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Abstract
The Hilbert metric is a distance function defined for points lying within a convex body. It generalizes
the Cayley-Klein model of hyperbolic geometry to any convex set. This survey explores algorithms
and applications of this metric, particularly in the areas of convex approximation (Macbeath
Regions, flag-approximability), clustering in probability simplices, Voronoi diagrams and Delaunay
Triangulations, and quantum information theory. While existing surveys focus on applications of
the Hilbert metric in the context of real analysis, this work highlights its relevance in computational
settings.
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1 Introduction

The Hilbert metric was introduced by David Hilbert in 1895 [22] as a generalization of
the Cayley-Klein model of hyperbolic geometry to arbitrary convex bodies. Among its
more notable properties are that straight lines are geodesics and that the Hilbert metric is
preserved under projective transformations. As a result, the Hilbert metric has been applied
to a variety of subjects in computer science and adjacent fields.
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The Hilbert metric is an object of study in the field of convex approximation. The e!cient
approximation of convex bodies is a fundamental pursuit of computational geometry due
to its wide range of applications including: approximate polytope membership queries [7],
approximate nearest neighbor searching [1], computing approximating polytopes with low
combinatorial complexity [5, 6], collision detection [38] and others.

Many techniques utilized in the approximation of high-dimensional convex bodies use an
object known as a Macbeath region [2,5, 6]. It has since been shown that these regions are
equivalent to Hilbert balls up to constant factors [2]. Hilbert balls have been used directly
in research involving convex approximation [3]. Furthermore, the Hilbert metric has been
used in the study of the structure of convex bodies [35,36], especially in the context of flag
approximability of convex polytopes [17,37].

There has been growing interest in applying the Hilbert metric to machine learning.
Recently, the Hilbert metric has been studied in the context of SVMs [34]. Work by Frank
Nielsen and Ke Sun experimented using the Hilbert metric in various contexts such as
clustering points in the probability simplex [26] and graph embeddings [27] and have found it
to be competitive. In particular, Nielsen’s paper on clustering uses the fact that the Hilbert
metric is an e"ective metric on discrete probability distributions in the simplex.

In quantum information theory, applications of the Hilbert metric have been realized on
convex cones representing classes of matrices such as positive, separable, or PPT operators [31],
where the metric is used to study contraction bounds on or between these cones. For more
information on the Hilbert metric and contraction ratios, there is a prominent survey on the
applications of the Hilbert metric in real analysis written by Lemmens and Nussbaum [23].
In this work however, we focus on the applications of the Hilbert metric in computer
science in which there have been numerous theory works including computing Delaunay
triangulations [19], Voronoi diagrams [13,20], and SVMs [34]. Accompanying these works
are several pieces of software made to study the Hilbert metric, two that allow dynamic
movement of Hilbert balls and other structures [10,24] and one that allows for the creation
of Hilbert balls in Ipe extensible drawing editor [30]. We will start with some preliminaries
on the Hilbert metric and then move on to some results in di"erent fields.

2 Preliminaries

Given a fully dimensional convex body ! → Rd, let int ! and ω! denote the interior and
boundary of ! respectively. Given two points in the interior of !, p, q, let ε(p, q) refer to the
chord through p and q in !. The Hilbert metric is a distance function on int !.

↭ Definition 1 (Hilbert Metric, polytopal). Given a fully dimensional, bounded, convex body
! → Rd containing two points distinct p, q ↑ int !, let p→ and q→ endpoints of ε(p, q) such that
the points lie in order ↓p→, p, q, q→↔ on the chord. The Hilbert metric on int ! is defined as:

H!(p, q) = 1
2 log

(
|p→q|
|p→p|

|q→p|
|q→q|

)

where H!(p, p) = 0.

The Hilbert metric on polytopes has several desirable properties: all straight lines are
geodesics, though not all geodesics are straight lines; the metric is a projective invariant (it
preserves the cross-ratio, a property referred to as invariance of the cross ratio); and the
metric generalizes the Cayley-Klein metric, which is defined on Euclidean balls, to arbitrary
convex polygons or polytopes.
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To better understand the Hilbert metric, it serves to study the behavior of balls in the
metric. A ball around a point, p, of a radius r in a metric space is the set of points in that
space that are r away from p. In the Hilbert metric, the shape of balls around points depends
on the dimensionality and complexity of !. Given a two-dimensional ! with m sides, balls
in the Hilbert metric are polygons with between m and 2m sides [24].

In two dimensions, Hilbert balls are created by extending spokes through the vertices of
! and the center of the ball. Each wedge formed by these spokes defines a new part of the
ball’s boundary.

(a) (b)

Figure 1 (a) A Hilbert ball with m sides (b) A Hilbert ball with more than m sides.

Note that the Hilbert metric can be extended to points in the interior of a convex cone
C, though it loses the identity of indiscernibles. That is, two points on the same ray from
the vertex of the cone have zero Hilbert distance from each other. If the vertex of the cone is
at the origin, then for any ϑ ↗ 0, we have:

HC(p, ϑp) = 0

Alternatively, this can be viewed as a metric on rays or directional vectors originating from
the vertex of the cone. In all cases in the cone, Hilbert balls remain the same: they are
sub-cones C → contained within the cone C. This follows directly from the invariance of the
cross-ratio under the Hilbert metric.

(a) (b)

Figure 2 (a) A ball in the Hilbert conical metric (b) No matter where the two points on the
boundary of the ball are positioned, the Hilbert distance remains the same by projective invariance.

One of the main cases of study is the Hilbert metric in the probability simplex. A
categorical distribution is a discrete probability distribution p1, . . . , pd, on a set of events
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E1, . . . , Ed. Note that
∑

d

i=1
pi = 1 and pi ↗ 0 for all i. The set of probability distributions

over a set of d events is a d↘simplex, a d-dimensional triangle. The Hilbert metric is a
natural metric between these categorical distributions and is the subject of study in [26,27].

3 Convex approximation

3.1 Economical Delone Sets.
Epsilon Approximate Membership Queries. A well known problem in computational geometry
and convex approximation is the membership query problem where the goal is to determine
whether a given point or item belongs to or is a “member” of a set or data structure. Exact
membership queries yield a conclusion with absolute certainty, where a query result reflects
the presence of a point in the set or data structure. Approximate membership queries di"er
in that they provide a result that is within a certain threshold of error. When there is room
for error, computational complexity can be greatly reduced whilst achieving consistent results.
In epsilon approximate membership queries, the parameter ϖ sets a maximum false positive
error level or uncertainty that will be allowed in the query result. Applications of epsilon
approximate membership queries can be seen when employing probabilistic data structures
like bloom filters or cuckoo filters, quickening dictionaries [12], detecting spam, and using
hash compaction functions [33].

