is represented as a polygon, and the points
in Lraster form a two-dimensional grid, we are able to compute algorithm 1
efficiently by taking advantage of scan-line rasterization techniques. An example
visibility map generated by this rasterization process is shown in figure 4.

4.2 Computing LEL

Given {vdist1, vdist2, . . . vdistn} and rdist0, we can compute the difference in
time between when the target can first reach a location and when it can first be
seen by one of the trackers. This is evaluated as follows

∆(x, y) = min
i

(
1

vi
· vdisti[x, y]− 1

v0
· rdist0[x, y]

)

where rdist[x, y] and vdist[x, y] correspond to the approximation of vdist and
rdist at location 〈x, y〉 computed in the previous section. The value for LEL
computed by our algorithm is,

ulel =
1

wh

w∑
x=0

h∑
y=0

max(0,min(∆(x, y), d)) (10)

To connect this algorithm to the definition of LEL in equation 8, note that the
size of an arbitrary polygonal region can be approximated by counting how many



points in Lraster are contained by the polygon. The quality of the approximation
depends on the size of the raster, but with any sufficiently large raster we can
approximate the size of the hidden region, R+

0 (Oi, t) \ V +(Oi, t), and use that
to compute LEL. However, rather than computing this region at each time step
as is done in equation 8, we simply determine when each point in Lraster is
first intersected by R+

0 (Oi, t) and V +(Oi, t), then use the difference in time to
determine how long the point was contained in R+

0 (Oi, t) \ V +(Oi, t). That is
what is done in equation 10 using our algorithm, allowing us to leverage the
Fast-Marching Method and avoid performing costly set operations over complex
polygonal regions.

An example of the rdist and vdist rasters generated by this technique are
shown in figure 4. The per-pixel evaluation of ulel is represented as a composite,
shown in the fourth image of the figure. Shaded areas represent locations where
the target is able to move before the tracker can guarantee visibility. If there are
many such locations, then ulel will return a high value, indicating that the state
is poor for the tracker team.

Most of the work performed evaluating a single trajectory can be re-used to
evaluate multiple trajectories at once. Since the same observation history is used
throughout this process, the reachability and visibility information for most of
the agents does not need to be recomputed. Evaluating m possible trajectories
for agent ai involves computing vdistj and rdistj only once per agent aj , while
vdisti is computed m times.

4.3 Caching Critical Points

If the travel distances from each location in the domain are cached in advance,
then it is possible to simplify the evaluation of rdisti(lj) and vdisti(lj). Let Lobs

be the set of vertex locations along the boundaries of the obstacles in the domain.
Let the map vcache(lj , lk) be the cached visibility distance from location lj ∈ Lobs

to arbitrary location lk. If agent ai is at location li, the value of vdisti(lj) for all
lj ∈ Lraster can be computed as follows:

Algorithm 2 Compute vdisti using critical point caching.

for all lj ∈ Lraster

vdisti(lj) = ∞
for all lj ∈ (Lsample ∩ Vpoly(li))

for all lk ∈ (Lraster ∩ Vpoly(lj))
vdisti(lk) = min(rdisti(lj), vdisti(lk))

for all lj ∈ (Lobs ∩ Vpoly(li))
d = Euclidean distance between li and lj
for all lk ∈ Lraster

vdisti(lk) = min(d + vcache(lj , lk), vdisti(lk))

The advantage of using algorithm 2 is that it is no longer necessary to ras-
terize the individual visible regions Vpoly(l) for any location l that isn’t in the



Fig. 4. Steps in the computing LEL: a) actual state of the game, b) travel distance
from the target region, c) visibility distance from the trackers’ locations, d) composite
raster used by the LEL heuristic.

immediate line-of-sight of agent ai. Instead, those distances can be determined
based on the cached values in vcache(lj , lk). As the agents move throughout the
domain, the set Lobs ∩ Vpoly(li) of vertices that are visible to the agent only
changes gradually as new vertices become visible and old ones become hidden.
Thus, vcache(lj , lk) can be computed once when a vertex first becomes visible,
and re-used indefinitely until the cache becomes too large or the information is
no longer needed.

It’s best to use caching when the average number of obstacle vertices visible
to an agent is much smaller than the number of points in Lsample. If the visibility
polygons Vpoly(l) are pre-computed for each point l ∈ Lsample, algorithm 2 has
a computational complexity of O((v + s)m) where v is the average number of
vertices visible to the agent, s is the average number of points in Lsample ∩
Vpoly(li), and m is the size of the raster. If v and s are held to be constant, then
the complexity is linear in the size of the raster. In our experiments, we compute
the distances vcache(lj , lk) in advance for all lj ∈ Lobs.

4.4 Computational Complexity

The complexity of LEL is O(n(V +R+m))), where n is the number of trackers, R
and V are the computational complexity of the algorithms used to generate rdist
and vdist, and m is the size of the raster. Once rdist and vdist are computed,



computing LEL is simply a matter of computing the sum of the time differences
between rasters, which can be done in O(nm).

