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Abstract: This paper introduces fast LU and QR implementations on GPU which are extended from 
LAPACK routines. Using fast matrix-matrix multiplication algorithm on GPU, right-looking technique to 
parallelize the computation, look-ahead technique to override the CPU and GPU computation together with 
optimal block size on GPU make this implementation outperform its counterparts. It gains around 2~8x 
speedup over LAPACK routines which are run on CPU as the number of rows in matrix varies from 1,000 
to 11,000. The paper also provides detailed information on how to add customer functionality into Flagon 
which makes possible that developer can use CUDA code without knowing how to do CUDA coding. In 
this paper, a random generator on GPU is also imported into Flagon.  
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Introduction 
 
Graphics Processor Units (GPUs) have been used for many applications beyond graphics. 
GPGPU (General-purpose Computing on Graphics Units, also referred as GPGP) is introduced to 
prove that many computations in applications traditionally handled by CPU can also be handled 
by GPU. There are a lot of research on using GPU for scientific computations [Fan et al. 2004, 
Harris et al. 2003, Rumpf and Strzodka 2001], iterative solvers for sparse linear systems[Bolz et 
al. 2003, Kruger and Werstermann 2003,  Goddeke 2005], and other applications. In recent years, 
there are also some research on proposing GPU implementation for some subroutines in linear 
algebra package [Galoppo et al. 2005, Volkov and Demmel 2008, Baboulin et al. 2008, 
Barrachina et al. 2008] in order to provide high performance computing.  

The Linear Algebra PACKage (LAPACK) is a software library that uses block-partitioned 
algorithms for performing dense and banded linear algebra computations on vector and shared 
memory computers [Choi et al. 1994].  It provides routines for solving systems of linear equation 
and linear lest squares, eigenvalue problems, singular value decomposition, and also matrix 
factorizations such as LU, QR and Cholesky. LAPACK is considered as the successor of 
LINPACK and the EISPACK. LAPACK has also been extended to run on distributed-memory 
systems in extension package such as ScalLAPACK and PLAPACK.  

In this paper, we will introduce fast LU and QR implementations on GPU which are extended 
from LAPACK routines.  

CUDA programming provides some benefits in producing high performance. However, it 
uses a lot of build-in APIs, thus increasing the usage difficulty for developers. What if we can use 
CUDA code without knowing its details? Is there such kind of tool or library? Yes, we have. 
Flagon is the right library for people who want to use CUDA code but don’t want to know how to 
write CUDA code. So far, Flagon can provide CUDPP, CUBLAS, and CUFFT libraries.  

In this paper, we will focus on adding GPU-based LU, QR and a random generator in 
FLAGON. This experience can also server as guidance for adding other libraries with GPU 
version into Flagon.  



We make the following contributions: 1) Introduce a fast GPU-based implementation of LU, 
QR in detail and provide a random number generator implementation; 2) Provide manual for 
adding customer functionality in Flagon. 

The organization of the paper is as follows: section 2 goes through the literature review, 
section 3 introduces the design philosophy of LU, QR and RNG, section 4 describes the details of 
adding customer functionality into Flagon, section 5 analyzes the performance of LU and QR, 
section 6 introduces the application of LU and QR, the last section makes a conclusion of this 
paper.  
 
Literature review 
 
LU and QR 
 
Lu and QR are two classic matrix factorization algorithms in solving linear equation problems. 
The Linear Algebra PACKage (LAPACK) which is a software library written in Fortran 77 
originally and in Fortran 90 now provides routines for LU and QR matrix factorization. The 
implementation of the routines schedules some Basic Linear Algebra Subprograms (BLAS) level 
2 (matrix-vector) and level 3 (matrix-matrix) operations. The routines have also been extended to 
run on distributed-memory systems in ScaLAPACK and PLAPACK. Currently, some variants of 
LU, QR routines are extended from the LAPACK routines.  

Matlab is also embedded with LU, QR routines. The basic version of LU is based on using 
nested for-loops to do the matrix inversion and matrix-matrix multiplication. So the main running 
time happens on the three levels for-loop to calculate the matrix-matrix multiplication, which 
makes the implementation far from efficient.  

Among numbers of matrix factorization research topics, one of them is to generate efficient 
and fast LU and QR routines by using parallel techniques.  