Epsilon approximate polytope membership queries are a type of epsilon approximate
membership queries. The di"erence arises from the fact that epsilon approximate polytope
membership queries look at the presence of a query point in a bounded convex polytope. Let
K be a bounded convex polytope in Rd and diam(K) denote the diameter of K. Consider a
query point q ↑ Rd. An epsilon approximate polytope membership query returns a positive
result if q ↑ k and a negative result if the distance between q and its closest point in
K > ϖ · diam(k). Note, ϖ · diam(k) refers to the maximum distance allowed between q and
its closest point in K to be considered within in the polytope where the real parameter ϖ
represents the maximum amount of uncertainty allowed when approximating the presence of
a query point in a bounded convex polytope.

Macbeath Regions & Ellipsoids. Macbeath regions are regions resulting from the intersection
of a convex body K and its reflection around a point x ↑ K referred to as the center of the
region. A ϑ-scaled Macbeath region at a point x is defined as Mω

K
(x) := x+ϑ((K↘x)≃(x↘K))

where ϑ is the factor by which the region is scaled by. These regions have an important
property called expansion-containment where if two shrunken Macbeath regions overlap, one
of the regions can be expanded appropriately such that it contains the other region. Macbeath
Ellipsoids are maximum volume ellipsoids that are contained within a ϑ-scaled Macbeath
region. Two interesting properties of these ellipsoids, shown by Chazelle and Matousek, are
that they are unique and can be computed for any convex polytope in linear time where the
time grows respective of the number of the polytope’s bounding halfspaces [2].

Macbeath regions are a classical structure in convexity theory which have been used
in convex set theory, geometry of numbers, the construction of lower bounds for range
searching in the field of computational geometry. A particular application of these regions
were explored in 2017 by Guilherme D. da Fonseca, David Mount, and Sunil Arya when
they used Macbeath regions to bound the epsilon approximation of an arbitrary convex body
K. This was possible through the construction of a data structure made up of nested rings
within a convex body surrounding its origin. Each ring is composed of scaled Macbeath
regions where if a ray is shot from the origin, at least one Macbeath region of each ring is
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struck. Because ellipsoids simplify query processing times due to their nature of reasonably
approximating complex shapes, the Macbeath regions were replaced with Macbeath Ellipsoids
to reduce computational complexity. With each successive ring, a better approximation of
the convex body boundary is reached. The farthest ring forms an epsilon approximation to
the boundary [8].

Previous solutions to the approximate polytope membership problem resulted in either
a logarithmic query time and a storage complexity of O(1/ϖd ↘ 1) or a O(1/ed↑1/8) query
time and a storage complexity of O(1/e(d↑1)/2). Mount, Arya, and Fonsecaand were able
to achieve a logarithmic query time and a storage complexity of O(1/e(d↑1)/2) with their
data structure. A 2018 paper by Mount and Adelkader tackles the complexity associated
with creating the data structure and performing corresponding analyses derived from the
ray shooting method, by o"ering an approach that relates Macbeath regions to Delone sets
through the use of the Hilbert Metric. This approach achieves the same space-time optimal
bounds discovered in 2017 through “simpler and more intuitive” means [8].

Hilbert Geometry and Approximate Polytope Membership. To construct their data structure
in their 2018 paper, Mount and Adelkader viewed Macbeath regions as Delone Sets in order
to leverage the packing and covering properties of Delone sets. Utilizing the Hilbert metric
and properties derived from Hilbert geometry which is made up of a convex domain K in Rd

with a Hilbert distance fK , it was shown that shrunken Macbeath regions are nested between
Hilbert metric balls. Because of this, Macbeath regions and their respective Macbeath
ellipsoids act as metric balls in the Hilbert metric space up to certain constant factors of
scaling.

To perform an Approximate polytope membership with Mount and Adelkader’s approach,
the first step is to construct a rooted layered DAG structure. This structure is built on the
basis of hierarchical Delone sets, which consider sets {X0...Xl}, where Xi denotes a Delone
set for Kεi

that is in one-to-one correspondence with the nodes at level i. These sets contain
a maximal number of points within the convex body such that the packing ellipsoids are
pairwise disjoint.

The nodes of DAG have two features. A cell, which is the covering ellipsoid, and a set of
children (nodes belonging to the Delone set Xi ↘ 1 such that the cells of the node at level
i, the current node, and the node at level i ↘ 1 do not overlap). The root and leaf nodes
reside at levels l and 0 respectively. To determine whether a query point is a member of a
bounded convex polytope with the DAG structure, starting at the root, we visit the node at
each level iteratively where the point belongs to the cell of that node. Considering the case
where the point does belong to the convex body, through the covering properties of Delone
sets, it is known that at least one of the children of this node must contain the point. We
continue to search the children of nodes for which the point lies in and end up at the leaf
node whose cell contains the query point. The cell of the leaf node serves as a witness to the
point’s membership. In the case the point does not belong to the bounded convex polytope,
the query algorithm terminates and returns a result indicating the point is not a member.

3.2 Flag Approximability
Another well known problem in convex approximation is approximating convex bodies with
simple polytopes, typically considering measures such as the number of vertices, facets, and
faces [37]. An alternative measure explored by Vernicos and Walsh is the number of maximal
flags which are a finite sequence of a nested polytope faces. In particular, they introduce
flag approximaibility as a property of a convex body describing its complexity when using



6 The Hilbert Geometry: Algorithms and Applications

the number of maximal flags. Vernicos and Walsh show that this property directly relates
to the volume entropy of the Hilbert geometry of the convex body. This section of the
survey is based primarily on the work on Vernicos and Walsh from their 2021 paper "Flag
Approximability of Convex Bodies and Volume Growth of Hilbert Geometries".

Maximal Flags and Flag Approximability The maximal flag of a d-dimensional, closed,
and convex polytope P is is tuple of faces (f0, . . . fd) such that face fi lies in dimension i
and is contained within the boundary of fi+1. The flag-approximability of a convex body !,
af (!) is defined with respect to Nf (ϖ, !) the least number of maximal flags approximating
! within a certain Hausdor" distance,

af(!) = lim inf
ϑ↓0

log Nf(ϱ, !)
↘ log ϱ

.

Volume Entropy in the Hilbert Geometry Volume entropy in the Hilbert geometry measures
the rate at which the volume of a Hilbert ball grows as its radius increases. Generally, there
exists upper and lower volume entropies for the Hilbert geometry of ! which can be defined
by using either the Busemann or Holmes Thompson volumes. The lower volume entropy,
denotes the minimum growth rate of the volume of a Hilbert ball as its radius grows towards
infinity or ω!. This quantity is described by the Holmes-Thompson Volume (or Busemann
Volume) VolH given a Hilbert ball centered at point p ↑ int(!) with radius R > 0 and is not
a"ected by the position of the center.

