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ABSTRACT
The underlying assumption behind Hadoop and, more generally,
the need for distributed processing is that the data to be analyzed
cannot be held in memory on a single machine. Today, this as-
sumption needs to be re-evaluated. Although petabyte-scale data-
stores are increasingly common, it is unclear whether “typical” an-
alytics tasks require more than a single high-end server. Addition-
ally, we are seeing increased sophistication in analytics, e.g., ma-
chine learning, which generally operates over smaller and more re-
fined datasets. To address these trends, we propose “scaling down”
Hadoop to run on shared-memory machines. This paper presents a
prototype runtime called Hone, intended to be both API and binary
compatible with standard (distributed) Hadoop. That is, Hone can
take an existing Hadoop jar and efficiently execute it, without mod-
ification, on a multi-core shared memory machine. This allows us
to take existing Hadoop algorithms and find the most suitable run-
time environment for execution on datasets of varying sizes. Our
experiments show that Hone can be an order of magnitude faster
than Hadoop pseudo-distributed mode (PDM); on dataset sizes that
fit into memory, Hone can outperform a fully-distributed 15-node
Hadoop cluster in some cases as well.

1. INTRODUCTION
The Hadoop implementation of MapReduce [3] has become the
tool of choice for “big data” processing (whether directly, or indi-
rectly via higher-level tools such as Pig or Hive). Among its ad-
vantages are the ability to horizontally scale to petabytes of data on
thousands of commodity servers, easy-to-understand programming
semantics, and a high degree of fault tolerance. There has been a
wealth of activity in applying Hadoop to problems in data manage-
ment as well as data mining and machine learning; the community
has learned much about how to recast algorithms in terms of the
restrictive primitives map and reduce.

Computing environments have evolved substantially since the in-
ception of Hadoop. For example, in 2008, a Hadoop node might
have two single-core processors with a total of 4 GB of RAM. To-
day, a single high-end commodity server might have two hex-core
processors and 256 GB of RAM—such a server can be purchased
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for less than $10000 USD. This means that a single server today has
more cores and more memory than a small Hadoop cluster from a
few years ago. The assumption behind Hadoop and the need for
distributed processing is that the data to be analyzed cannot be held
in memory on a single machine. Today, this assumption needs to
be re-evaluated.

Although it is true that petabyte-scale datastores are becoming
increasingly common, it is unclear whether datasets used in “typ-
ical” analytics tasks today are really too large to fit in RAM on a
single server. Of course, organizations such as Yahoo, Facebook,
and Twitter routinely run Pig or Hive jobs that scan terabytes of log
data, but these organizations should be considered outliers—they
are not representative of data analytics in most enterprise or aca-
demic settings. Even still, according to the analysis of Rowstron et
al. [7], at least two analytics production clusters (at Microsoft and
Yahoo) have median job input sizes under 14 GB, and 90% of jobs
on a Facebook cluster have input sizes under 100 GB. Given these
numbers, holding all data in memory doesn’t seem too far-fetched.
Furthermore, over the past several years, the sophistication of data
analytics has grown substantially. Whereas yesterday the commu-
nity was focused on relatively simple tasks such as natural joins
and aggregations, there is an increasing trend toward data mining
and machine learning. Such algorithms usually operate on more
refined, and hence, smaller datasets (e.g., sparse feature vectors)—
often in the range of tens of gigabytes.

These factors suggest that it is worthwhile to consider in-memory
data analytics on modern servers—but it still leaves open the ques-
tion of how we would orchestrate computations on large multi-core,
shared-memory machines. Do we go back to multi-threaded pro-
gramming? That seems like a bad idea because we embraced the
simplicity of MapReduce for good reason—the complexity of con-
current programming with threads is well known. The solution, we
propose, is to “scale down” Hadoop to run on shared-memory ma-
chines. In this paper, we present a prototype runtime called Hone
(“Hadoop One”) that is intended to be both API and binary compat-
ible with Hadoop. That is, we can take an existing Hadoop jar and
efficiently execute it, without modification, on a multi-core shared
memory machine using Hone. This allows us to take an imple-
mented algorithm and find the most suitable runtime environment
for execution on datasets of varying sizes—if the data fit into mem-
ory, we can avoid network latency and significantly decrease exe-
cution time in a shared-memory environment.

