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Abstract. The problem of ontology mapping has attracted considerable attention over 
the last few years, as the usage of ontologies is increasing. In this paper, we revisit the 
fundamental assumptions that drive the mapping process, put the current research in 
context, and propose new research directions. Based on real-world use cases, we 
identify two distinct goals for mapping, which are: (i) ontology development and (ii) 
facilitating interoperability. Most of current research on ontology mapping has been 
focused on ontology development and is rooted in the seminal work of [McG00, 
Noy00]. For example, the well studied problem of ontology merging is an ontology 
development task. Note that, today, with the increase in the number of information 
systems that utilize ontologies, facilitating interoperability between these systems is 
becoming more critical. However, mapping has seldom been studied, from this 
perspective. We show the consequences of focusing on interoperability, with 
illustrative examples, and provide an in-depth comparison to the information 
integration problem in databases. As a result, class matching is emphasized, as opposed 
to the matching of other entities in an ontology. Various class similarity metrics are 
proposed and their complexity is analyzed. Then, an algorithm, which utilizes these 
metrics, is designed and evaluated experimentally. To the best of our knowledge, this is 
the first work that focuses on the neglected goal of facilitating interoperability, in 
ontology mapping.  

1. Introduction 

The need for communicating between autonomous and distributed information systems is 
increasing with the wide usage of the Web. Nowadays, the issue of sharing data across 
resources and enterprises is no longer a desirable feature, but a necessity. Considerable 
amount of research on data integration and schema mapping over the past decades have lead 
to significant improvements in this area [Rah01, Hal96, Hal06, Bat86]. The difficulty of 
finding correspondences between schemas originates from the fact that the conceptual 
models, used for data representation, do not capture the semantics of the data with enough 
precision. For example, it is very difficult to infer that area in one schema and location in 
another schema refer to the same real-world entity, as the meaning of attributes in the 
schema is not encoded explicitly. This problem is referred to as semantic heterogeneity. 

Ontologies encode the specification of concepts more accurately, than schemas. The rich 
set of relationships defined between concepts in ontologies, help in mitigating the semantic 
heterogeneity problem. Since different ontologies exist and are being used by various 
organizations, it is necessary to find correspondences between these ontologies. The terms: 
ontology mapping, matching, alignment, integration, and merging, in the research literature, 
relate to this issue in various ways! In fact, unifying the interpretation of this diverse 
terminology is quite challenging. Usually, the goals of the task of finding correspondences in 
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ontologies are not explicitly stated. Moreover, there is considerable vagueness on how the 
task should be performed, as the problem is often stated for some specific setting, or a 
theoretical one. Generally, there exists no consensus on what solution to use and under what 
circumstances, as evident by the variety of the terminology used. Nevertheless, previous 
research [Kal03, Noy04, McG00] is very valuable for developing the foundations of the 
ontology mapping problem.  

In our opinion, this vagueness can only be resolved by observing the use cases of the 
problem. To the best of our knowledge, this is one of the very first attempts to put the 
previous research, on ontology mapping, in a unified context. This study revisits the 
ontology mapping problem in various settings, to furnish generality, and at the same time 
avoids theoretical assumptions, by adhering to real-world use cases.   

The contributions of the paper are as follows: (i) Different use cases of ontology mapping 
are explored and clarified with real-world motivating examples. (ii) Two separate goals of 
the ontology mapping problem are identified, based on the use cases. They are 
interoperability and ontology development. (iii) Interoperability is highlighted as the major 
goal in ontology mapping, and the problem is revisited in this context, as opposed to the 
usual ontology development context. (iv) We use illustrative examples to show the 
consequences of focusing on interoperability, and also provide an in-depth comparison to the 
information integration problem in databases. Based on this comparison, class matching is 
emphasized as the main ingredient in ontology mapping. This is different from finding all 
matching entities, which is the focus of ontology development efforts. (v) Various metrics 
for finding the matching (corresponding) classes are proposed, and a formalization of these 
metrics is provided. The time complexity of computing these metrics is analyzed, which is 
important for scalability in real-world settings. (vi) Finally, an algorithm that utilizes these 
class similarity metrics is designed and implemented. Our empirical results support the 
effectiveness and scalability of these metrics, through various experiments. 

The paper is organized as follows. In section 2, we identify the goals of ontology mapping 
with motivating examples. In section 3, the problem of information integration is defined, 
class matching is emphasized as the main ingredient of the mapping, and various class 
similarity metrics are proposed. In section 4, an experimental evaluation of these metrics is 
provided. Section 5 covers the related work, and section 6 is the conclusion. 