Entlower(!) = lim inf
R↓↔

log VolH (B!(p, R))
R

.

The upper volume entropy denotes the maximum growth rate of the volume of a Hilbert ball
grows towards ω! and replaces the infimum in the previous definition with a supremum.

Entupper(!) = lim sup
R↓↔

log VolH (B!(p, R))
R

.

With these definitions, Vernicos and Walsh show that the lower (or upper) volume entropy
of the Hilbert geometry of ! is exactly equal to twice its flag-approximability. That is,

Entlower(!) = 2 · af(!)

The proof for this involves showing the upper and lower bounds on the volume entropy
with respect to the flag approximability. The upper bound by proven by first bounding the
volume entropy of asymptotic balls of arbitrary radii in terms of the number of flags in a
given polytope. In particular, Vernicos and Walsh show that there exists a polynomial pd of
degree d depending solely on the dimension such that the Holmes-Thompson volume of an
asymptotic ball centered at an apex o with radius R is bounded by the least number of flags
approximating ! within a Hausdor" distance ϖ,

VolH
P

(AsBP (o, R)) ⇐ Nf (ϖ, !)pd(R)

where an asymptotic ball is a dilation of ! about a point y ↑ ! by a factor 1 ↘ e2R.

AsB!(y, R) = y + (1 ↘ e2R)(! ↘ y)

Then, using the relationship B!(o, R→) → AsB!(o, R→) → AsBP (o, R) where R→ is some radius,
Vernicos and Walsh conclude,

1
R→ log VolH

!
(B!(o, R→)) ⇐ 2 · log (Nf(ϱ, !)pd(R))

↘ log ϱ→ .
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The lower bound is proven by modifying a method used in [6]. The proof for this considers
a convex body ! in canonical form and uses the upper bound on the number of caps |C|
whose Macbeath regions are disjoint and centered at the centroids of the caps’ bases. This
bound is expressed in terms of the Holmes-Thompson volume of an asymptotic ball centered
at an apex o with radius R.

|C| = O(V olH(AsB(o, R)))

The caps serve as collectors in the ϖ-approximation of ! where the complexity above is used
to bound the number of collectors produced by a modified method of Lemma 3.2 in [6] such
that the convex hull of the set of points S is the approximating polytope. With the relation
that the least number of maximal flags is at most a fixed multiple of the number of collectors
and the number of flags in the approximating polytope is O(|C|), Vernicos and Walsh show
that Nf(ϱ, !) is also bounded by O(V olH(AsB(o, R))). Finally, observing this bound in the
flag-approximability definition and taking the limit as ϖ approaches 0, yields the conclusion
af (!) ⇐ 1

2
Ent(!).

4 Clustering

Clustering is an unsupervised learning task used in machine learning to partition points into
meaningful sets called clusters based on some measure of similarity. Traditional methods,
which consider similarity measures like Euclidean distance and KL-divergence have proven
to be e"ective across many tasks [16]. However, certain applications, like those found in data
analysis, text mining, and computer vision, involve data that naturally reside in bounded
convex regions whose structure is not accounted for by these measures. One such example
arises when clustering categorical distributions. These distributions are typically represented
as normalized histograms, but can also be viewed as weighted point set encoding multinoulli
distributions in a probability simplex. Prior work attempting to model these distributions in
the probability simplex used di"erential structures by either setting the Riemannian metric
tensor to the corresponding Fisher information matrix or defining a KL-divergence induced
dual information geometric structure. These approaches have several drawbacks, such as
requiring di"erentiable probability density functions and lacking complete metric properties.
Nelson and Sun in [25] address these limitations by introducing a computationally-friendly
framework for modeling the geometry of the probability simplex that uses the Hilbert Metric.
This section of the survey is primarily based on the work of Nelson and Sun from their 2021
paper "Clustering in the Hilbert Simplex Geometry".

Multinomial Distributions and the Probability Simplex. Multinomial distributions model the
probabilities of a set of d + 1 outcomes in a sequence of m independent events given the
probability ϑi

p
(
∑

d

i=0
ϑi

p
= 1) for an outcome ei, i ↑ {0, ..., d}. Multinoulli or categorical

distributions, which are the focus of the work, is a specific case of multinomial distributions,
where m = 1 and d > 1. These distributions serve as the feature representation of individual
data points from categorical data and are often expressed as normalized histograms. They can
also be viewed as a point p ↑ ”d on the open probability simplex ”d where coordinates reflect
the probability of di"erent outcomes. The simplex is embedded in Rd+1 on a hyperplane
containing points whose coordinates sum up to 1. By interpreting categorical distributions
this way, the clustering task can be formulated as follows. Given a set of n points (categorical
distributions) # = {p1, ..., pn} lying on an open probability simplex ”d, we aim to partition
# into k distinct clusters. Common approaches for this problem use either k-center or center
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based k-means++ clustering algorithms with a suitable dissimilarity measure to distinguish
between distributions.

Hilbert Simplex Geometry. Since the bounded convex domain ! required for Hilbert
geometry does not need to be a unit ball or smooth at the boundary, we are able to
endow bounded polytopes and particularly a d-dimensional open standard simplex ”d with
a Hilbert geometry. The latter denotes the Hilbert simplex geometry, in which the distance
between two multinomial distributions p and q is calculated by taking the intersection points
t0 and t1 of the line (1 ↘ t)p + tq with the boundary ω”d and computing the following cross
ratio:

ςHG(p, q) =
∣∣∣∣log (1 ↘ t0)t1

(↘t0)(t1 ↘ 1)

∣∣∣∣ .

An equivalent formulation on a (d ↘ 1)-dimensional simplex that uses Birkho" geometry
and does not require finding intersection points (seen below), considers ratios of probability
masses assigned to outcomes ei by distributions p and q.

ςHG(p, q) = log
maxi↗{1,...,d}

pi

qi

minj↗{1,...,d}
pj

qj

(1)

We now note some interesting properties of the Hilbert Simplex Geometry.
1) Due to the cross ratio, by construction, the Hilbert metric is invariant to collineations.

That is, applying a collineation H on a simplex preserves the Hilbert distance between any
two points in the deformed simplex.

ς”

HG
(p, q) = ςH(”)

HG
(H(p), H(q)).

2) Balls in the Hilbert geometry of a d-dimensional simplex are Euclidean polytopes
with d(d + 1) facets whose shape stays the same with varying radius and center. They
remain as eulidean polytopes at infinitesimal radii, hence the Hilbert simplex geometry is
non-Riemannian. Note that Hilbert geometry is Finslerian and becomes Riemannian only
when the boundary of the convex domain is an ellipsoid.

