Improved Algorithms for Data Migration

Azarakhsh Malekian *

December 8, 2005

Abstract

In this paper, we focus on the data migration problem. This problem is motivated by the
need to manage data on a set of parallel disks and was proposed in [1]. In this paper, it was
shown that one can develop a polynomial time algorithm with a 9.5 approximation factor for
this NP-hard problem. We show how to improve the approximation guarantee to 8.5.

1 Introduction

To handle high demand, especially for multimedia data, a common approach is to replicate data
objects within the storage system, which means that each item exists on a subset of disks.The
layout specifies for each disk the subset of items it needs to store. Over time, as the demand
for the items changes, the layout is changed. We need to find a way to transfer items to change
the initial configuration to the final configuration. Lots of optimization problems on this model
are defined with different objectives. In our problem, we want to minimize the total number of
rounds needed to reach the target configuration. The restriction here is that in most of the storage
systems, disks have limits on the number of the items that they can send/receive simultaneously.
In our problem we assume that each disk can send/receive one item at each point of time. The goal
is to minimize the total number of rounds to reach the final configuration. More formally, as in [1],
in data migration problem, we have N disks and A data items. For each item ¢, there is a subset
of disks S; and D;. Initially only the disks in S; have item ¢, and all disks in D; want to receive 3.
Note that after a disk receives item %, it can be a source of item % for other disks in D; that have
not received the item as yet. Our goal is to find a migration schedule using the minimum number
of rounds, that is, to minimize the total amount of time to finish the schedule. We assume that the
underlying network is fully connected and the data items are all the same size. In other words, it
takes the same amount of time to migrate an item from one disk to another. The crucial constraint
is that each disk can participate in the transfer of only one item - either as a sender or receiver. In
[1], it was shown that computing the optimal solution is NP-hard; A 9.5 approximation algorithm

*Department of Computer Science. University of Maryland, College Park, MD 20742.
Email: {malekian}@cs.umd.edu

Initial Layout

Disk 1 Disk 2 Disk 3

Target Layout

Figure 1: Demands may change over time. An example of initial and target layouts is shown in this
figure. In this case, S; = {2,3}, D; = {1}, So = {1,2},....

was developed for the problem. In their method, they didn’t use any internal bypass disks. So
no unnecessary transfer exists in the final method. The method described in this paper, gives an
improvement to their method. Here, we use internal bypass disks to improve the approximation
ratio to 8.5. By internal bypass disks we mean to allow to send items to any of the disks even if
it does not need that item. In the rest of the paper, the improved method for the data migration
problem with cloning is described.

2 The Data Migration Algorithm and Definitions

Our algorithms make use of known results on edge coloring of multigraphs. Given a graph G
with max degree A and multiplicity x4 the following results are known (see Bondy-Murty [2] for
example). Let x’ be the edge chromatic number of G.

Theorem 1. (Vizing [6]) If G has no self-loops then X' < Ag + p.
Theorem 2. (Shannon [4]) If G has no self-loops then X' < [3Ag].

Define §; as |{i|j € D;}|, i.e., the number of different sets D;, to which a disk j belongs. We
then define 8 as max;—1..n ;. In other words, 8 is an upper bound on the number of items a disk
may need. Note that S is a lower bound on the optimal number of rounds, since the disk j that
attains the maximum, needs at least 8 rounds to receive all the items ¢ such that j € D;, since it
can receive at most one item in each round. Also, we define 8 = ZiA:1 |?V"|. easily we can see that
23 is a lowerbound for the optimal number of rounds since in each round at most L%J receiving

can happen. Moreover, we may assume that D; # () and D; NS; = (). This is because we can define
the destination set D; as the set of disks that need item ¢ and do not currently have it.
The algorithm is as follows:

1. For an item 4 decide a source s; € S; so that o = max;_y,_ n(|{i]j = si}| + B;) is minimized.
In other words, « is the maximum number of items for which a disk may be a source (s;) or
destination. Note that « is also a lower bound on the optimal number of rounds.

2. Find a transfer graph for items that have |D;| > f3 as follows.

(a) We first compute a disjoint collection of subsets G;,7 = 1...A so that |G;| = [‘—%’—lj

Here, G; is not necessarily a subset of D;. (In Lemma 1, we will show how such G;’s can
be obtained.)