2. Revisiting Ontology Mapping Goals with Motivating Examples 

Currently, there are many ontologies that have been designed by different organizations and 
communities, and hence there is a need for a mapping between them. There are two quite 
distinct goals for ontology mapping. These goals are based on the types of use cases that we 
have identified, and will clarify in this section with motivating examples. Although, there are 
similarities between the use cases, one can differentiate the subtle requirements that arise 
from these examples, with careful observation. One possible goal of mapping is ontology 
development, when an ontology is being designed or engineered by an organization. The 
other possible goal of mapping is interoperability, when there are various parties, which are 
using different ontologies and the parties need a mechanism to be able to communicate and 
exchange information. This distinction has seldom been addressed, in previous research on 
ontology mapping. Clearly, interoperability is of considerable importance, as will be 
explained in this section, but unfortunately this goal is overlooked, in the research literature.  

Ontology Development: Since ontology is an abstraction for representing knowledge and 
all concepts that fit into the domain of human knowledge are connected together in some 
fashion, it is very hard to limit an ontology in terms of what it represents. This decision is 
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usually made based on business needs, i.e. the ontology designer decides not to include some 
concepts, as they seem irrelevant to current organizational demands. Assume that an 
organization is currently using a host ontology, H.  

Overtime, as business models change and evolve, the ontology H also needs to be 
changed and often extended. Sometimes, the new business models, or some fragments of the 
changes that are required in the ontology, have already been captured by ontologies that are 
being used in other organizations. In this case, the required extensions to host ontology H, 
are existent in some other guest ontology, G. Now, the ontology designer of H, needs to: 1) 
find the correspondences between ontologies H and G, 2) decide on what concepts, relations, 
and instances of G, need to be added to H, based on the correspondences found in the 
previous step. This use case closely resembles the problem that has been analyzed in the 
context of merging two ontologies, in the current literature [Noy00, McG00, Stu01, Udr07]. 

Example 1: Consider two organizations offering various products and using two different 
ontologies O1 and O2 shown in Figure 1(a) and 1(b), respectively. O1 is shown with ovals, 
while O2 is shown with rectangles. The orange color represents the corresponding concepts 
between O1 and O2. In Figure 1, since class Videos in ontology O1 is defined in a very 
similar context to class Movies in ontology O2, it is conceivable to merge the two ontologies 
and produce a more comprehensive ontology. In essence, O1 is being extended with O2 and 
the merged ontology is a mix of ovals and rectangles, as shown in Figure 1(c).  

Both organizations may need to make changes in their operation, in order to use the 
merged ontology. Furthermore, merging can be problematic, if the ontologies are defining 
the classes in different contexts, as merging would easily lead to irresolvable inconsistencies. 
Assume that Electronic Equipment in O1 also has Toys as a subclass. Now the merged 
ontology would have two Toys concepts, one of which is a subclass of Sale Items (Figure 1c) 
and the other is a subclass of Electronic Equipment (not shown). Even combining the two 
Toys concepts may not have the desired effect. 

 
Fig. 1. Two ontologies O1 and O2 shown in (a) and (b). The merged result is shown in (c). 

Important points arise from the study of this use case, which are as follows:  
1. When ontologies are being merged, there is potential for inconsistencies and the ontology 

designer needs to make complex decisions in various steps of the process. Hence, the 
merging process can only be semi-automated [Noy03] and no algorithmic solution exists. 
Moreover, the process must be interactive, to allow the designer to verify the changes. 

2. The nature of the merging problem is such that the host ontology is usually not only being 
extended, but also needs to evolve, to accommodate the neighboring classes of the 
corresponding class in the guest ontology. For example, if the class Movies did not have a 
parent class, a simple extension would have sufficed, but now we must accommodate the 
Products class as well.  
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3. Finding the correspondences between two ontologies is necessary, as illustrated by this 
use case. This step should be focused on the classes that match, in the ontologies. 
Matching of corresponding properties and instances can only provide auxiliary 
information for the ultimate task of class matching, as we will explain in Section 3. 