3) The Hilbert simplex metric space (”d, ςHG) is isometric to a normed metric space
(V d, || · ||NH) where || · ||NH is a polytope norm. The transformations mapping a point
p = (ϑ0, . . . , ϑd) on the simplex to a point v(x) = (v0, . . . , vd) ↑ V d and back are as follows,

vi = 1
d + 1



d log ϑi ↘
∑

j ↘=i

log ϑj



 .

ϑi = exp(vi)∑
j

exp(vj) .

where V d is a unit ball residing in Rd+1. Finding the smallest enclosing ball in this vector
space with respect to the polytope norm is an LP-type problem and can be solved using
Linear programming.

4) The Hilbert metric in the simplex is non-separable and satisfies information monotonicity.
5) The Hilbert distance on the simplex can be computed in linear time with a simple,

closed formula by considering an equivalent variation norm on a Hilbert projective geometry
defined on a cone over the positive orthant.
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Comparing Models of the Probability Simplex. Including the Hilbert simplex geometry,
Nelson and Sun compare three prominent geometric modelings of the probability simplex.
The Fisher-Hotelling Rao geometry models ”d with a Riemannian manifold embedded in the
positive orthant of a Euclidean d-sphere in Rd+1 with a metric tensor derived from the Fisher
information matrix. This model has constant positive curvature and demonstrates invariance
to reparameterization. Information geometry models ”d by a dual structure induced by
KL-divergence dissimilarity with dually flat curvature. Unlike FHR, KL-divergence is not a
complete metric is it is asymmetric, satisfies information monotonicty, and supports straight
line geodesics. By comparison, the Hilbert simplex geometry is a non-Riemannian, complete
metric that satisfies information monotonicity and has straight line geodesics (although not
unique). It is invariant under projective transformations and does not rely on a manifold
representation of the simplex. Curvature in this geometry is negative.

K-means++ Clustering. The widely studied k–means++ algorithm augments the standard
k-means algorithm by introducing a random seeding process [4]. Initial cluster centers are
chosen arbitrarily or uniformly at random from the set of points with subsequent cluster
centers being D2 weighted. A new center ci is then chosen with a probability that is
proportional to the squared distance D2 from ci to the closest center already chosen. In
the context of clustering multinomial distributions, the k-means objective of minimizing
intra-cluster variances [25] is,

ED(#, C) = 1
n

n∑

i=1

min
j↗{1,...,k}

D(pi : cj).

where # is the set of points, C is a set of k cluster centers, and D(· : ·) is a dissimilarity
measure. The seeding process is adapted by picking an initial center c1 uniformly at random
with subsequent centers or seeds c2, . . . , ck selected according to a weighted probability
distribution with respect to the chosen divergence.

Pr(cj = pi) = D(pi, {c1, . . . , cj↑1})∑
n

i=1
D(pi, {c1, . . . , cj↑1})

(2 ⇐ j ⇐ k).

The Hilbert simplex geometry is applied to this algorithm by defining the squared Hilbert
distance for D denoted as D(p, c) = ς2

HG
(p, c) where p is a candidate point and c is an already

chosen center. Nelson and Sun show that using the Hilbert geometry for k-means++ seeding
yields a competitive guarantee of 16(2+log k). The proof for this connects the isometry of the
Hilbert simplex geometry to a normed vector space to the general performance guarantee of k-
means++ algorithm for any dissimilarity measure. The general performance theorem is used
to first establish a competitive bound on the performance of the k-means++ seeding relative
to the best possible k-means clustering. This bound depends on two constants φ1 and φ2 which
are used to evaluate how "metric-like" a given dissimilarity measure is by quantifying how
much it deviates from the quasi-triangular inequality and the symmetry inequality respectively.
When applying metric properties to this theorem, it shows that any squared metric distance
satisfies a 2-approximate triangle inequality resulting in a 16(2 + log k)-competitive bound
in any metric space with respect to the corresponding squared metric distance. A similar
argument is made to establish the same competitive bound for any normed vector space
using the squared norm as the dissimilarity measure. Finally, because the Hilbert simplex
metric space is isometric to a normed vector space equipped with a polytope Hilbert norm,
the 16(2+log k)-competitive bound directly applies to the squared Hilbert distance ς2

HG
(p, c).
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k-center Clustering. Unlike in k-means++ clustering where we try to minimize intra-cluster
variances, in k-center clustering, we aim to minimize the maximum dissimilarity between
any point and its nearest cluster center with respect to a divergence. In other words, we
want to minimize the following cost:

fD(#, C) = max
pi↗#

min
cj↗C

D(pi : cj).

The algorithm starts by randomly picking k cluster centers using the seeding technique from
k-means++. Each point on the simplex is then assigned to the closest center, denoted as the
label, based on the dissimilarity measure. Then, the cluster centers are updated to minimize
the maximum dissimilarity between points in their respective cluster based on the labels,
and the distance. Since solving this problem is NP-hard, practical algorithms frequently
rely on greedy heuristics for an approximation. A common heuristic, the farthest first travel
heuristic, for any metric distance provides an approximation guarantee factor of 2 [25].

Computing the Minimax Center in the Hilbert Simplex Geometry. In the Hilbert simplex
geometry, minimizing the maximum dissimilarity between any point and its corresponding
cluster center amounts to finding the minimax center (or 1-center) or equivalently the
Minimum Enclosing Ball (MEB). Nelson and Sun propose an exact and an approximation
algorithm to find the MEB in the simplex. The exact algorithm solves the MEB problem in
the isometric normed vector space V d using an LP-type randomized algorithm and while
exact, this algorithm does not scale well in high dimensions. In contrast, the approximation
algorithm scales e!ciently with the simplex dimension. This algorithm starts by randomly
selecting an initial center from the set of points and then iteratively updates the current
center ct by stepping along the geodesic between the farthest point and the previous center
ct↑1 based on the Hilbert metric. This approximation is also referred to as the geodesic
bisection approximation heuristic.

Performance. Nelson and Sun evaluate the performance of both the k-means++ and k-center
algorithms with respect to di"erent dissimilarity measures including FHR, KL-divergence,
Hilbert simplex geometry, L2-norm, and L1-norm. Experiments conducted across varying k
values, sample sizes, and noise levels demonstrate the superiority of the Hilbert metric over
the Riemannian geometries in high dimensions and large noise levels due to the compactness
of Hilbert metric balls and a closer reflection of the intrinsic geometry of high-dimensional
simplices.

