
Improved algorithms and analysis for the laminar

matroid secretary problem

David Harris1, Manish Purohit2

April 30, 2014

Abstract

In a matroid secretary problem, one is presented with a sequence
of objects of various weights in a random order, and must choose ir-
revocably to accept or reject each item. There is a further constraint
that the set of items selected must form an independent set of an as-
sociated matroid. Constant-competitive algorithms (algorithms whose
expected solution weight is within a constant factor of the optimal)
are known for many types of matroid secretary problems. We examine
the laminar matroid and show an algorithm achieving provably 0.053
competitive ratio.

1 Introduction

In the classical secretary problem, one interviews n secretaries sequentially
in random order, each order having equal probability. As soon as one in-
terviews a secretary, one learns the skill level of that secretary, relative to
all previously seen applicants. At this point the interviewer must make an
irrevocable decision whether or not to hire. The goal is to hire the best
secretary.

For this problem, [1],[2],[3] discuss the elegant optimal algorithm. This
algorithm looks at the first n

e secretaries, rejects them all, and then from
among the remaining secretaries chooses the first one who is better than
each of the first observed n

e secretaries (if any). This simple algorithm hires
the best secretary with probability 1

e .

1Department of Applied Mathematics, University of Maryland, College Park, MD
20742. Email: davidgharris29@hotmail.com.

2Department of Computer Science, University of Maryland, College Park, MD 20742.
Email: manishp@cs.umd.edu.

1

One of the many generalizations of the secretary problem is called the
matroid secretary problem. Here, we are given a matroid M(U , I) (which
is known completely beforehand). The ground set also contains weights for
each element, which are unknown a priori. The elements arrive one by one in
a random order. We denote this ordering by π, a permutation on n elements.
Each element reveals its weight when it arrives. As before we must make an
irrevocable decision whether to accept or reject the element when it arrives.
The goal is to choose an independent set of the largest weight.

A matroid is a particularly attractive setting for the secretary problem,
because of the exchange property. This ensures that even if we make a
bad decision about which element to accept, we are not locked in to a bad
solution set. In matroid secretary problems, as opposed to more general
secretary problems, we can often find a solution set which is relatively close
to the optimal one.

The matroid secretary problem can be viewed as a simple model for irre-
vocable decisions in the presence of uncertainty as to future opportunities.
The use of random permutation is conceptually simple, but allows powerful
bounds with a minimum of auxiliarly information. Other models which may
include prior distributions on the price structure are possible.

For secretary problems, we define the competitive ratio to be the ratio
of the expected weight obtained by our algorithm, divided by the optimal
weight. We note that in the classical secretary problem, one has a 1/e chance
of choosing the best applicant; for the matroid secretary problem, we do not
care about the probability of selecting the largest-weight independent set
from the matroid, only in selecting sets which have large weight on average.
Furthermore, we do not need any probability of obtaining a large-weight set
(other than is implied by Markov’s inequality).

For general matroids, [5] gives an O(
√

log r)-competitive algorithm where
r is the rank of the matroid. For many special classes of matroids, constant-
competitive algorithms are known. In particular, [6] provides a 3

16000 -competitive
algorithm for laminar matroids. An alternative algorithm has been demon-
strated in [4], which gives a 0.070-competitive algorithm for the laminar
matroid.

We improve the algorithm of [6] and obtain a tighter analysis, showing
a 0.053-competitive algorithm for the laminar matroid. This improves on
[6] by nearly 300-fold. This nearly brings the algorithm of [6] to parity with
the new algorithm of [4].

2

2 Definitions and Notation

We let U be the ground set and w : U → R be the weight function. Then a
laminar matroid is defined by a family F of laminar subsets. That is, for any
A,B ∈ F we have A ⊆ B or B ⊆ A or A∩B = ∅. In other words, the sets in
F are nested within each other. Each set A ∈ F has an associated capacity
µ(A). A set X ⊆ U is an independent set in the matroid iff |X ∩A| ≤ µ(A)
for all A ∈ F .