4. Merging can not be an iterative process and should be performed for a limited number of 
guests; in the context of developing a new host ontology that meets the new business 
demands in the organization. Notice that in this use case, we are only dealing with two 
ontologies (host and guest) and it is not possible to merge many ontologies from different 
parties to provide interoperability between the parties, as will be explained in section 2.2. 
This observation elegantly leads us to the other goal of ontology mapping, which is 
interoperability. 
Interoperability: Different enterprises use their proprietary and autonomous systems and 

are often not willing to change their business models and operations. However, they also 
need to exchange information. In many circumstances, users need to query these distributed 
and autonomous sources of information, and retrieve data from all of them, as if all the 
information resides in a unified source. 

Let us define this scenario more formally. Various autonomous ontologies, O1, O2, O3, …, 
On, are designed and being used by n different organizations, also known as parties. Each 
ontology Oi is designed based on the business model that governs the operations of the 
organization that it belongs to. Hence, the ontology being used by each party can not be 
changed or extended. To facilitate interoperability, in this scenario, two steps are required: 1) 
correspondences between the ontologies of different parties have to be determined, 2) a 
skeleton S, must be developed, to represent these correspondences. 

Example 2: Consider two universities in which faculties and departments within the 
faculties are structured differently, as shown in Figure 2(a) and 2(c). The ontologies O1 and 
O2 for the two universities are represented with ovals. There are six corresponding concepts 
in O1 and O2, namely: University, Science, Maths, CS, Physics, and Chemistry, shown with 
an orange color. Note that these six concepts appear in different places in O1 and O2. These 
six concepts are used in skeleton S, as shown in Figure 2(b), and represented with rectangles.  

When creating the skeleton, one of the original ontologies takes the master role, while the 
other takes the slave role. In this example O1 is the master and O2 is the slave. The shape of 
the skeleton (i.e. the relationship between the concepts in the skeleton) is determined by the 
master, which is O1 in our example. Then, each concept in skeleton S is connected to its 
corresponding concept in the original ontologies O1 and O2, with a subclass relation. Figure 
2 only shows such connections for the University concept, with red dotted arrows, and other 
such connections are not drawn for more readability. In Example 2, each organization’s 
ontology (i.e. O1 and O2) remains intact, unlike Example 1. 

The following observations can be made by careful examination of Example 2, and 
comparing it to Example 1: 
1. Isolation: Creating the skeleton S, to represent ontology mappings is much more flexible 

than merging, and the autonomous ontologies Oi, are isolated from any further changes. 
This is very desirable, since autonomous organizations, which are using the ontologies, 
are usually not willing to change their business practices for the sole purpose of 
communicating with other organizations. Hence, interoperability must be facilitated by 
other means. 

2. Class Matching: Similar to the previous use case, determining correspondences between 
two ontologies should be focused on the classes that match, in the two ontologies. The 
matching of corresponding properties and instances only provides auxiliary information 
for the ultimate task of class matching. Section 3 will elaborate on why class matching 
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should be the focus, and formally defines the required terminology, like class, property 
and instance. 

3. Tractability: The creation of skeleton S, is more tractable and comprehensible, and leads 
to fewer inconsistencies than the merging process. Therefore, it can be streamlined and 
tackled algorithmically.  

4. Scalability: Note that when creating a global system to facilitate interoperability, if we 
were to merge the ontologies from many different parties (as explained in section 2.1), we 
would have to merge all the ontologies and produce one monolithic ontology, which is 
clearly not scalable, nor feasible. 

 
Fig. 2. O1 and O2 shown in (a) and (c) are the ontologies of two autonomous organizations. Skeleton S 
connecting the ontologies is shown in (b), in the middle. 

The use cases above and the discussion in this section demonstrate that interoperability 
(i.e. facilitating the exchange of information between organizations) is a very important goal 
in ontology mapping. This goal is quite similar to what the database community is trying to 
achieve, in the context of information integration research and schema matching [Rah01, 
Len02, Bat86]. However, current solutions to the ontology mapping problem have not 
addressed this goal, and are primarily focused on merging ontologies. The merging process 
is geared towards the development of an ontology, which is the other goal identified in this 
section. In the following sections, we will concentrate on the interoperability goal, and 
describe its implications on the ontology mapping problem. 

3. Class Matching: The Main Ingredient of Ontology Mapping 

In the previous section, by observing the use cases, we illustrated that correspondence 
between ontologies need to be determined. In this section, first, we will show that the 
process of determining correspondences should be focused on classes, and not other entities 
(e.g. properties and instances) in an ontology. Then, a formalization of the class matching 
process will be provided, and various metrics that determine the similarity of classes will be 
explored. The required terminology will be defined gradually throughout the discussion. 

