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Implementing aQuantum Program Verifier (Technical
Report)

MINGWEI ZHU

1 INTRODUCTION
Formal verification techniques of quantum programs have been long studied and implemented [5].
For example, CoqQ [8] is built uponQuantum Hoare Logic framework in Coq theorem prover to
verify quantum programs against specifications for density matrix semantics. Using path sums
and SMT solvers, QBricks [1] verifies quantum programs by reasoning about circuit equivalence
with a good degree of automation. Previouslyl we proposed a lightweight automated verification
framework Qafny for quantum programs [6]. Qafny uses an entanglement type system to track
how qubits are grouped together through the program and is built with support for local reasoning.
By targeting Dafny, we may reuse existing theorem and lemmas to solve domain-specific proof
obligations. Continuing this existing work, we present the formalized implementation of Qafny as
a type-directed translation relation in this paper.

2 OVERVIEW
Qafny specializes quantum states into four categories normal, Hadamard, entangled, and Qft
quantum states. Each quantum state has different representation in emitted Dafny program to
reduce the verification overhead of irreelevant terms.

2.1 Quantum States
A single-qubit state can be generally written as |k 〉 = U |0〉 + V |1〉 using Dirac notations [3].
Similarly, a two-qubit state can be expressed as |i〉 = ∑

8∈[0,3] U8 |8〉, alternatively U0 |00〉 + U1 |01〉 +
U2 |10〉 + U3 |11〉, where the probability of measuring 8 is |U8 |2. In general, an =-qubit quantum state
can be expressed as a linear combination of computational basis states, {|8〉 | 8 ∈ [0, 2= − 1]}. For
conciseness, we will sometimes omit the coefficients if there exists a trivial normalizing factor.
Two quantum states can be composed by taking tensor product; however, not all multi-qubit states
can be decomposed into two separate states. For example, |00〉 + |10〉 can be decomposed into
( |0〉 + |1〉) ⊗ |0〉, while |00〉 + |11〉 is not separable and therefore entangled.
Quantum gates are used to evolve a state into another. As an example, a Hadamard operator can

transform |0〉 into |0〉 + |1〉. Further, entanglements can be created by applying a controlled gate over
multiple qubits. A controlled-NOT (CNOT) gate takes two qubits, a control qubit and a target qubit,
that essentially acts on the tensor product of both states and for each basis state, flips the basis in
the target qubit if the basis in the control qubit is 1. Applying CNOT operator to 1/√2( |0〉 + |1〉) ⊗ |0〉
(equivalently, |00〉 + |10〉) joins both states into one entangled entity, 1/√2 |00〉 + 1/√2 |11〉.

2.2 ManipulatingQubits in Qafny
It is a folklore [2, 7] to treat an ensemble of qubits (a quantum register) as an array of qubits. We may
declare a variable q as a quantum register of 10 as a binding q : qreg[10]. and take a slice of the
register with q[2..4] to obtain a reference to two qubits. We refer a slice or a range (meta-variable
A ) to a slice of quantum register interchangeably.

Ranges are weakly related to each other that one cannot tell if two ranges are entangled or
not easily. We need a notion that groups slices together because quantum operations such as the

Author’s address: Mingwei Zhu.
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2 Mingwei Zhu

controlled-NOT gate could create entanglements between disjoint slices. In Qafny, we use the
term locus for a set of slices (possibly) in entanglement, denoted by {A, . . .}1 Quantum operators
such as CNOT may induce entanglement between two qubits which effectively merges two loci,
say q[0..1] and p[0..1], and into one locus { q[0..1], p[0..1] }

2.3 Quantum State Representation
In general, a pure quantum state can be written as

|k 〉 =
∑
8

√
U8q8 |18〉

where U8 , q8 , and 18 refers to its probability, phase shift, and basis-ket for each state respectively. In
our implementation, quantum states are grouped by loci and categorized into the following four
entanglement types: norm (nor), Hadamard (had), entangled (en), and quantum Fourier transformed
(qft) states. Each entanglement type corresponds to different kind of state representations in Dafny.

Example 2.1 (Quantum states representation).

Locus State Type Dafny Repr.
q[0..2] |0〉 ⊗ |1〉 nor [0, 1]

|2〉 en ([1], [2], _)
p[0..2] ( |0〉 + |1〉) ⊗ (|0〉 − |1〉) had ([0, 1], 2)

[1/4, 1/4, 1/4, 1/4]

|0〉 − |1〉 + |2〉 − |3〉 en [0, 1, 2, 3]

([0, 1, 0, 1], 2)

Example 2.1 gives two instances of 2-qubit system. The nor type models quantum states without
superposition or entanglement which are tensor products of basis kets from {|0〉 , |1〉}, i.e.,

⊗
8 i8

where i8 ∈ {|0〉 , |1〉}. Since there’s only one eigenstate possible, its amplitude and phase are trivial,
therefore such a state is translated into a sequence of 0’s and 1’s. A had state is a tensor product of
(multiple) single-qubit quantum states in superposition, i.e.,

⊗
8 i8 where i8 ∈ {|0〉 + q8 |1〉}. Since

every ket in such a state shares equivalent possibility and may only differ in the phase shift, each
had quantum state is translated into a sequence of phase coefficients associated to each |1〉. For
conciseness, each nor- and had-typed locus may contain only one range: since no entanglement is
possible between ranges in such a locus, a locus using more than one range may be refactored into
only one range. Consequently, range and locus will be used interchangeably for single-range loci
when there’s no ambiguity. en represents a state in entanglement which is formed by entangling
existing loci and would form a loci containing multiple ranges. Its representation consists of a
seq〈real〉 for probability, a phase representation as well as a number of seq〈nat〉 of the same length
for each basis-ket. Zipping those basis-ket sequences forms a sequence representing the superposi-
tion of the tensor product of basis-kets from each slice in entanglement. For example, q[0..1] and
p[0..1] in Example 2.2 forms a en locus referring to quantum state 1/√2 |0〉 |0〉 + 1/√2 |1〉 |1〉. This is
translated into a seq〈real〉, [1/2, 1/2] for amplitude and two nat sequences q_ket:=[0, 1] and
p_ket := [0,1] respectively so that the zipped sequence [(0,0), (1,1)] corresponds to |0〉 |0〉 and
|1〉 |1〉. Phases are omitted in this case as they are trivially one. Formally, given an =-qubit en locus
consisting of two ranges, {q[0..m], q[m..n]}, its corresponding state is∑

8

U8q8
��k8,q[0..m]

〉 ��k8,q[m..n]
〉

1We may omit the curly brackets when possible for conciseness.
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wherek8,A refers to the 8th index in the translated basis-ket sequence for A . Since two ranges are
now in entanglement and cannot be separated, we maintain the index correspondence between
two ranges throughout the translation.