Without loss of generality we may assume µ(A) < µ(B) for any A,B ∈ F
and A ⊆ B; for, otherwise A is redundant and may be removed from F .

We use the terminology of [6]. For i ∈ U , we let M(i) denote the
minimal set B ∈ F such that i ∈ B. We say that B1 ∈ F is a child of
B2 ∈ F if B1 (B2 and there exists no intermediate set B′ ∈ F such that
B1 ⊆ B′ ⊆ B2. Naturally B2 is called parent of B1.

For any A,B ∈ F such that A ⊆ B, we define Chain[A,B] to be the
sequence of sets in F starting with A and ending with B where each set is a
child of the following set. In order to denote all sets in F that contain i, we
may interchangeably use Chain[M(i), U] or F(i). To save notation, let OPT
denote the optimal solution itself or the total weight of the optimal solution
depending on the context. For any V ⊆ U and B ∈ F , let OPTV (B) denote
the optimal feasible solution that can be obtained from V ∩B. For simplicity
of notation, let OPT(B) = OPTU (B). Let π denote the random ordering of
elements in U .

3

3 Algorithm

Algorithm 1: KickNext Algorithm

Let Draw t ∼ Binom(n, 1− p) and let S = {π(1), . . . , π(t)}.
foreach B ∈ F do

let R(B)← OPTS(B)
end
foreach i ∈ T = U − S (taken in the random order π) do

foreach B ∈ Chain[M(i), U] do
if R(B) 6= ∅ and w(i) is greater than some element of R(B)
then

Add i to SOL(B)
Remove the largest element of weight less than w(i) from
R(B)

else
break the loop (go to the next item i)

end

end

end
Return SOL(U);

Here, we take the first 1− p proportion of items for the sampling phase
(used to estimate statistical information about the optimal solution), and
we take the latter fraction p to actually build the optimal solution. As we
will see, the optimal choice of p is about p ≈ 0.08. From the sampled set of
elements S, we calculate OPTS(B) as the reference set R(B).

We denote the S = {π(1), . . . , π(t)}. Such elements are used for sampling
and building statistical information about the optimal set. The remaining
items T = U − S are considered for actual selection.

Note that this algorithm does not use the “AddIt” method used in [6], in
which during the second phase items enter the optimal solution with some
probability less than one. The intuitive explanation for this difference is
that any element which is not eligible for the optimal solution should be
used to build statistical information, and not simply discarded.

We will briefly explain the intuition behind this algorithm. In the initial
sampling phase, we build up a set which looks like the globally optimal
solution; in the second phase, we try to mimic the sample optimum as closely
as possible. The rule for evicting elements from R(B) appears strange, in
that it would be more natural to remove the lowest-weight element from

4

R(B) when inserting a new element. However, if we did this, then for low-
weight elements R(B) would become distorted compared to OPT (B). The
key innovation of [6] was in using this counter-intuitive eviction rule.

4 Analysis

Note that the algorithm selects an element by kicking out a smaller element
in R(B) for all B ∈ F(i). An element i is not selected to be in SOL(B)
iff all elements with weight smaller than wi in R(B) have been kicked out
already.

We assume that, at the end of the sampling phase, we have |OPTS(B)| =
µ(B) exactly for all B ∈ F . We can force this to occur with probability one
by adding infinitely many elements of infinitesimal weight to the matroid,
which will not affect the algorithm’s behavior. This simplifying assumption
allows us to avoid some corner cases.

Finally, we assume that items have distinct weights; this can be achieved
by adding infinitesimal perturbations to the original weights. This affects
the behavior of the optimal algorithm only infinitesimally. The perturbation
may affect the behavior of this algorithm substantially, as it is based on
determining hard cut-off values for whether to accept an element. However,
it will suffice to show a good competitive ratio on the perturbed weights.