2. RELATED WORK
API and binary compatibility with Hadoop is the central tenant in
our design. Although there have previously been alternative Map-
Reduce implementations for shared-memory machines [6, 10, 5,
2, 4, 9], taking advantage of them would require porting Hadoop
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Figure 1: Hone system architecture

code over to another custom API. In contrast, Hone is able to lever-
age existing implementations—in this paper, we present experi-
ments on a number of “standard” MapReduce algorithms (word
count, PageRank, etc.) as well as a Hadoop-based implementation
of Latent Dirichlet Allocation (LDA) [12], comparing the perfor-
mance of Hone on a single shared-memory machine with a 15-node
Hadoop cluster. This LDA implementation was itself a major re-
search effort, and demonstrates API and binary compatibility on
“non-toy” code.

Closest to our system is the work of Shinnar et al. [8] who pro-
posed a system called M3R. However, they mainly focus on scale-
out architectures, whereas we focus explicitly on scale-up on a sin-
gle shared-memory machine. M3R is implemented in the X10 lan-
guage: although X10 interoperates with Java, the M3R system in-
troduces an additional layer of indirection that we feel is unneces-
sary. Similarly, Spark [11] is specifically optimized for scale-out
architectures and provides limited multi-core scalability on a sin-
gle machine. Moreover, it is not Hadoop API compatible and thus
represents a different point in the design space.

3. SYSTEM ARCHITECTURE
We describe the Hone system architecture, shown in Figure 1:
Map stage: Analogous to Hadoop, this stage applies the map func-
tion on the input dataset to emit intermediate (key, value) pairs.
Each mapper is handled by a separate thread, which consumes the
supplied InputSplit and processes input records according to the
user-specified InputFormat. As with Hadoop, the total number of
mappers is determined by the number of input splits. This stage
uses a standard thread-pooling technique to control the number of
parallel mapper tasks. Mappers in Hone accept input either from
disk or from a ‘namespace’ residing in memory (more below).
Sort stage: Hone sorts intermediate (key, value) pairs emitted by
the mappers per the standard contract defined by the MapReduce
model. Sorting is handled by a separate thread pool with a built-
in load balancer. If the sort streams grow too large then an au-

tomatic splitter determines the optimal split size, efficiently splits
the streams on the fly, and performs parallel sorting on the split
streams. This splitting information is passed on to the reduce stage
so that proper stream assignment is performed on the reducers. One
can also specify the stream split size in the configuration.
Reduce stage: A reducer in Hone applies a reduce function on
intermediate (key, value) pairs emitted by mappers. Depending on
how mappers interact with reducers as discussed below, reducers
may have to apply the partitioning function on the key to gather the
appropriate (key, value) pairs. A reducer either writes output to disk
or it can store output in memory for further iterative processing.
MapReduce interaction module: Running MapReduce on multi-
core shared memory machines creates interesting possibilities in
the way mappers interact with reducers. For example, one op-
tion is that each mapper emits intermediate (key, value) pairs in a
corresponding output stream, and each reducer iterates through the
stream corresponding to each mapper and ingests (key, value) pairs
as determined by the partitioner. In another possibility, each map-
per emits intermediate pairs into r (number of reducers) streams
by applying the partitioner to every emitted (key, value) pair. In
this case, each reducer only needs to access a single stream. Hone
provides a flexible way of controlling these interactions through a
user-specified option, by providing three different MapReduce in-
teraction models: pull-based, push-based and hybrid. In the pull-
based approach, each mapper emits keys into r streams, where r
is the number of reducers. Each mapper applies the partitioning
function to assign (key, value) pairs to one of the r corresponding
streams. If m is the total number of mappers then there will be a
total of m× r intermediate streams. In the sort stage, these m× r
intermediate streams are sorted in parallel. In the reduce stage,
each reducer thread “pulls” the appropriate (key, value) pairs from
the appropriate r streams. In the push-based approach, there are
only r intermediate streams, each corresponding to a reducer. Each
mapper emits intermediate (key, value) pairs directly into these r
streams (as determined by the partitioner)—in this way, the (key,
value) pairs are “pushed” to the reducers. Because the r streams in
this case are being updated by m mappers in parallel, the streams
must be synchronized. In the hybrid approach, k (1 < k < m)
streams are maintained for each reducer and (key, value) pairs emit-
ted by mappers for a particular reducer are distributed among the
streams corresponding to that reducer.
Namespace manager: This module manages memory assignment
to enable data reading and writing for MapReduce jobs. It converts
filesystem paths that are specified in the standard Hadoop API into
an abstraction we call a ‘namespace’: output is directed to an ap-
propriate namespace that resides in memory, and, similarly, input
records are directly consumed from memory as appropriate.