Example 2.2 (en-loci of multiple ranges).

Locus State Basis-Kets Probabilities
p[0..1], q[0..1] (1/√2 |0〉 |0〉 + 1/√2 |1〉 |1〉) {[0, 1], [0, 1]} {[1⁄2, 1⁄2]}

p[0..1], q[0..2] (1/2 |0〉 |2〉 + 1/2 |1〉 |3〉) {[0, 1], [2, 3]} {[1⁄2, 1⁄2]}

It is worth noticing that both ranges/loci have can have two ways to translate based on its type in
the context. This suggests a subtyping relation among nor, had and en which will be discussed later
in section 3.2. qft is a generalization of en that is introduced by quantum Fourier transformation
operator which will be introduced in section 4.7.

Representing Phases. Phase is a normalized complex coefficient associated to each basis in super-
position. Both had and en states require a phase representation. In Qafny, phases are specified in
three form of Root of Unities (RoU). An # th root of unity is in form l# = exp (c8/# ), therefore a
phase coefficient can be described using two natural numbers for its power and order. For example,
l0
= = 1, l1

2 = −1, l1
4 = 8 , and l3

4 = −8 .
In our system, the phase coefficients of each quantum state can be one of three different trans-

lations decided its phase degree. The semantics (J·Kp) of phase type is defined as a function from
phase degree to the type of its representation in Dafny. A zeroth-degree phase refers to the trivial
case where all phase coefficients are the same. A first-degree phase is translated into a nat for order
of RoU and a seq〈nat〉 standing for the power of the phase coefficient for each ket in superposition.
A second-degree one is similar but used in the case where the coefficient is a sum of root of unities
and is carried by seq〈nat〉.

J0Kp = unit

J1Kp = seq〈nat〉 × nat

J2Kp = seq〈seq〈nat〉〉 × nat

JnorK = seq〈nat〉 JhadK = J1Kp
Jen=,?K = seq〈nat〉 × J?Kp × seq〈nat〉=

Jqft=,?K = seq〈seq〈nat〉〉 × seq〈nat〉 × J? + 1Kp × seq〈seq〈nat〉〉=

Fig. 1. Semantics of entanglement types

Semantics of Entanglement Types. Figure 1 presents the formal semantics of both locus entangle-
ment type (J·K) and phase types w.r.t its degree. In particular, en is tagged by a phase degree ? and
the number of slices in the locus =. We will omit the number of slices and the phase degree when
there is no ambiguity or when those two parameters are irrelevant.

2.4 Quantum Operations
Here, we give an overview on constructs we use to operate over quantum states.

Application Statements and Operators. An application statement l *= e applies to a (sub-)locus
an oracle function or a built-in operator such as H (Hadamard operator) and qft (Quantum Fourier
Transform). When an oracle function (` (x ⇒ e)) is applied to a list of ranges A , it binds every basis
state in each range A on the LHS to G and execute the corresponding 4 .

Example 2.3 (Flip Oracle). With q[0..1], p[0..1] = |00〉 + |10〉, the statement
p[0..1] *= ` (x ⇒ (x + 1))2

2(x + 1) is implicitly translated into (x + 1) % 2 since there’s only one qubit in the slice.
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Statements
B ::= var G:= 4

| ; *= 4

| if 4 { B }

| for4 G ∈ int with 4 { s }

| B;B

Locus
; ::= A

A ::= G[4..4]

int ::= [e..e]

Expressions
4 ::= G | E

| 4 bop 4

| ∀G :: 4
| measure r

| ` (e ⇒ e) | qft | H

| 4phase | 4amp | 4pred
4phase ::= 1 | l (4, 4) | Ω G ∈ [4..4] . l (4, 4)
4amp ::= isqrt(4, 4) | sin(4) | cos(4)
E ::= = ∈ N

Fig. 2. Syntax of Qafny

4pred ::= {l: g ↦→ _ } (wildcard)
| {l: nor ↦→ ⊗i. e01} e01 := 0 | 1
| {l: had ↦→ ⊗i. ephase}
| {l: en ↦→ Σ i∈[e;..eA]. eamp, ephase, (eket)} eket ∈ N

Fig. 3. State predicates

effectively flips the ket in the slice q[0..1] so that the state ends up with
{q[0..1], p[0..1]} = |01〉 + |11〉.

In example 2.3, the corresponding two Dafny sequences [0, 1], [0, 0] will be transformed into
[0, 1], [1, 1] because only the range p[0..1] is flipped.

Oracle functions can also define transformations over phases (` (l(x, n) ⇒ e)).

Generalize Controlled Operations. Controlled operators are generalized to if and for statements
to create entanglement. An if statement consists of a guard expression referring to the range used
as the control qubits and a body statement that specifies the computation over target qubits.

Example 2.4 (CNOT as an if Statement). Using the same initial state in example 2.3, the following
program:

if q[0..1] { p[0..1] *= `(x⇒(x+1)); }

execute to a program state
{q[0..1], p[0..1]} = |00〉 + |11〉 .

In Example 2.4, the oracle operator is only applied to the initial state conditionally: |10〉 evolves
into |11〉, while |00〉 stays the same because the basis state of the controlled qubit here is 0 in this
case.

State Predicates. Qafny aims to verify if a program behaves w.r.t. the specifications of quantum
states. Our program state is a mapping from loci to its quantum state. A predicate over such a
program state consists of a locus, its entanglement type, and its quantum state representation in
Dafny, denoted by {l: g ↦→ e}. We impose a syntactic restriction to state specification allowed
by each type: (1) nor loci can only be specified by 0-1 basis; (2) had specification only concerns
the phase part of the state; (3) en specification describes its state per basis states. An amplitude
specification is either an inverse square root (isqrt(41, 42)) standing for 41/

√
42 or a trigonometric

function, sin or cos. The quantum states from the previous example paragraph can be written as
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Γ′; ∅ `intro 4req : freq Γ′; ∅ `intro 4ens : fens

Γ′ = Γ [G : ^] Γ′;freq ` B : ffwd ffwd ≤ fens
[T-MethodDef]

Γ;f ` method <(G : ^) 4req 4ens { s } : fens

� = dom(f� ) f |� [G :=41 ] = f� [8 := 41]
Γ; ∅ `intro 4� : f� Γ;f� ` ( : f� [8 := 8 + 1] f ′ = (f \ � [G := 41]) ∪ f� [8 := 42] [T-For]

Γ;f ` for4� 8 ∈[41..42] with 1 { B } : f ′

f (;) = nor
[T-AppHad]