For a given set B ∈ F , most elements x ∈ T will be immediately dis-
qualified from affecting B in any way. We can note a simple condition on
element x ∈ B affecting the set SOL(B) is that the weight of x exceeds the
smallest weight element of OPTS(B′), for all B′ in the chain between M(x)
and B. We call such elements qualifying for B. We can bound the number
of such qualifying elements as follows:

Lemma 4.1. Consider any set B ∈ F and element i ∈ U . Let OPTS(B) =
{a1, a2, . . . , am} sorted so that w(a1) < w(a2) < · · · < w(am). For no-
tational convenience, set w(am+1) = ∞. Let Nj ⊆ T , for j = 1, . . . ,m,
denote the elements x which satisfy the following conditions:

1. x qualifies for B

2. w(aj) < x < w(aj+1)

3. x ∈ T

Then for any non-negative integers n1, . . . , nm, we have

P (|N1| = n1 ∧ · · · ∧ |Nm| = nm | i /∈ S) ≤ pn1+···+nm

5

Proof. It suffices to show that, for any j = 1, . . . ,m, the probability that
|Nj | = nj , conditional on i /∈ S as well as |Nj+1| = nj+1, . . . , |Nm| = nm, is
at most pnj .

Note that Nj is determined solely by the elements of weight less than
w(aj+1). Suppose we condition on some choice of aj+1, . . . , am. Now Nj

depends solely on the positions of elements with weights less than w(aj+1),
and in particular is independent of Nj+1, . . . , Nm. Then aj is the element
of U satisfying the five conditions:

1. aj 6= i

2. w(aj) < w(aj+1)

3. {aj , aj+1, . . . am} ∈ I

4. aj ∈ S

5. aj has maximal weight among all that satisfy (1) — (4).

(Condition (1) is redundant, as i /∈ S and a1, . . . , am ∈ S.) We now
claim that any qualifying element x 6= i such that w(x) < w(aj+1) must
satisfy {x, aj+1, . . . , am} ∈ I. For, suppose x violates some µ(B′) = k, for
B′ ⊆ B. Then this implies that among {aj+1, . . . , am} there are exactly k
elements in B′. In particular, x does not qualify for B′ ⊆ B.

Now consider the set X ⊆ U consisting of all elements x which satisfy

x 6= i, w(x) < w(aj+1), {x, aj+1, . . . , am} ∈ I.

As we have seen, aj is the element of X ∩ S of largest weight and nj is the
number of elements of X of greater weight than aj .

If |X| ≤ nj , then the probability that |Nj | = nj is zero. Otherwise, we
can view this as the following process. Suppose we sort the elements of X
in order of decreasing weight. Starting with the largest element of X, we
assign elements to either S or T . These assignments to S are independent
with probability 1− p. Then |Nj | = nj iff we assign the first nj elements to
T (probability p) and the (nj + 1)th (if it exists) to S, which occurs with
probability at most pnj .

Hence, conditional on any aj+1, . . . , am, the probability that |Nj | = nj
is at most pnj .

6

4.1 Probability of selecting an item

Define the backward rank of element i for B ∈ F , denoted as brank(i, B), to
be the number of elements in OPT(B) having weight less than wi. Similarly,
let brankS(i, B) be the number of elements in OPTS(B) having weight less
than wi. It can be easily seen that brankS(i, B) ≥ brank(i, B). Furthermore,
if i ∈ T , then brankS(i, B) ≥ brank(i, B) + 1 (proved in [6]). Intuitively, an
element i is more likely to be picked by the algorithm if its brank(i, B) is
large.

Now, when element i ∈ T is considered for inclusion in the solution set, it
will be rejected iff there is some B ∈ F(i) such that all elements in OPTS(B)
of weight less than w(i) have been evicted already. Let AllKicked(i, B)
denote this bad event. We can bound the probability of this event as follows.