4. CHALLENGES
This section discusses the key challenges in performing large-scale
analytics on shared-memory, multi-core platforms on the Java Vir-
tual Machine, and how we addressed them in Hone.
Runtime Memory Consumption: To seamlessly support Hadoop
code on a multi-core shared memory system, we made a design
decision to implement Hone completely in Java, which meant con-
tending with the limitations of the language. In Hone, each map-
per task thread competes for shared resources with other mapper
threads running in parallel. Thus, we must be careful about the
choice of data structures, the number of object allocations, de-
referencing of objects for better garbage collection, and so on. Stan-
dard Java programming practices scale poorly to large datasets. For
example, consider a naive implementation of MapReduce using
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Java TreeMap<String, Integer> as the underlying data struc-
ture: on a server with 128GB RAM, running word count on in-
put with size 10% of the total RAM results in memory exhaustion.
Java objects are heavyweight and it is not uncommon for some data
structures to have 95% memory overhead, i.e., only 5% of the mem-
ory consumed is used for actual data.

To combat this, we extensively use primitive data structures such
as byte arrays to minimize JVM-related overheads as much as pos-
sible. In the map phase, (key, value) pairs are serialized to raw bytes
and in the reduce phase, new object allocations are minimized by
reading pairs from byte streams using bit operations and reusing
existing container objects. To the extent possible, we try to avoid
using standard Java containers in favor of more efficient custom
implementations.
Sorting is Expensive: For large intermediate outputs (on the order
of GBs), we found sorting to be a major bottleneck. Operations
such as swapping elements in a collection can be expensive, espe-
cially if an inappropriate data structure is used.

We experimented with two approaches to sorting. In the first,
each thread from the thread pool handles both mapper execution
and sorting of intermediate pairs. In the second, mapper execu-
tion and sorting are handled by two separate thread pools. We ul-
timately adopted the second, decoupled approach (note that this is
orthogonal to the push/pull/hybrid models described above). Our
decoupled design was selected based on several factors:

• The optimal thread pool size mainly depends on: (a) number of
available cores in the machine, (b) size of the data each thread
will handle, and (c) skew in the data distribution among the
threads. The decoupled approach helps Hone automatically con-
figure thread pool size based on these considerations. This helps
the system be robust enough to handle data skew at the interme-
diate stage across different applications.

• The decoupled approach helps the garbage collector clean up the
memory used by the map stage before starting the sort stage.
This reduces the variance in overall execution time.

• Assignment of mapper with sorting to a thread may cause in-
creased memory consumption of that thread. Stressing a thread
in terms of both processing and memory may affect other threads
by starving them for thread-level shared resources. Hence, it is
better to decouple processing- and memory-intensive elements
into separate threads.

Hone implements a custom quick sort solution that works solely
with byte arrays. The main idea is to store all the intermediate (key,
value) pairs in a byte array, and to create an offset byte array on the
fly that records offset information corresponding to data in the raw
data byte array. Once mapper output is stored in these data and
offset byte arrays, quick sort is applied. Offsets are read from the
offset array and data is read using bit operations, depending on the
data type (so as to avoid object materialization whenever possible).
Data items are compared with each other, but only offset bytes are
swapped. In most cases, the size of the offset byte array is much
smaller than the size of the data byte array, and therefore it is much
more efficient to perform swapping operations on the offset byte
array instead of the data byte array. The cost of swapping offsets is
further reduced by swapping only the non-zero bytes in the offset
array, as opposed to the entire four-byte span that comprises the
entire offset.
Disk-Based Readers and Writers: In developing a MapReduce
implementation for shared-memory machines that is API and bi-
nary compatible with standard (distributed) Hadoop, one major chal-
lenge is that Hadoop application code typically makes extensive use