The Fast Marching Method can generate rdist in linear time, O(m), where
m is the size of the matrix [17]. The algorithm for computing vdist has a a
complexity of O((v + s)m), as explained in section 4.3. As a consequence, the
time required to compute LEL increases only polynomially as the size of the
raster m or the number of agents per team n increases.

The complexity of other important algorithms are as follows: computing
Vpoly(l) for any single location l is O(|Lobs|), or linear in the number of ver-
tices in the domain [5]. Similarly, the vertices visible from polygon L can be
computed in O(p · |Lobs|), where p is the number of vertices in the boundary
of L. Both of these are used in the computation of vdist, and can be cached in
advance.

5 Experiments

To evaluate the algorithm presented in this paper, we performed a series of
experiments on randomly generated domains with two-dimensional polygonal
obstacles. The starting location for each tracker agent was chosen at random,
while the starting location for the target was set to a random location within
the trackers’ observable region. To make the game more challenging, in all of our
experiments we set the target’s velocity to be 10% faster than any of the tracker
agents, meaning the target could out-run tracker agents.

All figures discussed in this section show results from an average of 500
randomly generated trials. For each trial, the score for the tracker team was
determined by the size of the hidden region at the end of a fixed time period.

In addition to evaluating the LEL heuristic, we also evaluated the max-
distance (MD) heuristic, a simple hand-coded rule that instructs the tracker
team to follow the ”shortest-path” to the target. If the target is not visible, the
MD heuristic will assume the target is as far away as possible and follow the
shortest-path to that location. This heuristic provides a baseline comparison for
judging the quality of the strategies produced by LEL, and has been used for a
similar purposed in the past [13].

To generate obstacles for our experiments we used a randomized version of
Kruskal’s algorithm to create a maze [6]. We then randomly removed half the
walls from the maze to increase the domain’s connectivity. The result was a
continuous domain with many obstacles for the target to hide behind, but with
very few dead-ends. Each trial in our experiments used a different set of randomly
generated obstacles and starting locations.

When generating strategies for the target agent, we assumed that the target
always knew the exact location of the tracker team. We used the LEL heuristic
with a fixed prediction depth to select a trajectory for the target that would
minimize the tracker team’s utility. Targets using this worst-case target strategy
are much harder to track than targets which simply maximize their distance
from the trackers [13], so this is what we have chosen for our experiments.
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Fig. 5. Performance of LEL at different prediction depths given n trackers per team.
(left) Average size of the hidden region after 500 random games. (right) Proportion of
games where the target was visible to at least one tracker at the end of the game.
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Fig. 6. Comparison of LEL and MD for different team sizes. (left) Average size of the
hidden region at the end of 500 randomly generated games. (right) Proportion of games
where the target was visible to at least one of the trackers at the end of the game.

5.1 Tracker Success

Figure 5 shows the average success rate for a team of n trackers using LEL with
different prediction depths, where “success” was determined by whether or not
the target was visible at the end of the game. Increasing the prediction depth
decreased the size of the hidden region at the end of the game and also increased
the likelihood that trackers would retain visibility on the target. In the case with
two agents, the performance of the heuristic decreased slightly as the prediction
depth increased beyond 200, indicating that the quality of the prediction made
by the heuristic likely declines beyond a certain depth.

Figure 6 shows that teams using LEL were over twice as effective at tracking
the target than those who used the MD heuristic. On average, a team of three
agents using the LEL heuristic were more successful at tracking the target than
a team of four agents using the MD heuristic. In other words, teams using the
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Fig. 7. Results for LEL and MD when communication is interrupted. As the time be-
tween updates increases, agents are able to communicate less frequently. (left) Average
size of the hidden region at the end of the game. (right) Proportion of games where
the target was visible at the end.
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Fig. 8. Results for teams of n agents using the LEL heuristic when communication is
interrupted. (left) Average size of the hidden region at the end of the game. (right)
Proportion of games where the target was visible at the end of the game.

LEL heuristic performed better than teams using the MD heuristic, even though
the teams using the MD heuristic had more agents.

5.2 Interrupted Communication

Figures 7 and 8 show the effect of interrupting communication between the
tracker agents. In these experiments, agents were permitted to communicate
only periodically, during which time they exchanged information about their
current location and any knowledge of the target’s location in their observation
history. Outside these periodic exchanges, no additional information was passed
between agents; this means agents did not know where the other agents on their
team were located, only the location provided during the most recent update.

As expected, when the period of time between updates was increased, the
trackers became less successful at tracking the target. However, the tracker team
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Fig. 9. (left) Running time in milliseconds for an agent to select its next move using the
LEL heuristic. The dashed lines show one standard deviation from the mean. (right)
Running time for LEL using a 400x400 raster given different team sizes.

still performed surprisingly well when using the LEL heuristic, even when up-
dates were spaced apart by large amounts of time. To put these results into
context, when agents were permitted to communicate as frequently as possible
they exchanged information 500 times per game, compared to only 5 times per
game when communication was at a minimum. Despite this significant reduction
in the frequency with which agents could communicate, agents that generated
strategies using LEL still out-performed agents that used the MD heuristic, even
if agents using the MD heuristic were allowed constant communication.