Γ;f ` ; *= H : f [; ↦→ had]
; ⊆ ; ′ f (; ′) = en

[T-AppOrcale]
Γ;f ` ; *= ` (G ⇒ 4) : f

f < f ′ Γ;f ′ ` B : f ′′
[T-Sub]

Γ;f ` B : f ′′

f (;2) = g ∈ {nor, had} ;2 − ;1 = (;3, ;4)
f ′ = (f \ {;2}) [;3 ↦→ g, ;3 ↦→ g] Γ;f ′ ` B : f ′′

[T-Split]
Γ;f ` B : f ′′ 3

Γ [G ↦→ qreg[=]];f [G ↦→ nor] ` B : f ′
[T-NewNor]

Γ;f ` (var G:= nor(=, 8 ⇒ 4); B) : f ′

Fig. 4. Typing rules of Qafny

{q[0..1], p[0..1]: en ↦→ Σ i∈ [0..2]. isqrt(1, 2), 1, (i, i+1)}.
To avoid complicating our system with logical types, state predicates may only be as one standalone
assertion.

2.5 Syntax
Qafny is an imperative verification-aware quantum programming DSL which, besides application
and if statement we have introduces before and standard ones such as declaration and sequencing,
features a for statement to apply an controlled-unitary operator iteratively over loci. A for statement
takes in an index variable over a bound interval, a set of invariants, a conditional expression
describing the behavior of the control qubits, and loop body statements. The loop body forms a
new frame that only variables and loci specified in the invariant may be accessed and modified.
Among the quantum state passed in the frame, only basis-states in which control qubit condition
are satisfied are modified by the body statements. Qafny generates the “boundary conditions”
automatically and verifies against the invariant specified. This allows one to reason properties of a
local partial program states.

3 TYPE RESOLUTION
Entanglement types bundled with each locus is used extensively in the translation process. Our
typing relation defined in Figure 4 is a quadruple of a kind environment Γ mapping from program
variables to kinds such as nat kind or quantum register kinds qreg, an entanglement type state f
for locus-type correspondence, the statement B , and a resolved typing state as output.

Γ;f ` B : f ′

Type information is collected from preconditions and further evolves with the structure of the
program to signal when an operation is applicable and whether a type cast (Section 3.2) would be
necessary.
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3.1 Entanglement Types from Specifications
Since entanglement types are annotated in state predicates, our type resolution gather types from
specifications. Type checking and resolution are performed per method following [T-MethodDef].
At the beginning of the method, the resolver initializes the typing state with the locus and types
collected from requires clauses [T-SpecIntro], in which well-formedness checks are performed to
ensure whether loci introduced are indeed pairwise disjoint with each other. Types from assertional
constructs such as assert statements or ensures clauses are checked against typing state as in
[T-SpecAssert]. Similar to methods in Dafny, each Qafny method acts as a separate frame that may
only modify qubits passed through the binding list.

; ∈ dom(f) ∨ f (;) = g

∀G[4;..4A] ∈ ; .Γ(G) = qreg[4<] ∧ 4A ≤ 4< [Wf-Locus]
Γ;f `wf ; : g

Γ;f `wf ; : g [T-SpecIntro]
Γ;f `intro {;: g ↦→ 4} : f [; ↦→ g]

f (;) = g
[T-SpecAssert]

Γ;f `assert {;: g ↦→ 4} : f

4 ≠ {_: _ ↦→ _} Γ ` 4 : bool
[T-TrivialSpec]

Γ;f `∗ 4 : f
Γ;f `∗ 41 : f ′ Γ;f ′ `∗ 4 : f ′′

[T*-MapM]
Γ;f `∗ 41, 4 : f ′′

Fig. 5. Typing rules for specifications

3.2 Split and Cast
Oracle operators are defined to bind en ranges that belongs to one en locus. As shown in example 2.1,
a nor quantum state can be an instance of en state because it is semantically the same as to a singleton
en basis. However, applying a flip oracle to a nor state is ill-typed w.r.t. the typing rule [T-AppOracle]
because it requires the range to be an en one. We therefore introduces the rules of subtyping ([T-Sub])
for casts in entanglement types with the following subsumption relation.

nor < en had < en

So far, there remains one case that we have not taken care of yet: when creating a new quantum
register, the entire register forms a new locus ([T-NewNor]); and, we occasionally need to apply an
operation to only a slice of the register and promote its type.

Example 3.1 (Split from nor). The following program introduces 10 qubits and apply Hadamard
operation to the first qubit identified by q[0..1].

var q:= nor(10, _⇒0); q[0..1] *= H;

The second statement that is supposed to promote the range q[0..1] from nor to had cannot
be typed because under the current typing state, only q[0..10] is of type nor instead of had. We
therefore enrich the type analysis ([T-Split]) to infer the splits from constraints. Now, the prior
example first produces two singleton loci, q[0..1] and q[1..10], and then applies the Hadamard
operator to the first range.

3.3 Invariant Typing
In order to be consistent with the program logics of a loop construct, type resolution must observe
the invariant in entanglement types as well. We resolve the entanglement type [T-For] by collecting
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the entanglement type information from the invariants 4� into f� and calculating recursively the
resulting state f ′ from the body B using the invariant typing state. We still need to validate the
for loop is well-typed on entry. It suffices to check that the restriction of the input typing state
f to all loci � in the invariant typing state f� is consistent with f� with the index variable set to
the interval lower bound. In company with subtyping rule in Section 3.2, a state that may be cast
into the initial invariant state can be subsumed. Once checked, the resulting state is constructed by
combining the initial state without framed loci with the final frame state from the invariant loop
state immediately after the loop terminates.

3.4 Solving Splits in Ranges
The primary efforts in implementing the type resolution with the subtyping relation is to decide if
two ranges overlaps. If so, we need to split a slice from an existing range; otherwise, the programmay
be of wrong type. We currently implement a solver that partially evaluates the difference between
two arithmetic expressions w.r.t. the constraints collected from the specification expressions. Our
solver can only solve linear integer arithmetic, which turns out to be sufficient in our use case. We
prefer this approach because it gives a predicative result and detailed error message on resolution
failure. What’s more, the partial engine helps later in the translation pass to normalize locus when
engineering the translator and reduce trivial expressions that slow down verification when there
are too many proof obligations. An alternative is to invoke an SMT solver to decide those interval
problems, which we would leave it as a future work.