5 Algorithms and Theory

Recently, there has been a growing interest in extending classical computational geometry
structures such as Voronoi diagrams and Delaunay Triangulations to the Hilbert geometry.
However, translating their Euclidean counterparts to this geometry is non-trivial. For
example, in the Hilbert metric space, Delaunay triangulations do not always cover the convex
hull of the point set [19] and bisectors separating Voronoi cells are piecewise curves (except
in the simplex) as opposed to straight line segments [20]. As such, popular algorithms like
Fortune’s sweepline algorithm [32] which relies on storing circle events and convex-hull based
algorithms like Barber’s quickhull algorithm [11] can not be applied in this setting as Hilbert
metric balls are Euclidean polytopes and the analogous Hilbert Hull is not necessarily convex.

This section of the survey is primarily based on the works of Gezalyan et al. from their
2021 paper "Voronoi Diagrams in the Hilbert Metric", Gezalyan et al. from their 2023 paper
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on "Delaunay Triangulations in the Hilbert metric", and Bumpus et al. from their 2024 paper
on "Analysis of Dynamic Voronoi diagrams in the Hilbert Metric".

5.1 Voronoi Diagrams
The Voronoi diagram of a set of points residing on a plane divides the plane into regions or
cells according to a nearest-neighbor rule, where every point is associated with a region closest
to it [9]. Voronoi diagram have been applied in various areas of computer science including
computer graphics [39], pattern recognition [18], robotics [28,40], and operations research.
In particular, four of the most common uses motivating this structure are highlighted by
Aurenhammer in his 1991 survey which include associative file searching, cluster analysis,
scheduling record accesses, and collision detection. We now note the general Euclidean
characterization of Voronoi diagrams. Let S denote a set of n points, also referred to as sites,
which reside in a plane. The Voronoi cell VS(p) for any point p ↑ S is defined as a subset of
the plane that is at least as close to p as to any other point p→,

VS(p) =
{

q ↑ R2 : dE(q, p) ⇐ dE(q, p→), ⇒p→ ↑ S \ {p}
}

.

where dE(·, ·) is the Euclidean distance. Each cell can be viewed as the intersection of n ↘ 1
half-planes. The Voronoi diagram of S is then the resulting polygonal partition of the plane
induced by the Voronoi cell of each point p ↑ S.

Characterization of Voronoi Diagrams in the Hilbert metric space In contrast to the Euclidean
characterization, Voronoi diagrams in the Hilbert metric space, named Hilbert Voronoi
diagrams, are defined with respect to a convex polygon K residing in R2. The set S now lies
within the interior of K. The Voronoi cell VS(p) for any point p ↑ S is defined as

VS(p) =
{

q ↑ K, K ↑ R2 : dH(q, p) ⇐ dH(q, p→), ⇒p→ ↑ S \ {p}
}

.

where dH is the Hilbert distance. The Hilbert Voronoi diagram of S, VorK(S), is then defined
as the cell complex of K constructed from the Voronoi cells V (p) for all p ↑ S. We note two
interesting properties of Hilbert Voronoi diagrams.

↭ Observation 2 (Star Shaped). With respect to the associated site, Voronoi cells in the
Hilbert metric are stars

↭ Observation 3 (2-dimensional Bisectors). When the line passing through any pair of sites
and the lines extending any two edges of K are not conincident at a common point, the
bisectors separating the Voronoi cells become 2-dimensional.

Hilbert Metric Bisectors. The Hilbert bisector of two points p and p→ where p, p→ ↑ int(K), is
defined as the set of points z ↑ K such that dH(z, p) = dH(z, p→). Unlike Euclidean bisectors
which are straight lines, Hilbert bisectors are generally piecewise curves which depend on the
boundary edges of K. To better understand this piecewise nature, Bumpus et al [13] define
spokes and sectors.

↭ Definition 4 (Chord). The chord ε(a, b) of two points a and b is the intersection of the
line passing through a and b and ωK

↭ Definition 5 (Spokes). A spoke, with respect to a vertex v of K is the intersection between
the line passing through a site s ↑ K and v and ωK
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The spokes of sites p and p→ subdivide the interior of the K into polygonal regions called
sectors.

↭ Definition 6 (Sector). A sector is defined by four boundary edges which are not necessarily
distinct. These edges are obtained from chords ε(a, p) and ε(a, p→) where a is any point
within the sector.

The Hilbert bisector of two points p and p→ is made up of O(m) bisector segments, where
m is the total number of sides of K. Each segment is formed by a set of points lying in an
individual sector s and can be described by a conic section whose coe!cients depend on
the line equations of the four boundary edges corresponding to s [13]. Breakpoints or joints
occur when we travel along the bisector from the boundary of one sector to another [20].
Using these segments, Gezalyan and Mount show that the Hilbert Voronoi diagram has a
combinatorial complexity of O(mn). To compute this diagram they propose a randomized
incremental and a divide and conquer algorithm.

Randomized Incremental Algorithm. Given n sites in an m-sided polygon K, the randomized
incremental algorithm for constructing the Hilbert Voronoi diagram randomly permutes
the sites and adds each site to the diagram one by one, similar to common incremental
approaches for constructing Euclidean Voronoi diagrams. This algorithm also produces a
point-location data structure which queries a given point and returns the closest site location
in an expected time of O(log n log mn). We now detail constructing, updating, and querying
this structure.

Construction: While the diagram is being constructed, line segment spokes between
the current site s and the boundary points of V (s) are added to a planar subdivision data
structure (i.e doubly-edged linked list). These points include:
1. Vertices of V (s)
2. Joints lying along edges of V (s)
3. Intersection points of an edge of V (s) and ωK

4. Vertices of K that happen to lie in V (s)
This construction results in a triangulation whose size is proportional to the size of diagram.

Update: Gezalyan and Mount leverage a history-DAG which encodes a record of structural
changes made to the diagram. Leaf nodes in this graph represent individual triangles in the
triangulation and the root node represents the entire polygon K. When a new site is inserted,
the old triangles in the history-DAG are "destroyed" by storing a reference to the new triangle
that replaced it. The new triangle corresponds to the inserted site that caused the destruction.

Query: Given a query point q, point location on the history-DAG is performed. Let
pj denote the site corresponding to q’s triangle before pi the point that caused the change
was inserted. There are two possible cases, either the query is still closest to the old site or
its now closer to the new site. Compute the Hilbert distance between the query and these
sites to determine the closer one. Then, perform a radial binary search around this site to
figure out the current triangle containing q.