(b) We have each item ¢ sent to the set G;.

(c) We create a transfer graph as follows. Each disk is a node in the graph. We add directed
edges from disks in G; to the disks in D; \ G; such that the out-degree of each node in G;
is at most B and the in-degree of each node in D; \ G; from G; is at most 1. We redefine
D; as the set of disks in D; \ G; which do not receive item i in the transfer graph. As we
can see, for each item 4, the number of remaining elements can not exceed 3. New D;
sets will be taken care of in Step 3. Note that the redefined set D; has size < f.

3. Find a transfer graph for redefined D; sets as follows.

(a) For each item i, find a new source s; in D;. A disk j can be a source s} for several items
as long as) ;. I; |D;| < B+ 8 where I; is a set of items for which j is a new source. See
Lemma, 2 for the details of this step.

(b) Send each item 7 from s; to s.

(c) Create a transfer graph. We add a directed edge from s; to all disks in D; \ {s;}. We
will prove later that the out-degree of a disk does not exceed g + 8.

4. We now find an edge coloring of the transfer graph obtained by merging two transfer graphs
in Step 2(c) and 3(c). The number of colors used is an upper bound on the number of rounds
required to ensure that each disk in D; gets item ¢. In Lemma 3 we derive an upper bound
on the number of required colors.

We can find primary sources for each item using the same method as in [1] so that we guarantee
that for each disk, the number of items which this disk is chosen as its primary source plus the
number of items that it should receive itself does not exceed .. Next, we should show how to choose
G sets. We present two methods here.

Lemma 1. There is a way to choose disjoint sets G; for each i =1... A, such that |G;| = I_‘%"J.

Proof. First note that the total size of the sets G; is at most N.

A 5p| 18
Z|Gi|SZ 3 :§Z|Di|'
i=1 i=1 =1

_ A i
Note that g = M by definition. This proves the upper bound of NV on the total size of all
sets G;. Since, the only requirement for the G; sets is disjointness, we can easily partition disks
into sets of size L%A and assign each of them to one of the G;’s. However, if we want to maximize

Zle |G; N D;| at the same time, we can use min-cost-flow. Make a flow network with a source s
and target t. We have two set of nodes, one corresponds to the disks and the other to the items.
Put edges between s and item nodes with capacity |G;| and cost 0. Also, put edges between all item
nodes and disk nodes with capacity 1 and cost 0 if the disk belongs to the corresponding demand set
of the item, otherwise assign cost 1. put edges between disk nodes and ¢ with capacity 1 and cost
0. Now, since we showed above that we can choose all disjoint G; sets, so this network should have
a flow of size ZZ-AZI |Gi|. Also since we find the minimum cost flow of this kind, we guarantee that
we minimize the assignments of items to disks out of the demand set which result in maximizing

Y2 |Gin Dyl O

Next we will show how step 3(a) works. Again, the same as [1] we will use the Shmoys-Tardos
result in [5].

Theorem 3. (Shmoys-Tardos [5]) We are given a collection of jobs J, each of which is to be
assigned to ezxactly one machine among the set M; if job j € J is assigned to machine 1 € M, then
it requires p;; units of processing time, and incurs a cost c;;. Suppose that there exists a fractional
solution (that is, a job can be assigned fractionally to machines) with makespan P and total cost C.
Then in polynomial time we can find a schedule with makespan P + maxp;; and total cost C.

Lemma 2. For each item i, we want to choose a secondary source s, € D; to broadcast items to
redefined D; sets. We prove that it is possible to choose these secondary sources in a way so that
for each disk, the number of disks that it is responsible for is not more than 8+ B. More formally,
if 1y be the set of items for which d is chosen as the secondary source, Zz’eld |D;| < B+ 6.