This section is primarily based on Resource Description Framework (RDF), which is a 
framework and W3C recommendation for representing information on the Web. RDF is 
designed to represent information in a flexible way. The generality of RDF facilitates sharing 
of information between applications and making information accessible to more applications 
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across the entire Internet. Note that the interoperability goal, as identified in the previous 
section, nicely aligns with RDF design. Moreover, the Web Ontology Language (OWL) is 
based on RDF. Hence, our discussion applies to OWL as well. 

Definition 1 (Resource): All things described by RDF are called resources. 
Definition 2 (Triple): Each triple represents a statement of a relationship between the 

things denoted by the nodes that it links. Each triple has three parts: a subject, an object, 
and a predicate that denotes a relationship.  

The direction of the link is significant; it always points toward the object. An RDF triple 
is conventionally written in the order subject, predicate, object. 

Definition 3 (Property): The predicate is usually known as the property of the triple. 
Definition 4 (RDF Graph): An RDF graph is a set of RDF triples. The set of nodes of an 

RDF graph is the set of subjects and objects of triples in the graph. 
The graph can be illustrated by a node and directed-arc diagram, in which each triple is 

represented as a node-arc-node link (hence the term "graph"). The assertion of an RDF triple 
says that some relationship, indicated by the predicate, holds between the things denoted by 
subject and object of the triple. The assertion of an RDF graph amounts to asserting all the 
triples in it, so the meaning of an RDF graph is the conjunction of the statements 
corresponding to all the triples it contains. 

Definition 5 (Class and Instance): Resources may be divided into groups called classes. 
The members of a class are known as instances or individuals of the class. Associated with 
each class is a set, called the extension of the class, which is the set of the instances of the 
class.  

Classes are themselves resources. They are often identified by URI’s and may be 
described using RDF properties. The rdf:type property may be used to state that a resource is 
an instance of a class. RDF distinguishes between a class and the set of its instances.  

If a class C is a subclass of a class C', then all instances of C will also be instances of C'. 
The rdfs:subClassOf property may be used to state that one class is a subclass of another. 
The term super-class is used as the inverse of subclass. If a class C' is a super-class of a class 
C, then all instances of C are also instances of C'.  

Definition 6 (Datatype): A datatype consists of a lexical space, a value space and a 
lexical-to-value mapping. The lexical space of a datatype is a set of Unicode strings. The 
lexical-to-value mapping of a datatype is a set of pairs whose first element belongs to the 
lexical space of the datatype, and the second element belongs to the value space of the 
datatype. 

All datatypes are classes. The instances of a class that is a datatype are the members of the 
value space of the datatype. Each member of the lexical space is paired with (maps to) 
exactly one member of the value space. Each member of the value space may be paired with 
any number (including zero) of members of the lexical space (lexical representations for that 
value).  

Definition 7 (Ontology): An ontology is an RDF graph, which is in turn a set of RDF 
triples. 

3.1. A Harmonious Perspective on Information Integration, Interoperability and Class 
Matching 
Information Integration: The problem of combining heterogeneous data sources under a 
single query interface is commonly known as “data integration” or “information integration” 
in the database community. Here, the idea is to provide a uniform query interface over a 
mediated schema. This query is then transformed into specialized queries over the original 
databases. This process can also be called view based query answering, because we can 
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consider each of the data sources to be a view over the mediated schema. Formally such an 
approach is called Local As View (LAV), where “Local” refers to the local 
sources/databases. An alternate model of integration is one where the mediated schema is 
designed to be a view over the sources. This approach is called Global As View (GAV), 
where “Global” refers to the global (mediated) schema [Len02].  

Figure 3 shows an example of the information integration problem in databases. Here, the 
goal is to generate a mapping between attributes in various schemas. The schemas usually 
reside in separate autonomous data sources. Figure 3 illustrates a mapping between schema S 
and schema T. The location attribute (column) in the HOUSE relation (table) is mapped to 
the area attribute in the LISTINGS relation. Note that this is a simple, but critical example, 
and will be used later in this section to demonstrate how ontology mapping should be 
performed to facilitate interoperability, and how ontology mapping relates to schema 
mapping (i.e. information integration). 

 
Fig. 3. Example of the information integration problem in databases. The goal is to generate a mapping 
between attributes in various schemas. The schemas usually reside in separate autonomous data 
sources. 