Divide and Conquer Algorithm. The divide and conquer algorithm constructs the Hilbert
Voronoi diagram for n sites contained in an m-sided polygon in O(nm log n) time and
appears similar to the Euclidean counterpart. The algorithm starts by partitioning the
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sites into two subsets of roughly equal size with respect to a vertical line. Hilbert Voronoi
diagrams are computed recursively on these subsets. The merge step involves computing
the bisector between the subsets with a single bottom-up traversal in O(mn) time. This
traversal constructs bisector components, a collection of curves, which are formed by the
concatenation of Voronoi edges of a site from the left subset and a site from the right subset.
After constructing the bisector, portions of the left subset’s Voronoi diagram that lie on the
right side of the bisector and portions of the right subset’s Voronoi diagram that lie on the
left side are removed.

5.2 Delaunay Triangulations
The Delaunay Triangulation of a set of points P is a planar subdivision whose bounded
faces are triangles with vertices drawn from points in P [14] and can be described as the
dual graph of the Voronoi diagram of P . Delaunay triangulations have been applied in
many areas including computational geometry, multi-agent systems, and spatial analysis. In
particular, an iterative optimization algorithm called LLoyd’s algorithm, leverages Delaunay
triangulations in finding subsets of the Euclidean space with an evenly spaced set of points
and partitioning them into well-shaped convex cells. Doing so refines the quality of the
resulting mesh by reducing the occurrences of overly acute triangles which tend to cause
numerical instability [15]. In spatial clustering, this structure is used as part of an adaptive
spatial clustering algorithm called ASCDT where spatial clusters with complex shapes and
non-uniform densities can be identified using a proximity definition based on the triangulation
and statistical features of its edges [15].

In the Euclidean setting, common algorithms for constructing Delaunay triangulations
such as flip and incremental search algorithms rely on in-circle tests which determine whether
a point lies inside a triangle’s circumcircle. The flip algorithm, for example, iteratively
inspects pairs triangles for violations of the empty circumcircle condition. That is, in any
valid Delauanay triangulation, the circumcircle of any face must not contain a point from P
in its interior. If a violation is detected, the shared edge is flipped and this continues until
convergence. Similarly, in the incremental construction algorithm, points are added one by
one to some existing triangle. This triangle is then identified and corrections are performed
to preserve the Delaunay property (empty circumcircle condition) by flipping edges. This
way, the Delaunay property is maintained at the end of each insertion and consequently as a
whole by the end of the algorithm. Similar to the case of Hilbert Voronoi diagrams, these
algorithms can not be directly applied in the Hilbert geometry as the nature of circumcircles
and the conditions for satisfying the empty Hilbert circumcircle condition are more complex
than the Euclidean case. For example, in the Hilbert geometry, it can not be guaranteed
that any three non-collinear points form a unique circumcircle and as such there can exist
triangles that may not admit any Hilbert circumcircle.

Characterizing the Hilbert Delaunay Triangulation The Hilbert Delaunay Triangulation
of a set of sites P , DT!(P ), is described by the dual of the Hilbert Voronoi diagram. That is,
any two sites p, q ↑ P are connected by an edge in the triangulation if Vor!(p) and Vor!(q)
are adjacent. This triangulation adapts common concepts from the Euclidean counterpart
using Hilbert balls such as two sites being adjacent if and only if they lie on the boundary
of a Hilbert ball which has no other sites in its interior, and three points form a triangle if
and only if they lie on the boundary of some Hilbert ball. In the latter case, the Hilbert ball
is said to circumscribe the triangle. Gezalyan et al. detail several properties of the Hilbert
Delaunay Triangulation:
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1. Any triangle in int(!) admits at most one Hilbert circumcircle
2. If P is discrete then DT!(P ) is a planar graph spanning P

3. MST!(P ) ⇑ RNG!(P ) ⇑ DT!(P ), where MST!(P ) is the Hilbert Minimum Spanning
Tree of P in which the edge weights are Hilbert distances and RNG!(P ) is the Hilbert
Relative Neighborhood Graph of P

4. DT!(P ) does not necessarily cover the convex hull of P

Hilbert Circumcircles. The algorithm proposed by Gezalyan et al. to construct the Hilbert
Delauanay triangulation for a set of points adapts the well known randomized incremental
algorithm for Euclidean Delauanay triangulations [21]. This algorithm relies on an incircle
test which determines whether a newly inserted site lies on the interior of a circumcircle of a
triangle formed by three existing sites. This is also referred to as the empty circumcircle
condition and understanding the Hilbert metric analog of this condition is important. However,
this is non-trivial as the Euclidean property that any triple of non-collinear points must
lie on the boundary of a unique Euclidean ball does not extend to the Hilbert geometry.
Gezalyan et al. explore the conditions when a triangle admits a Hilbert circumcircle and
how to compute Hilbert circumcircles.

To determine the conditions when a triangle admits the Hilbert circumcircle, Gezalyan et
al. characterize balls at infinity in the Hilbert metric. The centers of these balls are located
on the boundary of ! and approach a convex polygon lying on the interior of ! with respect
to ω! as the limit. Using this characterization, Gezalyan et al. define overlap and outer
regions for any two points p, q ↑ !. The overlap region is the intersection of the balls at
infinity centered at the endpoints of the (p, q)-bisector (Hilbert) intersecting ω!. The outer
region is ! excluding the union of these balls. With these regions, the condition for a triangle
”pqr to admit a Hilbert circumcircle is if and only if the site r does not belong in the union
of the overlap and outer regions of p and q.

Given three non-collinear sites p, q, and r, computing the Hilbert circumcircle of triangle
”pqr amounts to finding a point c equidistant from the points. Equivalently, this means
computing the point of intersection of the (p, q)- and (q, r)-bisectors. The algorithm for
computing the circumcircle proceeds by determining whether the (p, q)- and (q, r)-bisectors
intersect within the interior of !. This is done by computing the endpoints of the bisectors
in O(log2 m) time by performing a binary search routine on ω! and then checking if they
alternate between pairs (p, q) and (q, r) along ω!. The algorithm then finds the unique
circumcenter c by performing a binary search along an angular interval from rays ↘⇓pvq

and ↘⇓pvr where vq and vr are bisector endpoints. In O(log3 m) time, this search narrows
the interval to three double wedge regions defined by consecutive spokes corresponding to
each site, whose intersection contains bisector segments described by simple conics. Finally,
the algorithm formulates these conics and determines their intersection point in constant time.

Randomized Incremental Algorithm. To account for the fact that the Hilbert Delaunay
triangulation does not necessarily cover the convex convex hull of P , Gezalyan et al. augment
the triangulation with additional components for convenient construction. These components
include:
1. Tooth: The triangle ”pqx where for any two sites p, q ↑ int(!), whose edge corresponds

to an external face of the triangulation lying to the left, the (p, q)-bisector has an endpoint
x intersecting ω!.