Lemma 4.2. Suppose p < 1/2. Consider any B ∈ F and i ∈ OPT . Now if
we define

α = (
p+ (1− p) log(1− p)

2(1− p)p2
)

c = 4p(1− p)

Then we have

P (AllKicked(i, B)) ≤ αcbrank(i,B)+1

1− c
Proof. Fix some i ∈ OPT and let brank(i, B) = d. All the probabilities we
calculate in this proof are conditioned on i /∈ S; we no longer specify this
explicitly to simplify the notation.

Let OPTS(B) = {a1, . . . , am} sorted so that w(a1) < w(a2) < · · · <
w(am). Because of the KickNext rule, the item i will go into SOL(B) unless,
for some l ∈ {d + 1, . . . ,m}, there have been at least l items of weight less
than w(al+1) added to SOL(B) before it.

Now consider an element i′ 6= i. In order for such an i′ to have been
added to SOL(B) before i, the following events must have occurred:

1. i′ is qualifying for B

2. i′ comes before i in the ordering π

We view the suffix of the permutation π corresponding to T as generated
by the following process. Each element x ∈ T chooses ρ(x) uniformly at
random from the real interval [0, 1]. We then form the suffix of π by sorting
by ρ. Suppose we condition on a fixed value of r = ρ(i). Now consider an

7

element i′ 6= i. In order for such an i′ to have been added to SOL(B) before
i, the following events must have occured:

1. i′ is qualifying for B

2. ρ(i′) < r.

Let Ql denote the number of qualifying items other than i with weight
< w(al+1) and let Al denote the number of such items which also have
ρ(i′) < i. We wish to estimate the probability Al ≥ l.

By Lemma 4.1, the random variable Ql is stochastically dominated by
the sum of l independent geometric-p random variables. Given a fixed value
for Ql, each such qualifying item i′ has a probability r of occuring before
i. Furthermore, these events are independent (conditional on r). Hence
the probability P (Al ≥ l|Ql = k, i /∈ S) is at most the probability that a
binomial random variable, of k trials and probability r, exceeds l. In effect,
the random variable Al is formed by conjugating a negative binomial random
variable Ql with a binomial-r distribution. The binomial distribution is a
conjugate prior for the negative binomial, hence the distribution of Al is
stochastically dominated by the negative binomial distribution of probability
q = rp

1−p+rp .
We now wish to estimate the probability that Al ≥ l. For a negative

binomial random variable A′l, the event A′l ≥ l is equivalent to the situation
that we flip a biased coin for 2l − 1 times, where the probability of success
is q, and the total number of successes is at least than l; this is a binomial
tail probability. Hence we have

P (Al ≥ l | ρ(i) = r) ≤ P (Binomial(2l − 1, q) ≥ l − 1)

Note that as p < 1/2, we have q < 1/2 as well. By the Chernoff bound
the probability of such a deviation is exp(−(2l − 1)RelEnt(l

2l−1 ||q)). Here
RelEnt is the relative entropy function, given by

RelEnt(x||y) = x log(x/y) + (1− x) log(
1− x
1− y

)

We can simplify this as

P (Al ≥ l|ρ(i) = r) ≤ exp(−(2l − 1)RelEnt(
l

2l − 1
||q))

=

(
1− l

(2l − 1)(q − 1)

)1−l (
− l

q − 2lq

)−l
≤ 1

2− 2q
(4q(1− q))l

8

Integrating over r ∈ [0, 1] gives

P (Al ≥ l) ≤
∫
r

dr

2− 2q
(4q(1− q))l

≤ (4p(1− p))l
∫
r

dr

2− 2q

4q(1− q)
4p(1− p)

≤ (−p− (p− 1) log(1− p)
2(p− 1)p2

)(4p(1− p))l

= αcl

We use the union-bound for the event AllKicked(i, B):

P (AllKicked(i, B)) ≤
∞∑

l=d+1

P (Al ≥ l | i /∈ S)

≤
∞∑

l=d+1

αcl

≤ αcd+1

1− c

4.2 Expected weight of SOL

We cannot take any arbitrary element of the optimal solution and show that
it is selected with a good probability by our matroid secretary algorithm.
Instead, we use a similar strategy to the uniform matroid, and examine
the set of high-scoring elements collectively. We show that most of these
elements (but not any particular one of them) are selected high probability.