Interoperability: Following the above explanation, it is critical to point out that, the term 
“integration” is somewhat vague and imprecise, and could be interpreted as some type of 
“merging” of schemas, however, this is not what actually occurs in databases, as the schemas 
in each data source are handled autonomously in different organizations, and need to be kept 
that way. The ultimate goal of information integration is to provide interoperability between 
various systems, which is the exact same goal that we identified in section 2.2. Notice that 
the term “interoperability” is much clearer, for describing the motivations and objectives of 
the process. By analogy, in ontology mapping, there is no merging of ontologies involved, 
when we are trying to achieve interoperability between organizations, which use different 
ontologies (see section 2.2). Nevertheless, merging is useful in the context of developing 
new ontologies, as mentioned in section 2.1. The difference is subtle, but deeply rooted in 
the identification of the goals, and the distinction has seldom been addressed, in previous 
research on ontology mapping. 

Expression of Simple Facts in RDF: Some simple facts indicate a relationship between 
two things. Such a fact may be represented as an RDF triple in which the predicate names 
the relationship, and the subject and object denote the two things.  Figure 4(a) shows the 
predicate authoredBy which is the relationship between the subject Book and the object 
Author, both depicted as ovals. The use of extensible URI-based vocabularies in RDF 
facilitates the expression of facts about arbitrary subjects; i.e. assertions of named properties 
about specific named things. A URI can be constructed for any thing that can be named, so 
RDF facts can be about any such things. 

Expression of Simple Facts in the Relational Model: A familiar representation of a fact 
might be as a tuple (row), in a relation (table) in a relational database. Figure 4(b) shows the 
authoredBy table. The table has two attributes (columns), namely Book and Author. These 
attributes correspond to the subject and object of the RDF triple, in Figure 4(a). The name of 
the table corresponds to the predicate of the RDF triple.  



8      Hamid Haidarian Shahri*, James A. Hendler+ 

 
Fig. 4. Correspondence between the RDF and relational models. (a) The predicate authoredBy which is 
the relationship between the subject Book and the object Author in an RDF triple (b) The table 
authoredBy which has two attributes, namely Book and Author, in the relational model. 

Class Matching: When integrating information between various databases for 
interoperability, correspondences between the attributes of two relations in two schemas Si 
and Sj, where i ≠ j, are determined, and the attributes are mapped to each other (as shown in 
Figure 3). Now, in an RDF triple, subject and object correspond to the attributes (i.e. 
columns). Hence, the subjects and objects need to be mapped to each other, in various 
ontologies. Note that subjects and objects are classes in the ontology, and tuples are 
instances of the classes. Therefore, if the classes are mapped accurately, instances can be 
retrieved correctly across various ontologies. Using the same analogy, in databases, if the 
attributes (columns) are mapped accurately, tuples can be retrieved correctly across various 
schemas.  

The matching of entities, other than classes, in an ontology (like instances and properties), 
may be useful, when merging ontologies in ontology development efforts, however, this is 
not the case, when we are trying to facilitate interoperability. To the best of our knowledge, 
no previous work, in the ontology mapping literature, has emphasized the importance of 
matching of “classes”, as opposed to other entities (e.g. properties, instances), in the 
ontology. This is one of the critical implications of focusing on the interoperability goal, in 
ontology mapping. 

3.2. Class Matching Formalization and Categorization of Class Similarity Metrics 
In the previous section, we identified class matching as the main ingredient of ontology 
mapping, to facilitate interoperability. Now, we provide a categorization of various class 
similarity metrics, and the complexity analysis of computing each metric. Then the role of 
the reasoner is explained, and our class matching algorithm is presented. Based on previous 
definitions, nodes in two RDF graphs, which are the classes in two ontologies, need to be 
matched. 

Definition 8 (Map): Let C1 be the set of classes of ontology O1 and C2 be the set of classes 
of ontology O2. Map m is a total function 1 2: [0,1]m C C⊗ → , where 1 2C C⊗  is defined 
as the set of all distinct unordered pairs of sets C1 and C2, that is: 

1 2 1 2{{ , } | , , }C C a b a C b C a b⊗ = ∈ ∈ ≠ . 
Definition 9 (Class Matching, Threshold, Similarity Value, Similarity Metric): Class 

matching is the process of determining corresponding classes between ontologies O1 and O2, 
which is specified using a threshold t. Map m assigns a similarity value to each pair of 
classes. If the similarity value, defined by map m, is greater than t, then the classes match. 
Similarity value is the sum of the following four similarity metrics: lexical, extensional, 
extensional closure, and global path, which are computed as follows. 