2. Gap: Regions of ! that lie outside the standard triangles (formed by any three sites in
P) and teeth. Each gap has an associated site, sides of two teeth, and a convex, polygonal
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chain of line segments.
Given a set of sites P lying within !, the algorithm starts by randomly permuting the
sites. Then, it inserts two sites a and b and creates an initial augmented triangulation by
computing the endpoints x and y of the (a, b)-bisector and adding the edges ab, ax, ay, bx, by
to the triangulation. ax, ay, bx, by describe the two teeth lying on opposite sides of the
edge ab. After this, the algorithm incrementally inserts the remaining points, updating the
triangulation along the way. The insertion routine for the remaining points works as follows.
There are three cases, respective of the component into which the inserted site falls into.
In the case of a standard triangle, the new site is connected to vertices of the triangle. In
the case of a tooth, the boundary vertex connecting the sites part of the tooth and the new
site is removed and two new teeth are created based on the bisectors of the three sites (two
existing and one new). Finally, in the case of a gap, the new and existing sites are connected
and two new teeth are created with respect to the bisectors of the new site.

Participating in the insertion routine runs the risk of not satisfying the Delaunay
empty circumcircle condition, producing a geometrically invalid triangulation. This is
due to the additional components added to the triangulation. To ensure a topologically
correct triangulation, Gezalyan et al. propose two correcting procedures FLIPEDGE and
FLIPTOOTH. FLIPEDGE is applied to the edges of newly formed standard triangles where
if a new site fails the incircle test of the triangle ”abc neighoring the triangle ”pab where p
lies to left of the directed edge

↘⇓
ab, then the edge

↘⇓
ab is removed. When is ”abc is standard,

the edge pc is added and the edges ac and cb are processed. If ”abc is not standard, two new
teeth based on the (pa)↘ and (bp)↘bisectors are created. FIXTOOTH is applied to teeth in
situations where a newly created boundary vertex causes overlapping behavior between two
or more teeth. The procedure checks for potential overlaps between neighboring teeth and
if detected, the overlapping teeth are replaced by a standard triangle and a tooth. Then,
FLIPEDGE and FIXTOOTH are called on an edge of the new triangle and tooth respectively.

Gezalyan et al. show that this randomized incremental algorithm, with the augmented
triangulation and corrections runs in expected time O(n(log n + log3 m)) for n sites in an
m-sided polygon.

Hilbert Hull. The Hilbert Hull of a set of points P is the region covered by triangles of the
Hilbert Delaunay triangulation of P . Gezalyan et al. present an O(nh log2 m) algorithm
based on the Jarvis March algorithm to construct the Hilbert hull of a set of points where h
is the number of edges on the boundary of the hull. The algorithm starts by finding a point
p0 ↑ P lying on the boundary of an empty ball at infinity centered at a point x0 ↑ ω!. Given
the initial pair is (p0, x0), subsequent pairs (pi, xi) are obtained by computing the bisector
endpoints of all points in P excluding pi↑1. The next point on the hull is selected from the
smallest point derived from a lexicographical ordering induced by (pi↑1, xi↑1). Pairs are
computed until the starting pair is reached or passed.

6 Quantum Information Theory

The application of the Hilbert metric in quantum information theory is enabled by the
presence of convex cones representing quantum operators including the set of positive semi-
definite operators and the subset of separable operators. Important concepts that arise in
the discussion of these cones are certain classes of cone-preserving linear maps and local
operations with classical communication (LOCC) maps [31]. In this work, finite-dimensional
real vector spaces V are thought of as the space of Hermitian matrices Md(C), thus V
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is isomorphic to Rd
2 . Convex cones are then defined as subsets of this space for which

↼C + ↽C ⇑ C where ↼ and ↽ non-negative constants. Reed et al. focus specifically on proper
cones which represent convex sets of interest such as density matrices, separable states, PPT
states, and more. A proper cone is a convex cone that is closed, pointed and solid, where
1. Pointed: The only element shared between C and its reflection ↘C is the zero vector
2. Solid: The span of C is the vector space V
These cones correspond to partial orders in V where a ↗ b refers to vectors a ↘ b ↑ C. This
ordering helps to define positive elements in the vector space which is useful when describing
convex sets such as the space of positive semi-definite matrices in which operators are ordered
as a ↗ b. The main proper cones discussed in the work involving the Hilbert metric can be
divded into two areas:

C = S+ Space of positive semi-definite matrices
C = SPPT Set of positive partial transpose (PPT) matrices

C = SPPT+ S+ ↑ SPPT generated by all PPT states
C = SSEP Set of separable matrices
C = (R+)d Vectors with non-negative entries (Perron-Frobenius Theory)

Table 1 Base Norms & Negativities

CM+ = S+ Set of POVM elements
CMLO

Set of 2-outcome measurements with LO & no communication
CMLOCC

Set of 2-outcome measurements implementable by LOCC
CMSEP

All separable measurements on an n-partite quantum system
CMP P T + All PPT measurements

Table 2 Distinguishability Measures

This section of the survey is primarily based on the work of Reed et al. from their 2021
paper "Hilbert Projective Metric in Quantum Information theory".

Hilbert Projective Metric in Quantum Information Theory In a proper cone C for any two
elements a, b ↑ C {0} the definition of the Hilbert Projective Metric mirrors the formulation
seen in [23],

h(a, b) = ln(sup(a/b) sup(b/a))

where sup(a/b) is defined as,

sup(a/b) = inf{ϑ ↑ R |a ⇐C ϑb}

Recalling partial order, ϑ in this definition provides the scaling factors for b such that it
becomes at least smaller or larger than a. This definition depends only on the direction of a
and b and is a projective metric with respect to C. In this vein, an application discussed by
Reeb et al. considers the cone of positive semi-definite matrices S+ containing all density
matrices of a d-dimensional quantum system and max-relative entropy. Specifically, for
normalized quantum states ς and ⇀, sup

S+(ς, ⇀) represents the largest possible probability
ratio of any measurement outcome on ς compared to ⇀, equaling the max-relative entropy of
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ς and ⇀ up to a logarithm factor [31].

Contraction Properties for Cone-preserving maps. Some of the main applications of the
Hilbert Projective metric is in the context of cone-preserving maps, where a transformation
T sends one cone C, corresponding to a set of positive elements to another cone C→. These
cones represent partially ordered vector spaces V and V → respectively. The projective diameter
”(T ), which represents the largest possible Hilbert distance between any two points in
T (C) ⇑ C →, can then be formulated as,

”(T ) = sup
a,b↗C\{0}

hC→(T (a), T (b)).