4 TYPE-DIRECTED TRANSLATION
Type resolution provides entanglement type assignments for all statements on locus basis. Qafny
translates program using those type assignments into Dafny statements. Besides those resolved
typing state, our translation relation is extended with a state for emitted variables d that maps locus
in the source language to the emitted variables for quantum state representations in the target
language, Dafny:

Γ, f, d ` B { B′ : f ′ | d ′

For presentation purpose, we mark in orange target constructs, asterisk emitted variables (asterisked
letters should be treated as variables in the target language), and treat all emitted variables not
mentioned explicitly to be fresh. Each translation relation is associated to a typing relation, and
translation is fused with typing resolution. To avoid repetition, each translation rule has a implicit
typing judgement Γ, f ` B : f ′ in its premise to ensure that the translation is well-typed.

4.1 Translate Locus and State Predicates
An emitted variable state d provides query the phase, amplitude/probability, and basis-kets rep-
resentation of a locus ; in the emitted program through dphase (;), damp (;), and dA (;) respectively
where A is the range whose variable of kets we are interested in.

An =-qubit register @ can be introduced as a nor quantum state with its element constructed by
the initializer as specified in [C-NewNor]; the specification over kets in tensor product is translated
into a sequence constructor in Dafny. Dually, when translating a predicate, we query the emitted
variable for the range ket of interest and transform the binder as a universal quantifier following
[C-SpecNor]. Predicates for en locus follows the similar fashion but translate every range in the
locus as well as amplitudes and phases based on the phase degree associated to the entanglement
type as shown in [C-SpecEN].

Phase Predicates. Phase predicates and amplitude predicates are generated separately. Translation
of phase predicates depends on phase degree. Zeroth-degree phase doesn’t require any verification
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4 = 4 [8∗/8] B1 = (var G∗:= seq〈int〉(=, 8∗ ⇒ 4))
Γ [G ↦→ qreg[=]];f [G ↦→ nor]; d [G ↦→ G∗] ` B2 { B2 : f

′ | d ′
[C-NewNor]

Γ;f ` var G:= nor(=, 8 ⇒ 4);B2 { B1; B2 : f
′ | d ′

Γ(A ) = qreg[n] A ∗ = dA (A )
4′ = (∀8∗ : nat | 8∗ < = · A∗[8∗] == 4[8∗/8])

[C-SpecNor]
Γ;f ; d ` {A: nor ↦→ ⊗8. 4} { 4′ : f | d

4card = 42 − 41 d `amp (A, 4amp) { 4′amp d `phase (A, ?, [41..42], 4phase) { 4′phase

A ∗ = dA (A ) 4′A = (
��A∗�� == 4card) ∧ (∀8∗ : nat | 8∗ < 4card · A∗[8∗ − 4card] == 4A[8

∗/8])
[C-SpecEN]

Γ;f ; d ` {A : en? ↦→ Σ8 ∈[41..42]. 4amp,4phase,(4A) } { 4′amp ∧ 4′phase ∧ 4′A : f | d

A ⊆ ; ′ A ∗ = dket(A ) B = (A∗ := Map(A∗, G ⇒ 4 % Pow2(|A |)))
[C-AppOracle]

Γ;f ; d ` A *= ` (G ⇒ 4) { B : f | d

A ∈ ; ;B ⊆ ; f (;) = en ; ′ = ; \ {A } A ∗ = dket(A )
Bassert = assert ∀G∗:nat | G∗ < 48 · A∗[G∗] == 0; assert ∀G∗ | 48 ≤ G∗ <

��A∗�� · A∗[G∗] == 1

Bsplit
∗ = (Att

∗ := A∗[48..]; Aff
∗ := A∗[..48]) (Bmerge, d ′) = merge(dtt, dff)

Γ;f ; d [A ∗ := Att
∗] ` B { Btt

∗ : f ′ | dtt Γ;f ; d [A ∗ := Aff
∗] `noop B { Bff

∗ : f ′ | dff [C-IfEn]
Γ;f ; d ` if A splitAt 48 { B } { Bassert; Bsplit; Btt; Bff; Bmerge : f

′ | d ′

f (A ) = had d (A ) = A ∗

Bdup = Adup
∗ := A∗ Γ;f ; d [A := Adup

∗] ` B { Btt | dtt
(Bmerge

∗, d ′) = merge(d, dtt)

BA = Adup
∗ := seq〈nat〉(=, 0) + seq〈nat〉(=, 1)

[C-IfHad]
Γ;f ; d ` if A { B } { Bdup; Btt; BA ; Bmerge : f

′ | d ′

Fig. 6. Translation relation from Qafny to Dafny

by Dafny and translates directly to a tautology ([C-Phase0]). First-degree phase is similar to the
predicate over a ket representation, but it also inserts a check to verify the equality of root ([C-
Phase1]). The phase translation extends naturally to higher-degree cases by qualifying over the
extra index parameter in the phase specification. Higher phase degree implies heavier verification
overhead and hinders automated reasoning, and we find in practice second degree phase ([C-
Phase2]) is expressive enough: it is only produced by quantum Fourier transformation which are
likely to be followed by a measurement construct to reason about the measurement outcomes.

4.2 Translate Operations
We require that all operations applied to a locus to be unitary operations4 so that it is valid to
specific qubits (e.g. a range) in a group of qubits (e.g. a locus) in entanglement. We permit locus
where an oracle is applying to a sub-locus formed by ranges from the exact locus stored in the

4Validating unitary operation is beyond the scope of this paper and left as a future language extension.
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[C-Phase0]
d `phase (;, 0, int,1) { true

4card = 42 − 41 (Gpow∗, Groot
∗) = dphase (;) Groot

∗ == 4root

4′phase == (
��Gphase∗�� == 4card) ∧ (∀8∗ : nat | 8∗ < 4card · Gphase∗[8∗ − 4card] == 4pow[8

∗/8])
[C-Phase1]

d `phase (;, 1, [41..42], l (4pow, 4root)) { 4′phase

4card = 42 − 41 4′card = 4A − 4; (Gpow∗, Groot
∗) = dphase (;) Groot

∗ == 4root

4′wf == (
��Gphase∗�� == 4card) ∧ (∀8∗ : nat | 8∗ < 4card ·

��Gphase∗[8∗ − 4card]
�� == 4′card)

4′phase == (∀8∗ : nat | ∀G∗ : nat | 8∗ < 4card · Gphase∗[8∗ − 4card][G
∗ − 4′

card
] == 4pow[8

∗/8][G∗/G])
[C-Phase2]

d `phase (;, 2, [41..42],Ω G ∈ [4;..4A].l (4pow, 4root)) { 4′wf ∧ 4′phase

Fig. 7. Translation relation of phase specifications

typing state. After having corresponding sequences resolved in the state of emitted variables, we
apply a Map function with the oracle function provided over those sequences. When translating the
oracle definition, its body is implicitly bounded to the size of the matched range to avoid integer
overflow.