We contrast our approach with that of [6], which adopted a hybrid proof
strategy between fully analyzing the collective behavior of the optimal so-
lution, and analyzing individual elements of the solution. In [6], certain
elements in the optimal solution were identified, referred to as “good” ele-
ments, which were shown to have a high probability of being selected by the
secretary algorithm. This type of analysis is inherently not tight. We will
instead determine the worst possible arrangement of the optimal solution,
and show that it still is selected with high probability.

We use our upper bound on the probability of the event AllKicked to
obtain a lower bound on the expected weight of our solution:

E[w(SOL)] ≥
∑

i∈OPT

w(i)[Probability that i ∈ SOL]

9

≥
∑

i∈OPT

w(i)× p× [Probability that i ∈ SOL|i /∈ S]

≥
∑

i∈OPT

w(i)× p× [1−
∑

B∈F(i)

P (AllKicked(i, B))]

≥ p

 ∑
i∈OPT

w(i)−
∑

i∈OPT

∑
B∈F(i)

w(i).
αc1+brank(i,B)

1− c

≥ p

w(OPT)− α

1− c
∑

i∈OPT

w(i)
∑

B∈F(i)

c1+brank(i,B)

In order to use this estimate, we need to obtain an upper bound on the sum∑

i∈OPT

w(i)
∑

B∈F(i)

c1+brank(i,B)

The presence of the weight w(i) complicates things, so as a preliminary
we consider the unweighted version of this sum.

Let OPTm
large(B) denote the m largest elements in OPT(B).

Lemma 4.3. Let B ∈ F and let m ≥ 0 be an integer. Define g(m,B) by

g(m,B) =
∑

i∈OPTm
large(B)

∑
B′∈Chain[M(i),B]

c1+brank(i,B′)

Suppose c < 1/2. Then

g(m,B) ≤ 2c

1− c
|OPTm

large(B)|.

Proof. For each integer i define ci = c+ c2 + · · ·+ ci, and define c∞ =
c

1− c
.

We will need to show a stronger bound, specifically that for all B ∈ F
and all m ≥ 0 we have

g(m,B) ≤ 2c1 + · · ·+ 2cm−1 + cm + cmck−m

where k = µ(B) ≥ m.
We will show this by induction on the capacity k. Note that for a given

value of k, we are proving the inductive hypothesis simultaneously for all
B ∈ F and all possible values of m.

We view the laminar family as consisting of levels, corresponding to
each possible value for the capacity. When computing g(m,B), we have

10

the contribution at level k itself, as well as the contribution from the lower
levels. Let B1, . . . , Bj be a coarsest F-partition of B (other than B itself).
Let X = OPTm

large(B), and let mi = |Bi ∩ X| and ki = µ(Bi) for each
i = 1, . . . , j. For each i we have X ∩ Bi = OPTmi

large(Bi). By the capacity
constraints we must have mi ≤ ki < k for each i.

By laminarity we have

g(m,B) =
∑
i∈X

c1+brank(i,B) + g(m1, B1) + · · ·+ g(mj , Bj)

The elements of X have maximal bottom-rank in X. Hence the term∑
i∈X∩B c

1+brank(i,B) = ck + . . . ck−m+1 = cmc
k−m. Each Bi has rank less

than k so we apply the inductive hypothesis and obtain

g(m,B) ≤ cmck−m +

j∑
i=1

2c1 + · · ·+ 2cmi−1 + cmi + cmicki−mi

The right-hand side is a convex function m1, . . . ,mj , hence it attains its
maximum when these are set to their most extreme possible values. When
m < k strictly, we may set j = 1,m1 = m, k1 = k− 1; when m = k, we may
set j = 2, k1 = k2 = k − 1,m1 = m− 1,m2 = 1. In the first case, we obtain

g(m,B) ≤ cmck−m +
∑
i

2c1 + · · ·+ 2cmi−1 + cmi + cmic(k−1)−mi

≤ cmck−m + 2c1 + · · ·+ 2cm−1 + cm + cmck−1−m

= 2c1 + · · ·+ 2cm−1 + cm + cm(ck−1−m + ck−m)