The Hilbert metric serves as a convenient theoretical tool [31] for the analysis of contraction
bounds and based on the above formulation Reeb et al. discuss several contraction properties.
The Birkho"-Hoph theorem states that any cone-preserving map T acts as a contraction with
respect to the Hilbert metric and tanh[”(T )/4] is the best possible contraction coe!cient [31].
The contraction coe!cient provides a spectral bound on the projective diameter and is
bounded by a contraction ratio of T with respect to any projective metric D. The later
refers to the uniqueness of the Hilbert metric where for any strictly contracting linear map
sending a proper cone to its interior with respect to D, there exists a continuous and strictly
increasing function such that D(a, b) = hC(a, b), ⇒a, b ↑ int(C). The bound in particular is,

tanh
(

”(T )
4

)
⇐ sup

a,b↗C\{0}

{
D(T (a), T (b))

D(a, b)

∣∣∣∣ D(a, b) > 0
}

Additional contraction properties relate base norms and negativities to the projective diameter
of cone-preserving maps. The base B of a proper cone C → V is a convex subset of C where any
element c ↑ C \ {0} lies on a ray intersecting at exactly one point b ↑ B. A base of a proper
cone equips the corresponding vector space V with a norm referred to as the base-norm [31].
Negativity is a value N that represents how far a quantum state v is from the cone where
N (v) = 0 ⇔↖ v ↑ C and is used to quantify entanglement in a bipartite quantum system.

A common inequality seen in quantum information theory called the Ruskai’s trace-norm
contraction inequality which states that the trace-norm distance of two quantum states does
not increase by applying a quantum channel. In other words, the states do not become more
distinguishable when acted upon by a channel. Formally, given quantum states ς1, ς2 and a
channel T , then

↙T (ς1) ↘ T (ς2)↙1 ⇐ ↙ς1 ↘ ς2↙1

Reeb et al. show that leveraging the Hilbert projective metric, one can multiply the trace-
norm of ς1 and ς2 by the contraction coe!cient which improves this bound, yielding a stricter
contraction.

An alternative interpretation of the trace norm is observed in the discussion of distinguishability
measures in which the distance quantifies the best possible distinguishability between two
quantum states across all physical measurements [31]. Reeb et al. show that that this
distance or the maximal bias in distinguishing the states can be upper bounded by the
Hilbert projective geometry. In particular, in the space of implementable measurements CS+,
the trace distance between two quantum states ς1 and ς2 belonging to the base of CS+ can
be bounded as follows,

1
2↙ς1 ↘ ς2↙1 ⇐ tanh

(
hS+(ς1, ς2)

4

)
.
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Reeb et al. also provide bounds on two other popular distinguishability measures including
fidelity, which generalizes the overlap between mixed and pure states, and Cherno! bound
which is the asymptotic rate at which the symmetric quantum hypothesis testing error
reduces. Formally, given two density matrices ς1, ς2 ↑ Md(C) and the cone CS+, fidelity F
is bounded as,

√
1 ↘ F (ς1, ς2)2 ⇐ tanh

(
hS+(ς1, ς2)

4

)
,

and the Cherno" bound is bounded as,

↘ ln min
0≃s≃1

tr
[
ςs

1
ς1↑s

2


⇐

hS+(ς1, ς2)
2 .

Applications in Entanglement Theory. In entanglement theory, the Hilbert projective metric
is used to specify a non-trivial contraction ratio for quantifying the decrease in entanglement
described by entanglement monotones like negativities. Negativity contraction normally
denotes that on average, entanglement is non-increasing under the application of LOCC
operations. That is, if an LOCC operation maps a quantum state ς to a state ςi with some
probability pi, then the decrease in entanglement is upper bounded by the initial negativity
of ς. Formally, this means that ⇁ = 1 and

∑

i

piN (ςi) ⇐ ⇁ N (ς)

Applying the Hilbert projective metric shows that the generalized negativity is an entanglement
monotone by specifying ⇁ ⇐ 1 in terms of the projective diameter. That is, given a linear,
cone-preserving, non-deterministic operation Ti mapping a vector space V to a vector space
Vi, with proper cones C and Ci and bases B and Bi, the negativity contraction is

N∑

i=1

piNBi
(ςi) ⇐ NB(ς) tanh

(
maxi ”(Ti)

4

)

Operational Interpretation of the Hilbert Metric Measures such as the Hilbert metric,
fidelity, trace-norm, and ε-divergence all share a contraction property via the Birkho"-
Hopf contraction theorem: when a quantum channel is applied to two quantum states, their
distance does not increase [31]. Only from the contractivity of the Hilbert metric however,
can we decide the existence of a completely positive map. That is, given two pairs of quantum
states (ς1, ς→

1
) and (ς2, ς→

2
), a completely positive map ςi ∝⇓ ς→

i
can be realized in terms

of a probabilistic quantum operation T (ςi) = piς→
i

if and only if their Hilbert distance is
non-increasing:

hS+(ς1, ς2) ↗ hS+(ς→
1
, ς→

2
).

In other words, the Hilbert projective metric serves to provide a necessary and su!cient
condition for the existence of T [31].

7 Conclusion

In this work, we surveyed several algorithms and applications of the Hilbert metric appearing
in computational settings. While this metric has been extensively studied in mathematical
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contexts, applying this metric in these settings reveal useful observations such as how its
projective invariance and contractivity make it a convenient tool for analyzing contraction
bounds in quantum information theory, its superior performance in clustering tasks on a
probability simplex compared to other popular measures, and its similarity to Macbeath
regions which connected these regions to Delone sets for achieving better query and storage
complexities for approximate polytope membership.

Furthermore, we find that the non-Riemannian nature of this geometry leads to unusual
properties like bisectors sometimes being 2-dimensional, the Hilbert hull which is Hilbert
geometry analog to the convex hull not necessarily being convex, three non-collinear points
not always guaranteeing a unique circumcircle, and more. These properties make it harder
to adapt traditional algorithms found in Euclidean settings and to perform computations
involving the metric (i.e computing the exact projective diameter in all cases). Thus, we
hope this survey helps to further the exploration of the Hilbert metric in order to develop
more practical algorithms and applications.

8 Software & Code

The table below lists several software and code contributions accompanying the study of the
Hilbert metric.

Paper Link
On the balls of Hilbert Polygonal Geometry [24] Demo Hilbert Geometry
Ipelets for the Convex Polygonal Geometry [29] Ipelets for the Convex Polygonal Geometry
Software for the Thompson and Funk Geometries [10] Funk Geo Visualizer
Dynamic Voronoi Diagrams in the Hilbert Metric [13] Dynamic Voronoi Diagrams in the Hilbert

Metric
Clustering in the Hilbert Simplex Geometry [25] Clustering in the Hilbert Simplex Geometry
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