The number of ranges involved should be consistent with the number of parameters in the oracle
function. Entanglement is permitted in the oracle function so that the user may encode a controlled
unitary operation rather than using if statement to simplify verification in some cases.

Example 4.1 (Translate Flip Oracle). Continuing Example 2.3, let the emitted variable for p[0..1]
be p_0_1_en∗. The oracle application is translated into

p_0_1_en∗ := Map(x ⇒ (x + 1) % 2, p_0_1_en∗);

4.3 Translate Splits and Casts
Splits come frequently with casts. When the type analysis requires both of them, splits are translated
before casts because splits can only be performed over nor and had states while the cast only
“promotes” types and invalidates potential split opportunities. [C-SplitNor] presents a translation
of split over nor-typed locus. Informally, splitting a range A2 to obtain a subrange A1 may create
two complement sub-ranges A3 and A4. The translation process takes slices of the target sequence,
emits new variables for matched sub-range, and generate statements to assign sliced sequences to
new variables. Splitting a had typed state is similar to nor with the exception that the variable for
phase roots also need to be duplicated.

Example 4.2 (Split and cast). The following method splits the register q[10] into two loci, casts
the first locus to en and applies the oracle to it.
method SplitCast(q : qreg[10])

requires { q[0..10] : nor ↦→ ⊗ i . 0 }

ensures { q[0..5] : en ↦→ ∑
i ∈ [0..1] . 1 }

{

q[0..5] *= `(x ⇒ x+1);

}

This is translated into
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method SplitCast(q_0_10_in∗:seq<bv1>) returns (p_0_5_out∗:seq<nat>);
requires 10 == |q_0_10_in∗|
requires (∀i :nat | 0≤i<10· q_0_10_in∗[i] == 0)

ensures 1 == |p_0_5_out∗|
ensures (∀i :nat | 0≤i<1· p_0_5_out∗[i] == 1)

{

var q_0_10∗ :seq<nat> := q_0_10_in∗;
// Declarations ...

q_0_5∗ := q_0_10∗[0..5]; q_5_10∗ := q_0_10∗[5..10];
q_5_10_en∗ := CastNorEn_Ket(q_0_5∗); // Cast

q_5_10_en∗ := Map(x => x + 1, q_5_10_en∗); // Oracle Application

p_0_5_out∗ := q_5_10_en∗;
}

A1 ⊆ A2 f (A2) = g ∈ {nor}
A2 − A1 = (A3, A4) = (G[431..432], G[441..442])

f ′ = (f \ {A2}) [A3 ↦→ g, A3 ↦→ g]
Γ;f ′ ` B : f ′′ Γ;f ′; d ′ ` B { B′ : f ′′ | d ′′

d (A2) = A2
∗ d ′ = d [A3 ↦→ket A1

∗; A3 ↦→ket A3
∗; A4 ↦→ket A4

∗]
4′3 = 432 − 431 4′2 = 441 − 431 4′4 = 442 − 431

Bsplit = (A3
∗ := A2

∗[0..4′3]; A2
∗ := A2

∗[4′3..4
′
2]; A4

∗ := A2
∗[4′2..4

′
4]) [C-SplitNor]

Γ;f ; d ` B { Bsplit;B
′ : f ′′ | d ′′

f (A ) = nor f ′ (A ) = en0 d ′ = d [A ↦→ket A
∗]

Bcast = (A∗ := CastNorEn_Ket(dket (A ))) Γ;f ′; d ′ ` B { B′ : f ′′ | d ′′
[C-CastNorEn]

Γ;f ; d ` B { Bcast;B
′ : f ′′ | d ′′

f (A ) = had f ′ (A ) = en1

d ′ = d [A ↦→ket A
∗; A ↦→phase ?

∗] Γ;f ′; d ′ ` B { B′ : f ′′ | d ′′

Bcast = (A∗ := CastHadEn_Ket(dket (A )); ?∗ := CastHadEn_Phase_1st(dphase (A ))) [C-CastHadEn]
Γ;f ; d ` B { Bcast;B

′ : f ′′ | d ′′

Fig. 8. Translation of Split and Cast

We define two cast translation for nor-en and had-en casts. Since nor doesn’t carry nontrivial
phase information, it is cast into a 0th degree singleton en state by essentially pack the binary
representation into a decimal one. The had case is more involved: for an =-qubit had state, the ket
part in the resulting en state spans the basis {0 . . . Pow2(n) − 1} with an equal probability. The phase
part is tricky because it requires multiplying and distributing phase coefficient across all resulting
2=−1 terms. We keep the balance between automation and expressiveness by delegating those them
to external prelude functions written in Dafny where the phase distribution is defined recursively.
Further, we defined specializations to trivial yet common cases, for example, single-qubit had state
or had state with trivial phase coefficients. The following function is such an example.

function {:opaque} CastNorEn_Ket(q:seq<bv1>) :(c:seq<nat>)
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requires ∀k :nat | k<|q| · q[k] == 0 || q[k] == 1

ensures (∀k :nat | k<|q| · q[k] == 0) ==> c == [0]

ensures c == [LittleEndianNat.ToNatRight(q)]

4.4 Translate if Conditionals
In general, an if statement operates over an en state by “zipping” over all range sequences in
the locus and execute the body over the rest target ranges conditionally w.r.t. the control qubit.
A naive translation is to “filter” over the range sequence that contains control qubit, record the
index, and filter the other range sequences in the locus by the index accordingly. This separates the
target state into halves and it suffices to execute the body to the sub-state of interest only. This
introduces the possibility to reason about a partial state locally. When finishing reasoning about
both parts, we merge those two states into through sequence concatenation. In practice, this is far
from ideal to the SMT solver because of the layers of indirection introduced by filters in Dafny,
and the post-condition is less predictable as the user needs to track the order of elements after
filtering, which requires reasoning about the definitional equivalence of quantum states upon some
permutation of sequences. Manual proof is inevitable then.

To retain a good degree of automation and keep the proof process easy to follow, we put a simple
restriction over the form of the sequences representing the control quantum state: the leading part
of the sequence need to evaluate the conditional to false while the rest part needs to satisfy it.
By introducing an splitAt clause to specify the boundary explicitly, we can delimit the partial
state easily; this corresponds to the translation rule [C-IfEn]. To ensure the correctness of splitAt
annotation, we insert a verification time assertion of this partition fact.