= 2c1 + · · ·+ 2cm−1 + cm + cmck−m

In the second case, we obtain

g(m,B) ≤ cmck−m + 2c1 + · · ·+ 2cm−2 + cm−1 + cm−1c(k−1)−(m−1) + c1 + c1c(k−1)−1

= cm + 2c1 + · · ·+ 2cm−2 + cm−1 + c1 + c1cm−2

= 2c1 + · · ·+ 2cm−2 + cm−1 + cm + c+ ccm−2

= 2c1 + · · ·+ 2cm−1 + cm

= 2c1 + · · ·+ 2cm−1 + cmck−m

as claimed.

Next we use this unweighted bound to bound the weighted sum:

11

Lemma 4.4. If c < 1/2 we have∑
i∈OPT

w(i)
∑

B∈F(i)

c1+brank(i,B) ≤ 2c

1− c
w(OPT)

Proof. Sort the elements of OPT by weight so that w(x1) > w(x2) > · · · >
w(xl). Define c∞ = c

1−c as above. Then we have∑
i∈OPT

w(i)
∑

B∈F(i)

c1+brank(i,B)

= w(xl)g(l, U) + (w(xl−1)− w(xl))g(l − 1, U) + · · ·+ (w(x2)− w(x1))g(1, U)

≤ w(xl)2lc∞ + (w(xl−1)− w(xl))2(l − 1)c∞ + · · ·+ (w(x2)− w(x1))2c∞

= 2c∞(w(xl) + w(xl−1) + . . . w(x1))

= 2c∞w(OPT)

We consider the contributions to SOL of the elements of OPT.

Theorem 4.1. The expected value of the weight of SOL is at least a factor
p(1− 2αc

(1−c)2) of optimal.

Proof.

E[w(SOL)] ≥
∑

i∈OPT

w(i)p(1−
∑
B∈F

P (AllKicked(i, B)))

≥ p(
∑

i∈OPT

w(i)−
∑
B∈F

∑
i∈OPT∩B

w(i)
α

1− c
cbrank(i,B)+1)

≥ p(w(OPT)− α

1− c
2c∞w(OPT))

= w(OPT)p(1− 2αc

(1− c)2
)

Theorem 4.2. The KickNext algorithm achieves a competitive ratio of 0.053

Proof. Set p = 0.08 and apply Theorem 4.1.

12

References

[1] Dynkin, E. “Optimal choice of the stopping moment of a Markov pro-
cess” Dokl. Akad. Nauk SSSR 150, pp. 238-240 (1963).

[2] Freeman, P. “The secretary problem and its extensions: a review.” In-
ternat. Statist. Rev. 51(2), pp. 189-206 (1983).

[3] Gardner, M. Mathematical games column. Scientific American Feb.,
Mar., 35, 1960.

[4] Jaillet, P., Soto, J., Zenklusen, R.: “Advances on Matroid Secre-
tary Problems: Free Order Model and Laminar Case.” arXiv:1207.1333
(2012).

[5] Chakraborty, S., Lachish, O. “Improved competitive ratio for the ma-
troid secretary problem” Symposium on Discrete Algorithms 2012, pp.
1702-1712 (2012)

[6] Im, S. and Wang, Y. “Secretary Problems: Laminar Matroid and Interval
Scheduling.” Symposium on Discrete Algorithms 2011, pp. 1265-1274
(2011).

[7] Kleinberg, R. “A multiple-choice secretary algorithm with applications
to online auctions” Symposium on Discrete Algorithms 2005, pp. 630-631
(2005).

13