Definition 10 (Lexical Similarity Metric): Lexical similarity metric is a function that 
assigns a real-valued number in the range of [0, 1], to s∈C1 and t∈C2, based on the 
closeness of the strings representing the names of s and t. 
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Theorem 1 (Lexical Similarity Complexity): The complexity of computing the lexical 
similarity metric for ontologies O1 and O2 is O(|C1|.|C2|). There is no need for reasoning in 
the computation of this metric. 

Definition 11 (Extensional Similarity Metric): Let s∈C1 and t∈C2 be two classes in the 
ontologies. The set of individuals which belong to s and t are represented as e(s) and e(t), 
respectively. Extensional similarity metric for s and t is computed as 
| ( ) ( ) | | ( ) ( ) |e s e t e s e t∩ ∪ . 

Theorem 2 (Extensional Similarity Complexity): The complexity of computing the 
extensional similarity metric for classes s and t is O(|e(s)|.|e(t)|). The set of individuals e is 
computed using the reasoner. 

Definition 12 (Extensional Closure Similarity Metric): Let s∈C1 and t∈C2 be two classes 
in the ontologies. x is a subclass of y, is denoted as x y . Extensional closure of s, 

denoted as ec(s), is computed as 
1

( ) { ( ) | }c
i C

e s e i i s
∈

= ∪ . Extensional closure similarity 

metric for s and t is equal to | ( ) ( ) | | ( ) ( ) |c c c ce s e t e s e t∩ ∪ . 
This intuitively means that when comparing two classes, the extensional closure considers 

not only the individuals that belong to a class s, but also all the individuals that belong to 
subclasses of class s. 

Theorem 3 (Extensional Closure Similarity Complexity): The complexity of computing 
the extensional closure similarity metric for classes s and t is O(|ec(s)|.|ec(t)|). The subclasses 
of a class and their respective individuals are computed using the reasoner. 

Definition 13 (Global Path Similarity Metric): Let s∈C1 and t∈C2 be two classes in the 
ontologies. Path of s, denoted as p(s), is the path which starts from the root and ends at s, in 
the RDF graph. Global path similarity metric for s and t is equal to the score assigned to 
similarity of p(s) and p(t). The score is based on the lexical similarity of classes included in 
the two paths. 

Theorem 4 (Global Path Similarity Complexity): If the length of the path p(s) is denoted 
as ||p(s)|| (which is equal to the depth of the class hierarchy in the worst case), then the 
complexity of computing the global path similarity metric for classes s and t is 
O(||p(s)||.||p(t)||). The class hierarchy is created from the subclass relationships, using the 
reasoner. 

Reasoning for Class Matching: The role of a reasoner is very central in class matching 
for ontology mapping, and this is one of the points that distinguish ontology mapping, from 
schema mapping in databases, as there is no reasoning involved in databases. Standard 
ontology reasoners provide the following services: 
• Classification: Computes the subclass relations between every named class to create the 

complete class hierarchy. The class hierarchy can be used to answer queries such as 
getting all or only the direct subclasses of a class. 

• Realization: Finds the most specific classes that an individual belongs to; in other words, 
computes the direct types for each of the individuals. Realization can only be performed 
after classification since direct types are defined with respect to a class hierarchy. Using 
the classification hierarchy, it is also possible to get all the types for that individual. 

• Consistency checking: Ensures that an ontology does not contain any contradictory facts. 
• Concept satisfiability: Checks if it is possible for a class to have any instances. If a class is 

unsatisfiable, then defining an instance of that class will cause the whole ontology to be 
inconsistent. 
Class Matching Algorithm: Based on the previous definitions, we present our class 

matching algorithm, below: 
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ClassMatching Algorithm 
Input: Ontologies O1, O2 
Output: Set M of matching class pairs (c1, c2) 
 1. for c1∈C1, c2∈C2 
 2.  lexSim ← lexicalSim(c1.name, c2.name) 
 3. (c1.ex, c2.ex) ← reasoner.Extensions(c1, c2) 
 4.  extSim ← extensionalSim(c1.ex, c2.ex) 
 5. (c1.all, c2.all) ← reasoner.AllExtensions(c1, c2) 
 6.  extCSim ← extensionalClosureSim(c1.all, c2.all) 
 7. (c1.p, c2.p) ← reasoner.GlobalPath(c1, c2) 
 8.  gpSim ← globalPathSim(c1.p, c2.p) 
 9. if (lexSim+extSim+extCSim+gpSim > threshold) then 
10.   M ← M ∪  (c1, c2) 
11. end for 
12. return M 