There are mainly three bulk-synchronous variants of LU factorization, which are left-looking, 
right-looking and Crout [Dongarra et al. 1998].  In left-looking, all data accesses happen to the 
left of the block column being updated which has the only one write access. The matrix elements 
on the right side are only needed for pivoting purpose. Left-looking is considered the best among 
the three from the standpoint of data access. In right-looking, it will produce the first k columns 
of L and first k rows of U while in left-looking it produces same columns of L and U. It’s easy to 
apply the factorization to generate the next block column L and next block row U. If the block 
size used in right-looking is great than 1, level 3 operation will perform more efficiently than 
level 2 operation. Right-looking is considered the one of three which has the most potential for 
parallelism.  Crout algorithm is best suited of the three for vector machines with enough memory 
bandwidth. But no matter which algorithm you use, for any implementation of LU, the 
computation work includes three routines: 1) panel factorization within the current block column; 
2) matrix inversion which is to update the triangular; 3) matrix-matrix multiply which is to update 
the un-factorized part of original matrix.  

There are several LU and QR GPU-based implementations. In [Galoppo et al. 2005], it uses 
appropriate data representation to match the blocked rasterization order and non-blocked 
algorithm to swap rows and columns for efficient implementation of partial and full pivoting. As 
for performance, the author claimed that it ran up to 10Gflop/s for n=4000 without pivoting and 
6Gflop/s for n=3500 with partial pivoting on GeForce 7800. In [Barrachina et al. 2008], it 
evaluated three blocked variants of LU factorization-with padding, hybrid GPU-CPU 
computation and recursion. It ran up to 50Gflop/s in LU for n=5000 on GeForce 8800 Ultra. In 
[Baboulin et al. 2008], it proposed an algorithm based on randomization technique for LU 
pivoting and use a lot of BLAS 3 computations. The author claimed that their LU and QR 
implementation ran up to 55Gflop/s on Quadro FX5600 for n=19000 using CUBLAS 1.0. In 



[Vokvok and Demmel 2008], the author claimed that they have implemented the fastest LU and 
QR so far. It ran up to 309Gflop/s on GTX280 and E6700 for LU, 340Gflop/s for QR.  

In this paper, we will work on [Vokvok and Demmel 2008]’s LU and QR implementation 
and import it into Flagon as it achieved the highest performance compared with other 
implementations introduced above.  The high performance in LU gains from using several 
techniques: 1) right-looking for using parallelism; 2) look-ahead technique; 3) fast matrix-matrix 
multiply routine on GPU; 4) fast matrix inversion on GPU; 5) panel factorization on CPU; 6) 
optimal block size. The high performance in QR implementation is achieved by using the 
following techniques: 1) right-looking manner to recursively generate Q and R; 2) fill in the 
lower triangular part with zeros and a unit diagonal by using a matrix-matrix multiply; 3) use 
optimum block size by auto-tuning during the process of factorization. The details of the 
implementation will be introduced in section 3.   
 
Random Number Generator  
 
The generation of pseudo-random numbers is important in computing program. There are some 
library functions for generating random numbers. However, they usually have some statistical 
problems or the random number they generate repeats in some period of time. In order to provide 
high quality-- long period and highly random, there are some implementations with parallelism. 
One of them is called Mersenne Twister [Internet Link]. It performs in high quality, but the 
implementation itself is complicated. Here we will work on another simpler implementation, 
which is posted on Nvidia Forum [Nvidia Forum]. 
 
Design Philosophy 
 
LU and QR 
 
LU and QR are two of the most widely used factorizations in the dense linear algebra and usually 
used as benchmarks for solvers of dense algebra system. In this section, we will introduce a fast 
GPU-base implementation of LU and QR. From here to end of the paper, we call them GPU-LU 
and GPU-QR.  