Example 4.3 (Translate if statements over en states). The program
if q[0..1] splitAt 2 { p[0..2] *= `(x⇒(x+1)%4); }

is translated into

p_0_2_en_0∗ := p_0_2_en∗[0..2]; p_0_2_en_1∗ := p_0_2_en∗[2..];
assert ∀i | 0≤i<|p_0_2_en_0∗ | · p_0_2_en_0∗[i] == 0;

assert ∀i | 0≤i<|p_0_2_en_1∗ | · p_0_2_en_1∗[i] == 1;

p_0_2_en_1∗ := Map(x ⇒ (x+1) % 4, p_0_1_en∗); p_0_2_en∗ := p_0_2_en_0∗+p_0_2_en_1∗;

In this example, p_0_2_en_0∗ holds the slice for |0〉, acts like applying noop to it, and is finally
merged with the other slide p_0_2_en_1∗ on which the unitary gate was applied to.
Another specialized case is where the guard refers to a qubit from a had locus. Here we have

two approaches to translate this case. The generic approach is to first caset the had locus into a en

one using [C-CastHadEn] by taking the Cartesian product with sequences in the body locus, our
experiments show it to be less efficient as it can take long time to verify.

There is a property of had type we can exploit. From the typing judgement, it is guaranteed that
a had locus is disjoint from en locus, and a single-qubit had state is guaranteed to have only |0〉 and
|1〉 kets in the translated en basis ket. An alternative strategy is to duplicate the state representation
for the en locus. The if body is only applied to one copy and leaves the other one intact. In the end,
we only need to concatenate those two copies and create a sequence for the original had locus of
zeros followed by ones. This avoids the need for specifying the splitAt clause or taking a Cartesian
product explicitly required by merging two arbitrary en sequences.

Example 4.4 (Translate if statements over a had control). Continuingwith the example Example 4.3,
let’s now assume that q[0..q] is instead a had range and ignore the splitAt clause. The program is
then translated using [C-IfHad] into
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p_0_2_en_0∗ := p_0_2_en∗; p_0_2_en_1∗ := p_0_2_en∗;
p_0_2_en_1∗ := Map(x ⇒ (x + 1) % 2, p_0_1_en∗);
p_0_2_en∗ := p_0_2_en_0∗ + p_0_2_en_1∗;
n∗ := |p_0_2_en_0∗ |; m∗ := |p_0_2_en_1∗ |;
q_0_1_en∗ := seq〈int〉(n∗, _⇒0) + seq〈int〉(m∗, _⇒1);

4.5 Translate for Statements
The translation of for statements is similar to the if statement, but with a few differences. Consider
the program in Example 4.5, which entangles the slice q[i] with p[0..10] in each iteration. If
we translate by unrolling the loop as an if statement and following [C-IfHad], the had range will
be cast into an en one and added as a single-qubit slice into the locus. We end up with a locus
{q[0..1], . . . , q[9..10], p[0..10]}which is different fromwhatwe are expecting in the invariant: two
ranges of 10 qubits, q[0..10] and p[0..10]. To implement this desired behavior, the for statement
merges the range acting as the control qubits into an existing slice whose range index is adjacent to
it, rather than create a brand-new slice. After joining a had range into an en one on the type level,
similar to the translation of the had if construct, we generate the program by concatenating the en

range sequence to a copy of it by adding Pow2(8 - 41) to each basis. ([C-ForHad])

f� (A ) = had Γ;f ; d ` � { � ∗

Bguard
∗ = A∗ := A∗ + Map(A∗, _ ⇒ G + Pow2(8 − 41))

Bdup
∗ = Adup

∗ := A∗ Bmerge
∗, d ′ = merge(dtt, dff)

d ′′ = (d ′ \ A ) [A[i+1/i] ↦→ A ∗]
Γ;f� ; d [A ∗ ↦→ Att

∗] ` B { Btt
∗ | dtt

Γ;f� ; d [A ∗ ↦→ Aff
∗] `noop B { Bff

∗ | dff

Bfor
∗ = for� ∗ i ∈[41..42] Bsplit

∗; Btt∗; Bff
∗; Bmerge

∗; Bguard
∗
[C-ForHad]

Γ;f� ; d ` for4� 8 ∈[41..42] with A B { Bfor
∗ : f ′ | d ′′

A ∈ ; ;B ⊆ ; f� (;) = en ; ′ = ; \ {A }
Bsplit

∗ = Att
∗ := A∗[8..] ; Aff

∗ := A∗[..8]

Bmerge
∗, d ′ = merge(dtt, dff)

Γ;f ; d ` � { � ∗

Γ;f� ; d [A ∗ := Att
∗] ` B { Btt | dtt

Γ;f� ; d [A ∗ := Aff
∗] `noop B { Bff | dff

Bfor = for� ∗ i ∈[41..42] { Bsplit; Btt; Bff; Bmerge }
[C-ForEn]

Γ;f� ; d ` for4� 8 ∈[41..42] with A B { Bfor
∗ : f ′ | d

Fig. 9. Translation Rules from Qafny to Dafny (Cont.)

Example 4.5 (Modulo Multiplication). q[1..10] starts as a had locus.
for i in [1..10] with q[i.. i+1]

invariant {

q[0..i], p[0..10] : en

↦→ Σk∈[0..2i]. (k, Pow(b, k) %10)

}
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lemma LemmaPowEquiv(s:seq<nat>, a:nat, i:nat, N:nat)

requires |s| == Pow2(i) && N >= 2

requires ∀k | 0≤k<Pow2(i) · s[k] == ((Pow(a, Pow2(i)) * (Pow(a, k) % N)) % N)

ensures ∀k | 0≤k<Pow2(i) · s[k] == (Pow(a, (Pow2(i) + k)) % N)

{

∀k | 0≤k<Pow2(i) {

calc == {

s[k] == ((Pow(a, Pow2(i)) * (Pow(a, k) % N)) % N);

{ LemmaMulModNoopRightAuto(); } // crush double Ns

s[k] == ((Pow(a, Pow2(i)) * Pow(a, k)) % N);

{ LemmaPowAdds(a, Pow2(i), k); } // crush the add on Power

s[k] == (Pow(a, (Pow2(i) + k)) % N);

}

}

}

Fig. 10. Lemma for maintaining loop invariants

invariant { q[i..10] : had ↦→ ⊗ k. 1 }

{

p[0..10] *= `(x⇒(x*(Pow(b, 2i))) %10);

}

will be translated into

for i := 1 to 10

invariant ...

{

q_i_10_had∗ := q_i_10_had[1..10 − i]∗;
q_0_i_en_0∗ := q_0_i_en∗;
p_0_10_en_0∗ := p_0_10_en∗;
p_0_10_en∗ := Map(x ⇒ (Pow(b, 2i*x), p_0_10_en∗);
p_0_10_en∗ := p_0_10_en_0∗+p_0_10_en∗;
q_0_i_en∗ := q_0_i_en∗ + Map(x ⇒ x+2i, q_0_i_en∗);

}

In this example, we begin with moving one qubit away from the had range and saving a copy of
en sequences to be “modified” into emitted variables ended with _0. The oracle function is then
applied to the target sequence to be changed by mapping it over the p_0_10_en∗. We then merge the
changed part into the unchanged sequence to construct the new p[0]10 and add the removed qubit
to q[0]i by adding the exponential.