The algorithm generally follows from the discussion in section 3.2. Line 2 relates to 
definition 10. Lines 3-4 compute the extensional similarity, as in definition 11. Lines 5-6 are 
based on the extensional closure similarity, as in definition 12. Lines 7-8 compute the global 
path similarity, as in definition 13. Lines 9-10 are based on the idea of similarity value and 
threshold, introduced in definition 9. 

4. Experimental Evaluation 

To evaluate the effectiveness of various class similarity metrics, we designed and 
implemented an ontology mapping module in Swoop. Swoop is an open source tool for 
browsing and development of ontologies, developed in the MINDSWAP research group 
[Kal05]. It is a hypermedia-based ontology editor that employs a web-browser metaphor for 
its design and usage. In our implementation, Pellet was used for reasoning [Sir07]. Pellet is 
an open source reasoner written in Java. Details of how reasoning is used in the class 
matching process were provided in section 3.2. The experiments were run on a 1.86 GHz 
Pentium machine with 512 MB of RAM and a Windows XP operating system. 

Our experimental trials included a number of synthetic and real-world ontologies from 
various domains, to ensure generality. The results reported here are from two real-world 
ontologies that have been developed separately by different organizations. The Karlsruhe 
ontology [Kar] is used in the Ontoweb portal. It is a refinement from other ontologies such 
as (KA)2. It defines terms used in a university organization and bibliographic items. The 
INRIA ontology [Inr] has been designed by Antoine Zimmermann from the BibTeX in OWL 
ontology and the Bibliographic XML DTD. Its goal is to easily gather a number of RDF 
items. These items are BibTeX entries found on the web, and are transformed into RDF 
according to this ontology. The actual hierarchy of this ontology contains classes which are 
subclasses of several other classes. The ontologies have 24 corresponding classes. Table 1 
shows the characteristics of the ontologies with more details. 

When comparing the name of classes in two ontologies, various string similarity metrics 
can be used. We implemented the Jaro-Winkler, Jaccard, Monge-Elkan and Levenstein 
metrics and the results show that the performance of these metrics varies noticeably, as 
illustrated in Figure 5. The Jaro-Winkler metric shows a more robust behavior for ontology 
class matching, based on name. Precisions in the range of below 60 percent are not very 
useful, as many of the detected matches would be incorrect. By decreasing the threshold for 
identifying a match, we can increase the recall rate to some extend. However, as the diagram 
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demonstrates, it is not possible to increase the recall to above 80%, by only decreasing the 
threshold, as this would cause a sharp drop in precision, i.e. introduce many incorrect results. 

Table 1. Detailed characteristics of the ontologies. 

 
University 
Ontology 

Publication 
Ontology 

# Classes 64 48 
# Properties 72 58 
# Individuals 68 59 
Min. Depth of Class Tree 1 1 
Max. Depth of Class Tree 5 4 
Average Depth of Class Tree 2.4 2.3 
Min. Average Branching of Class Tree 1 1 
Max. Average Branching of Class Tree 13 17 
Average Branching Factor of Class Tree 3.15 3.25 

Figure 6 shows the running time required of computing the lexical similarity of classes in 
both ontologies using various string similarity metrics. Jaro-Winkler, which showed best 
performance in the Figure 5, takes 172 ms to compute and lies approximately in between the 
other string similarity metrics, in terms of running time. 

 
Fig. 5. Performance of various string similarity metrics for matching of classes in ontologies based on 
name. 

 
Fig. 6. Running time of computing the lexical similarity of classes using various string similarity 
metrics. 

By using lexical similarity of classes, measured by the Jaro-Winkler similarity metric, 16 
of the 24 corresponding classes could be identified (i.e. true positives - TP), as shown in 
Figure 7(a). Note that decreasing the detection threshold for lexical similarity metric would 
decrease the precision and increase the number of false positives (FP). To tackle this 
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problem and find more matching classes (without changing the threshold), we also employed 
other similarity metrics namely, extensional, extensional closure and global path similarity 
metrics. Our experiments show that utilizing these additional metrics, help in finding more 
correct matching classes (true positives). At the same time, they do not introduce many false 
positives, as was the case with decreasing the detection threshold. 