For a given matrix A (M,N), LU factorization is to generate a permutation matrix P which is 
stored in a min(M,N) vector, low triangular matrix L (M,N) and upper triangular matrix U 
(N,N)in the form of . The output is generated by applying a series of Gaussian 
eliminations. In blocked algorithm, several computations are conducted recursively during the 
whole process. The computation of each round includes (see Fig 1): 1) panel factorization to 
generate ,  and ; 2) update the right side matrix of current block which includes  
and  by formula (1) and (2).    
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Fig1. The procedure of LU [Choi et al. 1994] 
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For a given matrix A (M,N), QR is to generate an M*M orthogonal matrix which we call Q 
and an M*N triangular matrix which we call R. Q is computed by applying a number of 
Householder transformations to the current block column in the form of T

i i i iH I v vτ= − where 
, is the block size. Several computations are conducted recursively during the 

whole process. Every round of computation includes: 1) compute the Householder V; 2) compute 
row panel R11 and R12 for the current block column; 3) update the un-factorized part of original 
matrix which is on the right side of the current block column by formula (6).  

1, 2...i nb= nb

 
Fig 2. The procedure of QR [Choi et al. 1994] 
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Q is computed by applying a series of Householder transformations to  1A
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The design of GPU-LU and GPU-QR for the implementation in this paper is obtained from 

[Volvok and Demmel, 2008]. It’s extended from the LAPAPCK LU and QR routine, but with 
some new features which make it outperform its counterparts. 

• Use GPU to compute matrix-matrix multiplies only 
The main time for factorization is consumed by updating the whole/part of the matrix once a 
panel factorization of a block column is done. The updating is achieved by some matrix-
matrix multiplication in term of computation. GPU performs much better than CPU in 
matrix-matrix multiplication. This implementation takes advantage of this feature and makes 
all the matrix-matrix implementation happen on GPU while leave the panel computation on 
CPU.  
• Use look-ahead to overlap computations on CPU and GPU 
After panel factorization is done on CPU, the factorized part on the CPU will be transferred 
to GPU on the final output location to overlap the computation on the GPU. However, this 



requires a lot of memory transfer between CPU and GPU, which consumes some time of the 
whole factorization. Fortunately the transfer time is relatively small compared with the time 
used in matrix-matrix multiplication. 
• Use right-looking algorithm to have more threads in SGEMM 
Right-looking algorithm enables more parallelism in calling matrix-matrix multiplication for 
updating the whole matrix after panel factorization is done.  
• Use row-major layout on GPU in LU factorization 
Row-major layout is used on GPU in order to avoid penalized strided memory access in LU 
pivoting on GPU.  
 
Fig 3 summaries the whole process of GPU-LU and GPU-QR, in which panel factorization is 

nothing but the LAPACK routines which are done on CPU. Step 3~ step 6 are recursively 
scheduled until the whole matrix is factorized.  

 
Fig 3. Procedure of GPU version for LU and QR 

 
 
RNG 
 
In the implementation, it loads the random state from device memory into local registers, then 
generates random numbers according to the state, and finally store the state back to device 
memory. Random state is stored in registers and updated with device call. In this version, we 
generate pseudo random numbers whose size is a multiply of 6*1024[Nvidia Forum].  
 
How to add customer functionality 
 
Flagon is an open source library for using GPU from Fortran 90/95, without knowing too much C 
or CUDA. It implements Fortran modules which utilizes device variables on the GPU. Some 
supporting functions such as general functions, memory functions are provided for data transfer, 
memory allocation and manipulating device variables.  

The current FLAGON package contains three folders: CUDPP library containing CUDPP 
source code, devObjCpp containing all c/c++ and cu files, and devObjFortran containing all 
Fortran files.  

Flagon provides some build-in functions. The build-in function includes: runtime functions 
(initialization functions to open and close devObject, memory functions to allocate/deallocate 
memory for device variable, transfer memory between CPU and GPU, copy memory between 
device and device), CUDPP function, CUBLAS functions, and CUFFT functions.   

Developers can also add customer functionalities in FLAGON. Before introducing how to 
add functionality, we first describe three methods to connect C/CU with Fortran in Flagon.  



1. In devObjFortran folder, the subroutines/functions called by Fortran module are defined 
directly in cu file which resides in devObjCPP. The CUDPP fortran module uses this 
method. 

2. In devObjFortran folder, the subroutines/functions are called by Fortran module are 
defined in fortran.c in devObjCPP. CUBLAS fortran module uses this method. 

3. In devObjFortran folder, some subroutines/functions are defined as interfaces which are 
associated with c functions in devObjCPP. CUFFT uses this method.  