In our experiment, the loop invariant cannot be proven maintained automatically because of the
nature of arithmetic with powers, we instead need to apply a lemma.

#LemmaPowEquiv(Repr(p[0 .. 10]), b, i, 10);

The leading “#” symbol instructs our translator to treat the statement as an external lemma from
Dafny and the Repr keyword is translated directly into the emitted variable for the underlying
sequence, i.e., dp[0..10], which is p_0_10_en∗ here. The lemma can be found in Figure 10.
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4.6 Translate for statements with en01 type
The following example illustrates the procedure used to create entanglement between =-qubits into
a GHZ [4] state.

Example 4.6 (GHZ). Assume that q[0..1] is in en.
for i in [0..n-1] with q[i..i+1] splitAt 1

invariant {

q [0..(i+1)] : en ↦→ (
∑
j∈ [0..2]. j * (Pow2(j)-1))

}

invariant { q[i+1..n] : nor ↦→ ⊗ k . 0 }

{

q[(i+1)..(i+2)] *= ` (x ⇒ (x+1) % 2);
}

For each iteration in Example 4.6, a slice from a nor state q[i+1..i+2] is entangled with a en

guard q[i..i+1], which then evolves into a en state. In order to prove the invariant under the
guard q[i..i+1], we need to split by asserting that each element e∗ after from index 1 in the
representation of q[i..i+1] must satisfy

e∗/Pow2(i) == 1.
Proof obligations induced by the specification that verify the binary properties from the decimal
representation are usually tricky because it requires knowledge about nonlinear arithmetic. The
need for manual proofs becomes inevitable.
We instead provide an alternative binary view of en, en01, which is translated into Dafny as a

seq〈seq〈bv1〉〉. en01 is almost the same as en except the state predicate.

Example 4.7 (GHZ in en01). The program states the same as Example 4.6 with only except for the
first invariant.
{ q [0..(i+1)] : en01 ↦→ ∑

j∈ [0..2]. ⊗ k ∈ [0.. j]. j }

The program is translated into
1 for i := 0to n-1

2 invariant 2 == |q_0_i1∗|
3 invariant (∀j |0≤j<2 · (∀k |0≤k<1+i · 1+i == |q_0_i1∗[j]|))
4 invariant (∀j |0≤j<2 · (∀k |0≤k<1+i · q_0_i1∗[j][k] == j))

5 invariant n-i-1 == |q_i1_n∗|
6 invariant (∀k |0≤k<n-i-1 · q_i1_n∗[k] == 0)

7 {

8 q_0_i1_ff∗ := q_0_i1∗[0..1]; q_0_i1∗ := q_0_i1∗[1..];
9 // begin unchanged (casts + guard)

10 // split q[i+1..n] into q[i+1..i+2] and q[i+2..n]

11 q_i1_i2_ff∗ := q_i1_n∗[0..1]; q_i2_n_ff∗ := q_i1_n∗[1..n-i-1];
12 // cast nor into en01 and merge

13 q_0_i2_ff∗ := Map(x5 => x5+q_i1_i2_ff∗, q_0_i1_ff∗);
14 // end unchanged

15 // begin changed

16 // split q[i+1..n] into q[i+1..i+2] and q[i+2..n]

17 q_i1_i2_tt∗ := q_i1_n∗[0..1]; q_i2_n_tt∗ := q_i1_n∗[1..n-i-1];
18 // apply the oracle over a single-qubit nor state
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{AG , A } = ; f (;) = en = = Pow2(|AG |)
d ′ = d [; ↦→amp 0∗; ; ↦→pow ?∗; ; ↦→A A

∗; ]
BA = A∗ := seq〈seq〈nat〉〉(=, _ ⇒ dA (;))

BAG = AG
∗ := seq〈nat〉(=, 8∗ ⇒ 8∗)

Bamp = 0∗ := seq〈seq〈nat〉〉(=, _ ⇒ damp (;))
Bphs = ?∗ := seq〈seq〈nat〉〉(=,:∗ ⇒seq〈nat〉(

��dpow (;)
��,8∗ ⇒ :∗*dAG (;)[8∗]+ dpow (;)[8∗]))

[C-QftEn]
Γ;f ; d ` ; *= qft { BA ; BAG ; Bphs; Bamp : f [; ↦→ qft] | d ′

Fig. 11. Translation relation for QFT

19 q_i1_i2_tt∗ := Map(x=>x+1 % 2, q_i1_i2_tt∗[0..1])
20 // cast nor into en01 and merge

21 q_0_i2_tt∗ := Map(x=>x+q_i1_i2_tt∗, q_0_i1∗);
22 // end changed

23 // merge changed into unchanged

24 q_0_i2_ff∗ := q_0_i2_ff∗+q_0_i2_tt∗;
25 // reassign variables to maintain invariants

26 q_0_i1∗ := q_0_i2_ff∗; q_i1_n∗ := q_i2_n_ff∗;
27 }

en01 can also be understood as a sequence of nor states in superposition. A nor state can be
naturally merged into a en01 state by concatenating it to the end of each basis in the en01 state as
shown in line 24 and 26 in Example 4.7.

4.7 TranslateQuantum Fourier Transform
Quantum Fourier transformation transforms every basis vector in a quantum state into the su-
perposition of kets spanning the entire computational basis with difference in phase coefficient.
Applying the transform to a general first degree en =-qubit state has the following effect∑

8∈(
U8l (?8 , # ) |G8〉 |~8〉 ↦→

1
√
2=

2=−1∑
:=0

|:〉
(∑
8∈(

U8l (?8 + G8:, # ) |~8〉
)

Fitting this structure into an en type is possible but complicates the rest of the verification when
reasoning about the outcomes of measuring a specific |:〉 which is the common case.

Instead, we extend the entanglement type with qft typeFigure 1 that keeps a sequence of basis ket
for |:〉 and quantifies the index over the QFT basis for an inner en state as illustrated in [C-QftEn].