of disk-based readers (RecordReader) and writers (RecordWriter).
The simplest way to avoid disk-based reading and writing overhead
is to provide a parallel set of APIs that read/write from memory
and then change the Hadoop user application code to use these new
APIs. This is not a desirable approach in our case, as we wish to
maintain compatibility with the existing Hadoop API.

Instead, we introduce the notion of a namespace, which is a ded-
icated part of memory where data is stored. Application code can
access namespaces through the Job object to read input and store
output. To maintain compatibility of our API with Hadoop’s API,
we provide efficient in-memory alternatives for existing FileReader
and FileWriter Hadoop classes (these lower-level abstractions do
not require swapping RecordReader and RecordWriter classes in
the user’s application code). Via these implementations, filesystem
paths in the user’s application code are automatically and transpar-
ently converted to appropriate namespaces; all reads and writes are
redirected to these namespaces, bypassing disk.
Support for Iteration: Iterative MapReduce algorithms, where a
sequence of MapReduce jobs are chained together such that the
output of the previous reducers serves as input to the next map-
pers, are a well-known weakness of Hadoop and have been previ-
ously studied [1]. Since many interesting algorithms are iterative
in nature (e.g., PageRank, LDA), this is an important problem to
address. The primary issue with Hadoop implementations is that
reducer output at each iteration must be serialized to disk, only to
be immediately read by mappers at the next iteration. Of course,
serializing serves the role of checkpointing and provides fault tol-
erance, but since Hadoop algorithms are forced to do this every it-
eration, there is no way to trade off fault tolerance for performance.

In Hone, all of these issues go away, since intermediate data re-
side in memory at the end of each iteration. The choice to serialize
data to disk can be made independently by the developer. Thus,
Hone provides natural support for iterative MapReduce algorithms.

To provide a bit more detail: typically, in an iterative algorithm,
there is a “driver program” that sets up the MapReduce job for each
iteration, checks for convergence, and decides if another iteration
is necessary. Convergence checks are usually performed by read-
ing reducer output (i.e., files on HDFS). In Hone, this is transpar-
ently handled by our notion of namespaces, since HDFS paths map
(without programmer intervention) to in-memory buffers. Thus,
existing Hadoop code continues to run unmodified.

5. EXPERIMENTAL RESULTS
We developed Hone completely from scratch in Java. The results
presented here used the pull-based approach in shuffling data from
mappers to reducers, with the thread pool size set to 16. The Hone
experiments were performed on a server with dual Intel Xeon quad-
core processors (E5620 2.4 GHz) and 128 GB RAM. We com-
pared Hone against two setups: 1) a standard distributed Hadoop
cluster and 2) Hadoop running in pseudo-distributed mode (PDM).
The cluster configuration is as follows: 15 compute nodes, each of
which has two quad core Xeon E5520 processors, 24 GB RAM, and
three 2 TB disks. The PDM experiments were run on exactly the
same machine as Hone. In PDM, Hadoop runs all daemons in sep-
arate processes; we set the configuration parameters for the max-
imum allowable in-memory buffer sizes to ensure as fair a com-
parison as possible, but note that Hadoop buffer sizes are limited
to 32-bit integers. In both the distributed and PDM cases, we ran
Cloudera’s distribution of Hadoop (CDH4).