Developers can use either way to adopt customer functionality. Here in our project, we use 
method 3 which is to define c functions to associate with fortran subroutines and functions.  

We use the following example to show how to add customer functionality by using method 3. 
We have customer cu file example.cu, cpp file c_devExample.cpp, fortran module file 
devObjectExample.f90, and fortran test file testDevExample.f90 which is used to test the defined 
Fortran module. 

 
Example.cu: define GPU kernels, and functions which call these kernels. 

 
 

C_devExample.cpp: call functions in cu file, provide implementation of functions which are 
associated with Fortran interfaces. 

 
 

devObjectExample.f90: declare Fortran interface, setup the association with C files, provide 
implementation for functions/subroutines for the module.  



Module devObjectExample
Use devObjectHeaders
Use devObjectFunctions

Implicit none

Public: devf_example

Interface

subroutine fc_example(A, a, b)
!DEC$ ATTRIBUTES C,DECORATE,ALIAS:'cf_example' :: fc_example

  integer(4) A
  integer a, b
end subroutine fc_example

end interface

contains

subroutine devf_example (dev, a , b)
implicit none

type(devVar) dev
integer a, b

call fc_example (dev%dPtr, a, b)
end subroutine devf_example

End module

 
 
testDevExaple.f90: setup parameters, call subroutines/functions in the module.  

 
 

From the above files, we can draw the following map to show the relationship among these 
files. This picture contains all information you need when you add customer functionalities in 
Flagon.  

 



With this picture in mind, it’s easy to add new customer functionality in Flagon without 
changing the existing Flagon structure.   
 
Performance Analysis  
 
We run GPU-LU and GPU-QR which we call gpu_sgetrf (LU) and gpu_sgeqrf (QR) on NVIDIA 
GT200, and then compare the performance with CPU version-LAPACK routines sgetrf (for LU) 
and sgeqrf (for QR) which are run on Intel Core 2CPU. We examine the time each routine uses 
and analyze the speedup the GPU version gains over the CPU version while changing the size of 
matrix. The matrix in the GPU-based implementation is constrained to be square matrix.  We 
change the number of rows from 1000 to 11000. We also examine the computation error for 
GPU-LU and GPU-QR.   

We run RNG on Nvidia GPU and output the generated random numbers into a text file on 
CPU. Then, we examine the randomness of the generated number in Matlab.  
 
Configuration 
 
The GPU we use is NVIDIA GT200 with 1080MHz clock and 1024MB memory.  
We use Intel Core 2CPU 6600 with 2.4GHz and 2.00G RAM.  
 
Result 
 
The following table shows the GPU-LU, CPU-LU, LU-Speedup, GPU-QR, CPU-QR and QR-
Speedup as the size of matrix varies.  
 

Table 1: CPU/GPU time and Speedup for LU and QR 
Size of 
matrix (row) 

GPU-LU 
(ms) 

CPU-LU 
(ms) 

LU-
Speedup 

GPU-QR 
(ms) 

CPU-QR 
(ms) 

QR-
Speedup 

1000      36.796 44.366 1.2057 53.101 89.467 1.6848 
2000       67.603 264.064 3.9061 117.604 497.087 4.2268 
3000 159.79 862.464 5.3975 273.574 1563.278 5.7143 
4000 319.663 2053.041 6.4225 555.21 3527.239 6.3530 
5000 566.291 3758.774 6.6375 989.159 6689.207 6.7625 
6000 904.234 6338.352 7.0096 1593.38 11341.754 7.1180 
7000     1372.453 9496.77 6.9196 2448.1 17814.553 7.2769 
8000 1958.913 14114.3 7.2052 3520.655 26597.563 7.5547 
9000 2723.311 19854.508 7.2906 4911.676 37297.179 7.5936 
10000 3655.148 26868.673 7.3509 6639.588 50778.505 7.6478 
11000 4754.4783 36242.581 7.6228 8667.438 67192.317 7.7523 

 
We draw the following two pictures using the number of the table to show the result more 

straightforward.  
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Fig 4.  LU, QR GPU vs CPU 
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Fig 5. LU, QR speedup 

 
Fig 4 shows the GPU and CPU time for LU and QR as the size of matrix varies. The size is 

represented as the number of rows in the matrix. In this figure, both CPU and GPU time increases 
along with the size of matrix. This is obvious as the larger the matrix, the more computations the 
matrix needs and more time it consumes. From this figure, we can also see that QR consumes 
more time than LU for both GPU and CPU version. This can be explained when we look at the 
procedure of LU and QR. There are more matrix-matrix multiplications involved in QR than LU 
when updating the matrix after panel factorization is done. Therefore, more time is needed for QR. 