5.3 Running-Time

Figure 9 shows the average CPU time for a single agent to decide which trajectory
to follow using the LEL heuristic3. In these experiments, LEL heuristic was
evaluated nine separate times per decision, once per waypoint as discussed in
section 3.2.

The relationship between the average CPU time per decision and the size
of the domain (both the number of obstacles and the size of the raster used to
compute LEL) was approximately linear. The relationship between team size
and average CPU time per agent was also approximately linear. For the largest
games we evaluated, with six tracker agents and between 700 and 750 obstacle
vertices, the average decision time per agent was under half a second.

5.4 Discussion

Agents that used LEL to select waypoints exhibited very different behavior when
compared to agents that simply followed the shortest path to the target. Using
LEL, typically one tracker would follow the target closely, while the remaining

3 All experiments were performed using a 2.40 GHz Intel Xeon processor running Java
Virtual Machine 6.



agents positioned themselves somewhere in the domain that would corner the
target. Figure 3 provides an example of this: tracker a follows the target directly,
while tracker b moves along the southern end of the domain to intercept the
target if it passes behind any of the obstacles. This kind of “division of labor” is
seen often when LEL is used, even though each tracker selects its own trajectory
independently.

Apparent in figure 5, increasing the prediction depth of LEL is subject to di-
minishing returns, eventually providing no additional benefit, and in some cases
actually hurting performance. This is likely due to the fact that LEL will at
some point evaluate all the locations in the domain, after which no additional
information is provided by searching deeper. This result, and the rate of im-
provement when compared to MD, are both analogous to what was seen when
RLA was used in the gridworld domain [13].

6 Related Work

Introduced in earlier work, the relaxed look-ahead (RLA) heuristic was capable
of evaluating strategies for a simple gridworld game similar to the problem ex-
plored in this paper [13]. RLA was not able to generate strategies in continuous
Euclidean space, nor was it able to generate strategies when there were interrup-
tions in communication between agents. In addition to RLA, there are numerous
strategy generation algorithms for related visibility-based pursuit-evasion games,
with varying degrees of similarity the game defined in this paper. We summarize
some of these approaches below.

A considerable amount of work on pursuit-evasion games has focused on
robot patrolling, or hider-seeker games, where the objective of the tracker is to
find an unseen target within some enclosed domain. Graph-based versions of the
hider-seeker game have existed for some time [12], and versions of this problem
exist in both continuous [15, 7, 3, 8] and discrete domains [1, 2, 4]. This problem
has been simplified in the past by assuming the target has unbounded speed
[3], or by approximating its movement [16]. There are also several approaches
to the problem of maintaining visibility on the target [10, 11], however this is a
different problem from finding a target that is not visible already.

7 Conclusion

We presented a formalism and algorithm for generating strategies in multi-
agent pursuit-evasion games that occur in partially observable Euclidean space
where communication between agents can be interrupted. Our algorithm, using
a heuristic method known as LEL, is able to generate strategies for a team of
tracker agents that are trying to minimize their uncertainty about the location
of an evasive target. We have presented experimental results showing that LEL
was more than twice as likely to maintain visibility on the target when compared
to a simple hand-coded strategy that followed the shortest path to the target.



We also presented experimental results showing that LEL is tolerant of interrup-
tions in communication, continuing to perform well even when communication
between agents is infrequent.

7.1 Future Work

To evaluate how effective the LEL heuristic was at generating strategies when
communication was interrupted, we ran a series of experiments where only pe-
riodic communication was allowed between agents, with updates occurring at
a fixed time interval. In a real-world scenario, interruptions to communication
might occur at random, or they might even be intentional. Transmitting infor-
mation between agents can potentially reveal the location of the tracker team to
the target that they are trying to follow. Since LEL is able to tolerate some inter-
ruption in communication, minimizing the amount of communication between
tracker agents might provide an advantage against an eavesdropping opponent.
Determining when it is actually necessary to communicate is a question worth
exploring in the future.

The implementation evaluated in this paper performs rasterization in soft-
ware using a software-emulated depth buffer. This process could be accelerated
by performing rasterization in hardware using GPU resources. Modern graphics
hardware is designed to perform these operations very quickly, so any implemen-
tation that takes advantage of this will most likely show a significant speed-up
when compared to the running-time of our implementation.

While the worst-case target strategy used in this paper is helpful for deter-
mining the minimum performance of tracker strategies, there is no reason to
assume that the target will always exhibit worst-case behavior. In a real-world
scenario, the target may not know where the tracker agents are located, and it
might even be possible to predict the movement of the target based on an oppo-
nent model. Future work could explore different ways to incorporate opponent
modeling into LEL, which may or may not improve the success rate of tracker
teams against various opponents.
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