Proof. We use the above theorem proved by Shmoys-Tardos to show our bounds. For example, we
can create an instance of the problem of scheduling machines with costs. Items correspond to jobs
and disks correspond to machines. For each item ¢ we define a cost function as follows. C(3,j) = 1 if
and only if j € D;, otherwise it is a large constant. (To guarantee that we choose sources only from
the corresponding demand sets). Processing time of job ¢ (corresponding to item %) is | D;| (uniform
processing time on all machines). The scheduling algorithm finds a schedule that assigns each job
(item) to a machine (disk) to minimize the makespan. They show that the makespan is at most the
makespan in a fractional solution plus the processing time of the largest job. Moreover, the cost of
their solution is at most the cost of the optimal solution, namely the number of items. Here, since
|D;| < B, the largest job is no more than 8. Next, we will argue that there is a fractional solution

4

with makespan . The fractional solution for the case where s, € D; is obtained by assigning each
job fractionally to each machine. by setting the assignment variable for job ¢ on machine j to ﬁ if
j € D; then the job is fully assigned fractionally and the fractional load on each machine is at most
B. So the makespan of the integral solution is at most 3+ 3 which means that each s; is responsible

for at most § + 3 disks. O

This lemma guarantees that the outdegree corresponds to step 3(c) is no more that 3 4 3. We
can use the same proof as in [1] to show that sending items to s takes at most %a rounds. In their
proof they argued that since s} is in D; set, then it can be chosen as the secondary source for at
most f3; different items and also if it is sender it will send to at most « — 3; disks. So as we see the
fact that s, € D; is useful here to make the 5; guarantee on the indegree. To complete their proof,
they used the Shanon’s theorem. Now, what we should do is to put the corresponding transfer
graphs from step 2(c) and 3(c) together. The number of colors for a proper-coloring of this graph
gives us the number of rounds we need to transfer the data.

Lemma 3. The number of colors we need to color the combined graph is at most (38428 + O(1)).

Proof. First, we compute the maximum indegree and outdegree of each node. The outdegree of a
node is coming from either being in a G; set (which results an outdegree of at most 3) or being a
secondary source (which results in an outdegree of 8 + (). The indegree of each node is at most
B since in the transfer graph we send items only to the disks in their corresponding demand sets.
The only remaining part is computing the multiplicity in the multigraph. Consider a pair of nodes
j1 and jo. We have two kinds of edges either it is an edge between a node in a G; set to one of
the nodes in D;, or it is a transfer from a secondary source to a demand node. We can see that we
have at most two edge of the first type between j; and js. Since each node can belong to at most
one G; set. For counting the second type edges, note that if we transfer item i between j; and jo
they should be both in D; set. Now since j; belongs to at most 8 different D; sets the number of
this kind of edges can not exceed § so multiplicity is at most 8 + O(1). Just by adding up all the
terms, we see that the maximum number of colors needed is at most 23 + 33 + O(1). O

To wrap up, in the next theorem we show that the total number of rounds in this algorithm is
bounded by 8.5 times the optimal solution.

Theorem 4. The total number of rounds required for the data migration is at most 8.5 times OPT.

Proof. Since we use the same method as in [1] to send items to G; sets , total number of this stage
is bounded by 2m/ +a < 30PT.(a, 8, m' and 23 are lowerbounds for OPT.) We need %a < %OPT
to send items from primary sources to secondary sources. The last stage is to send data items in
the transfer graph which takes 38+ 28 < 40PT. Putting all terms together, we conclude that data
migration can be done in 8.50PT rounds. 0

3 Conclusion

In this paper, we gave an 8.5 approximation algorithm for the Data Migration Problem which
improves the previous bound given in [1] by 1. The main idea was to use internal bypass nodes.
Furthermore, if G; sets are not completely disjoint and each disk in these sets is responsible for
more than one item, the ratio can be improved to 8 + 0(1). (The proof for this result will appear in
the full version of the paper.)

References

[1] S. Khuller, Y.A. Kim and Y.C. Wan. Algorithms for Data Migration with Cloning, Siam J.
on Comput., Vol. 33, No. 2, pp. 448-461,Feb. 2004.

[2] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. American Elsevier, New
York, 1977.

[3] S. Khuller, Y. A. Kim and Y. C. Wan. On Generalized Gossiping and Broadcasting. 11
European Symposium on Algorithms, LNCS 2832, pp. 373-384, Sep 2003 (Budapest).

[4] C.E. Shannon. A Theorem on Colouring Lines of a Network. J. Math. Phys., 28:148-151,
1949.

[6] D.B. Shmoys and E. Tardos. An Aproximation Algorithm for the Generalized Assignment
Problem. Mathematical Programming, A 62, pp. 461-474, 1993.

[6] V. G. Vizing. On an Estimate of the Chromatic Class of a p-graph (Russian). Diskret. Analiz.
3:25-30, 1964.