4.8 Translate Methods
Quantum register parameters in a method definition are translated into receivers and producers
of its quantum state representation depending on their entanglement type specified in require
and ensure clauses. The method body may modify passed quantum registers and is translated
into a “pure” method that outputs the resulting state of emitted variables as its return values. Our
translator ensures that method invocations follow the same calling convention as the method
definition, capturing the resulting state, and reinstate the method frame to the current frame.
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4.9 Translate Measurement
Measurement collapses a quantum state into two symbolic variables for the measurement outcome
and its probability. The probability is calculated through a Prelude function that computes the sum
of probabilities carried in the amplitude representation corresponding the measured ket.

5 LANGUAGE EXTENSIONS
In this section, we present a few useful language extension to simplify the structure and reduce
verification overeheads. Those extensions don’t interfere with or affect the expressiveness of our
existing core Qafny language.

5.1 Phase Kickback
Recall that had type only contains its phase information and is purely phaseful. Although had states
are phaseful, it is the common case to apply an non-phaseful oracle over it which require casting it
to en first. Unfortunately this generic treatment complicates some trivial properties. For example,
applying an oracle 5 (G,~) = (G,~ + 5 (G)) to a had state 1√

2
|q=〉 ⊗ (|0〉 − |1〉) results in a state

1√
2
|q=〉 ⊗ (−1) 5 (G ) (|0〉 − |1〉) using a trick called phase kickback. In this case, the effect of oracle

only adds a (−1) 5 (G ) phase coefficient despite the fact that the oracle itself doesn’t mention the
phase explicitly. If we are to prove this property by first casting the had locus into en, we would
need to reason state equivalence up to some permutation. The reader may find a detail discuss and
derivation in Appendix A.

We generalize applying such form of oracle to a en and had locus into a phase kickback language
extension: this approach axiomatizes the phase kickback using the fact that had type itself is
phaseful: if an oracle operator application involves a had locus, its effect over kets should be treated
phasefully. The oracle 5 (G,~) = (G,~ + 5 (G)) is translated using only the phase calculus.∑

G∈q=

1
√
2
l

5 (G )
2 |G〉 |0〉 +

∑
G∈q=

1
√
2
l
1−5 (G )
2 |G〉 |1〉

Generalizing to arbitrary had, we have

©­«
∑
G∈q=

UGl
:G
#

|G〉ª®¬⊗ 1
√
2

(
l0
# |0〉 + l:

# |1〉
)
↦→

∑
G∈q=

1
√
2#

l
:G+: ·5 (G )
#

|G〉 |0〉+
∑
G∈q=

1
√
2#

l
:G+: (1−5 (G ) )
#

|G〉 |1〉

which fits into a first degree en representation.

5.2 Unitary Inversion
Composition of unitary gates without measurements or initialization is reversible. Every pure
method defined in Qafny has an adjoint that can “uncompute” the result of it. We extend the
language with inverse construct (inv m) to the unitary inverse of a method m. This in effect flips the
pre- and post-condition of the given method.

6 CONCLUSION
This technical report provides a formalized implementation of the core type resolution and trans-
lation process. Our lightweight approach stresses automation and verification overhead and is
applicable to quantum programs without mixed states that can only be specified within density
matrices. An extensive evaluation is under way to demonstrate the expressiveness of our approach
which, is beyond the scope of this TR at the current stage. Our current implementation takes
about 5000 lines of Haskell code, not counting the AST and its pretty-printer. It involves other
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experimental extensions, promotion rules between phases of different degrees, and the translation
of method that are too verbose to be included in this report.
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A DERIVATION OF PHASE KICKBACK∑
G∈q=

1
√
2
|G〉 |0 + 5 (G)〉 −

∑
G∈q=

1
√
2
|G〉 |1 + 5 (G)〉 (1)

=


5 (G) = 0 ⇒

∑
G∈q=

1
√
2
|G〉 |0〉 −

∑
G∈q=

1
√
2
|G〉 |1〉

5 (G) = 1 ⇒
∑
G∈q=

1
√
2
|G〉 |1〉 −

∑
G∈q=

1
√
2
|G〉 |0〉


(2)

=


5 (G) = 0 ⇒

∑
G∈q=

1
√
2
(−1) 5 (G ) |G〉 |0〉 −

∑
G∈q=

1
√
2
(−1) 5 (G ) |G〉 |1〉

5 (G) = 1 ⇒−
∑
G∈q=

1
√
2
(−1) 5 (G ) |G〉 |1〉 +

∑
G∈q=

1
√
2
(−1) 5 (G ) |G〉 |0〉


(3)

≡
∑
G∈q=

1
√
2
(−1) 5 (G ) |G〉 |0〉 −

∑
G∈q=

1
√
2
(−1) 5 (G ) |G〉 |1〉 (4)

The main challenging in proving the equation in Qafny resides in reasoning with the ≡ relation
which involves the definitional equivalence modulo sequence permutation. A minor wrinkle here
is that one also needs to prove by cases over the codomain of 5 (G) in order to bridge the relation
between kets and phases, which is not that easy without axioms between ket representations and
phase ones.

A.1 Generalized Phase Kickback

*5
©­«©­«

∑
G∈q=

UGl
:G
#

|G〉ª®¬ ⊗ 1
√
2

(
l0
# |0〉 + l:

# |1〉
)ª®¬ (5)

=
∑
G∈q=

UGl
:G
#

|G〉 |0 + 5 (G)〉 +
∑
G∈q=

UGl
:+:G
#

|G〉 |1 + 5 (G)〉 (6)

=
∑
G∈q=

1
√
2#

[
5 (G) = 0 ⇒ l

:G
#

|G〉 |0〉 + l
:+:G
#

|G〉 |1〉

5 (G) = 1 ⇒ l
:G
#

|G〉 |1〉 + l
:+:G
#

|G〉 |0〉

]
(7)

≡
∑
G∈q=

1
√
2#

[
5 (G) = 0 ⇒ l

:G
#

|G〉 |0〉 + l
:+:G
#

|G〉 |1〉

5 (G) = 1 ⇒ l
:+:G
#

|G〉 |0〉 + l
:G
#

|G〉 |1〉

]
(8)

=
∑
G∈q=

1
√
2#

l
:G
#

[
5 (G) = 0 ⇒ l0

# |G〉 |0〉 + l:
# |G〉 |1〉

5 (G) = 1 ⇒ l:
# |G〉 |0〉 + l0

# |G〉 |1〉

]
(9)

≡
∑
G∈q=

1
√
2#

l
:G
#
l
: (0+5 (G ) )
#

|G〉 |0〉 +
∑
G∈q=

1
√
2#

l
:G
#
l
: (1−5 (G ) )
#

|G〉 |1〉 (10)

=
∑
G∈q=

1
√
2#

l
:G+: ·5 (G )
#

|G〉 |0〉 +
∑
G∈q=

1
√
2#

l
:G+: (1−5 (G ) )
#

|G〉 |1〉 (11)
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