Fig 5 shows the speedup for LU and QR. The speedup is derived from cpu time over gpu time. 
From fig 5 and table 1 we see that we gain about 2~8x speedup. From the design of GPU-LU and 
GPU-QR, we can see the speedup is obtained from a fast matrix-matrix multiply algorithm. The 
larger proportion of the time matrix-matrix multiplication consumes in the whole time, the more 
advantage the fast matrix-matrix algorithm has. Compared with LU, QR has more matrix-matrix 



multiplications in the procedure which take a larger proportion in the whole time, therefore, QR 
gets more speedup. With the same reason, we can explain that the speedup for both LU and QR 
increases along with the size of matrix.  

We use the same way with [Volvok and Demmel, 2008] to test the correctness of GPU-LU 
and GPU-QR. The matrix A is generated with random entries uniformly distributed in [-1, 1]. We 
multiply the output factors and find its max-norm of its difference with the input matrix. So the 
error can be expressed as:  residual_norm/matrix_norm/eps where residual_norm is obtained from 
the max-norm of the difference between input matrix and the output factors product and eps is a 
machine epsilon in IEEE single precision with value 232ε −= . The purpose of this test is to 
measure the backward error in the factorization. The result is shown in fig 6.  
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Fig 6. LU QR error 

 
Randomness check 
 
We use Matlab function “runstest” to check the randomness of the random numbers generated by 
RNG. Runstest is a test of the null hypothesis that the values in a vector come in random order, 
against the alternative that they do not. We examine the randomness of numbers with different 
size (1*6*1024~10000*6*1024) and found that all of them come in random number.  
 
Application 
 
In this section, we answer the question: what can we do after we factorize the matrix A in form of 
LU and QR? It’s well known that LU and QR are two classic factorization algorithms in dense 
algebra system. LU provides a way to solve linear equation in the form of AX B= without 
inversing A by using back and forward substitution. QR is widely used in solving linear least 
squares problems.  

Because of the space limit of the paper, we just focus on introducing the application of the 
GPU-LU algorithm. GPU-LU is extended from the LAPACK LU routine, so it also keeps the 
decomposition in the form of , where L and U are stored back in the input matrix A. In 
order to solve the linear equation problem, the first task is to compose the lower triangular matrix 
L and upper triangular matrix U out of matrix A. U can be directly retrieved by setting the lower 
triangular part of matrix A at 0 and keeping the upper part as it is in A. However we can’t do the 

A LU=



same thing to retrieve L as the lower part is not only L but also involves permutation during the 
decomposition. The pivoting vector IPIV which is another output from LU decomposition can be 
used to permute the lower part of A to generate L. Since we assume that we are dealing with very 
large matrix, the composition of L and U can also be done on GPU. The second task is to do back 
and forward substitution to generate vector X.  

In summary, the linear equation problem can be solved in the following steps: 

 
Fig 7. Solve linear equation problem by LU decomposition 

 
Conclusion 
 
We have demonstrated fast GPU-based implementations of LU and QR which are extended from 
LAPACK routines for LU and QR. We introduce in detail their design philosophy and analyze 
their key features which produce the high performance. Based on the experiment we conducte, we 
analyze the performance in terms of time, speedup and error. An obvious conclusion is drawn 
from the result, which is that the fast matrix-matrix multiplication algorithm generates fast 
factorization algorithm. The more matrix-matrix multiplication involved in factorization, the 
more advantage the implementation can obtain. In the end, we describe the application of LU and 
focus on analyzing steps after LU factorization is completed to solve the linear equation problem. 

A random generator on GPU is also introduced. It generates some pseudo random number. 
We use Matlab functions to check their randomness while changing the size of the numbers.    

It’s the first time as we know that we provide detailed information for guiding developers on 
how to add customer functionality into Flagon.  
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