Here we present comparison results on five applications, each
with three different dataset sizes. For the word count (WC) and in-
verted indexing (II) applications, we used subsets of English Wiki-
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Small Medium Large
System WC KM II PR LDA WC KM II PR LDA WC KM II PR LDA
Hone 5.3 4.5 7.4 1.4 138 29 16.4 56.1 4.3 500 268 66 341 11.9 957
PDM 53

(−10×)
59
(−13×)

67
(−9×)

59
(−42×)

854
(−6×)

139
(−5×)

54
(−3×)

255
(−5×)

53
(−12×)

3790
(−8×)

875
(−3×)

215
(−3×)

1183
(−3×)

66
(−6×)

8002
(−8×)

Cluster 67
(−13×)

42
(−9×)

42
(−6×)

30
(−21×)

285
(−2×)

90
(−3×)

57
(−3×)

150
(−3×)

34
(−8×)

1103
(−2×)

92
(+3×)

62
(∼)

380
(∼)

37
(−3×)

1970
(−2×)

Table 1: Performance comparison of Hone with Hadoop PDM and a 15-node Hadoop cluster for five different applications on small,
medium, and large datasets. Reported numbers are in seconds. Parentheses show relative speedup compared to Hone.

pedia with sizes: {small: 125MB, medium: 1GB, large: 8GB}. For
PageRank (PR), we used a Wikipedia graph dataset: {small: (0.4m
nodes, 0.2m edges), medium: (1.8m nodes, 1.1m edges), large:
(7.2m nodes, 4m edges)}. For k-means (KM), we used a ran-
domly generated three-dimensional dataset with 10 centers, where
the small dataset has 12m points, and the medium and large datasets
have 51m and 398m points, respectively. Finally, we explored La-
tent Dirichlet Allocation (LDA) [12] on a TREC document collec-
tion; the small dataset contains documents totaling 125MB, and
the medium and large datasets total 512MB and 1GB, respectively.
Note that PageRank, k-means, and LDA are iterative algorithms,
and we report the first iteration execution times.

Table 1 provides the results of our experiments. For the small
datasets Hone can be more than an order of magnitude faster than
Hadoop PDM and the fully-distributed Hadoop cluster. For the
medium datasets, Hone outperforms both Hadoop PDM and the
Hadoop cluster as well. For the large datasets, Hone still outper-
forms PDM; on word count Hone is slower than fully-distributed
Hadoop, on k-means and inverted indexing, performance is about
equal, and for PageRank and LDA, Hone remains faster.

We also compared Hone with the Phoenix system for the word
count application, since that is the only system (among multi-core
MapReduce implementations) available to compare against. We
note that Phoenix is implemented in C++ whereas Hone is a Java-
based system. For the word count application on the Wikipedia
datasets of size 2GB, Hone was still 2× faster than Phoenix. Fur-
thermore, Phoenix does not scale beyond 2GB datasets because of
limitations imposed by mmap() that is used as an optimization,
whereas Hone scales well over 8GB datasets.

6. DEMONSTRATION
Our demonstration will follow the experiments described above,
comparing Hone, Hadoop running in pseudo-distributed mode, and
fully-distributed Hadoop. The primary aim is to illustrate the ad-
vantages of Hone for running complex analytics on datasets that fit
into memory on a single machine. Users will be able to experi-
ment with different algorithm under different settings and observe
the effects in real-time.

As part of the demonstration, we have developed a workload
simulator that we believe is of independent interest. During our ini-
tial experimental evaluation of Hone, we found the use of a fixed set
of applications to be too limited in providing sufficient control over
the interactions between mappers and reducers. Thus, we designed
a workload simulator that provides fine-grained control over the
behavior of the mappers and the reducers through a set of parame-
ters. One can control the communication pattern between mappers
and reducers (one-to-one, one-to-many, many-to-many), skew in
the key distribution, payload size, whether the overall computation
is CPU-bound, memory-bound, or IO-bound, and so on. The work-
load simulator will allow us to compare Hone, Hadoop PDM, and
fully-distributed Hadoop in a fine-grained manner under different
execution scenarios.

7. CONCLUSION
Hadoop has already emerged as the de facto standard analytics
platform for a variety of organizations. However, in cases where
datasets can fit into memory, running fully-distributed Hadoop is
inefficient. This is where Hone comes in: it allows us to “scale
down” Hadoop algorithms to run efficiently on shared-memory ma-
chines, without breaking API and binary compatibility with exist-
ing Hadoop code. Independently, Hone creates many interesting
implementation challenges regarding the application of data man-
agement techniques on the Java Virtual Machine.
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