 
Fig. 7. (a) Detection of more matching classes using additional class similarity metrics, such as 
extensional, extensional closure, and global path. (b) Running time for computing lexical, extensional, 
extensional closure and global path similarity metrics. 

 
Fig. 8. Using extensional, extensional closure and global path similarity metrics, in addition to lexical, 
increases the recall and F1 quality measure. 

Computing the lexical similarity of classes does not require reasoning. However, to 
compute the extensional, extensional closure and global path similarity metrics, the reasoner 
must be used. Basic reasoning services of an ontology were defined in section 3.2. 
Realization is used for finding the extension (instances) of a class for extensional similarity. 
Classification creates the class hierarchy, which is used in computing the path from the root 
of an ontology to any given class, and in fact fixes the global position of the class within a 
hierarchy. For computing the extensional closure, we need classify the ontology to find the 
subclasses and also do realization to retrieve the instances of all the subclasses. To perform 
reasoning, the ontology must be consistent and all classes must satisfiable. Hence, activating 
the reasoner in fact triggers all the above steps, and accounts for most of the running time. 
The time required for the rest of the computation, involving comparison of retrieved 
instances or comparing the classes in a path, is relatively small. As shown in Figure 7(b), the 
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running time for computing the lexical similarity is small, in compare to the other three 
similarity metrics, which are approximately the same and require reasoning. 

Figure 8 shows that by using the extensional, extensional closure and global path 
similarity metrics, in addition to lexical, the recall rate increases, while precision remains 
almost the same. This in turn implies that the F1 quality measure is increasing, as shown 
with the darker purple bar in Figure 8. 

5. Related Work 

Most of the solutions to ontology mapping produce a merged ontology as the final output 
[McG00, Noy03, Stu01, Udr07], and all this work is in the context of ontology development. 
Our work on ontology mapping for interoperability does not merge the ontologies. However, 
finding the matching classes is necessary in our approach, which is somewhat similar to the 
matching of various entities, in ontology merging. [Kal03] provides a good survey of various 
ontology mapping systems. A classification of different ontology matching techniques is 
provided in [Shv05]. Many systems look at finding lexical matches between ontologies and 
use dictionaries for this task [Wie99]. Chimaera is one of the early ontology merging tools, 
which considers structures such as subclass and superclass relations and slot attachments 
[McG00]. [Cal01] use a description logic based, model theoretic approach to integrating 
ontologies. [Noy03] provides interactive support for merging ontologies and uses the graph 
structure of ontologies to provide suggestions. [Stu01] uses the set of shared instances or the 
set of shared documents annotated with concepts of two ontologies and generates a lattice to 
relate the concepts of the ontologies using formal concept analysis. [Udr07] uses common 
instances and reasoning to extract the structure of the ontology, and then merges the two 
ontology graphs. Graph-based approaches have been utilized for schema matching in [Mil98, 
Mel02]. 

6. Conclusions and Future Work 

The problem of ontology mapping has two distinct goals, namely ontology development and 
facilitating interoperability. The state of the art and current research in ontology mapping has 
been focused on ontology development and is rooted in the seminal work of [McG00, 
Noy00] in 2000. Clearly, today, providing interoperability between autonomous 
organizations is critical, considering the proliferation of the Web and the number of 
enterprises that use the Web infrastructure in their information systems and marketing 
schemes (e.g. Amazon, eBay). Unfortunately, the ontology mapping problem has rarely been 
studied in the context of facilitating interoperability. 

In this paper, we identify the importance of this goal and provide an in-depth comparison 
to the information integration problem in databases. As a result, we distinguish the merging 
of ontologies, as an ontology development task [McG00]. Furthermore, class matching is 
emphasized, as opposed to the matching of other entities in an ontology. Various class 
similarity metrics, which are lexical, extensional, extensional closure, and global path 
similarity are proposed, and their time complexity are analyzed. Lexical similarity is 
measured using Jaro-Winkler, Jaccard, Monge-Elkan, and Levenstein string distance 
measures. Then, a class matching algorithm that utilizes these metrics is designed and 
evaluated experimentally. Note that this is one of the first attempts to solve the semantic 
heterogeneity problem in ontologies, with attention to facilitating interoperability, and much 
more work remains to be explored. We are currently working on the deployment of this 
design for interoperability, in real-world information systems that use ontologies.  
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