Improving Browsing Environment Compliance
Evaluations for Websites

Cyntrica Eaton
4166 A. V. Williams Building
Department of Computer Science
University of Maryland, College Park, MD 20742
E-mails:ceat on@s. und. edu

Abstract

Identifying accessibility issues that can threaten usiakewebsite usability is critical
for web service and content providers who wish to accomneoiiet diverse web audience.
Detecting page-to-environment incompliance and modifypages to promote universal
accessibility is one important step in improving the prgcelsexploration and navigation
in the web user experience. To address this issue, we haigmdds system that evaluates
the accessibility of a web page in a given browsing enviramni@ased on knowledge of
the HyperText Markup Language (HTML) tags that comprise fjhge and knowledge
of the tag support provided in respective browsing envirents. Given this approach,
one of the most important aspects of the system is the corapséfe nature of tag support
knowledge. The more support rules known, the more envirotisgecific bugs the system
can accurately identify. In order to optimize knowledge ag support criteria, we have
also incorporated a learning mechanism that can indugtidetermine HTML tags that
are unsupported in a given environment by observing bothip®and negative examples
of web page appearance and behavior.

1 Introduction

1.1 Motivation

Having long outgrown its novelty [27], the World Wide Web healved into an indispensable
resource [2] for providing and accessing information andises [7]. Increased reliance on
the benefits that stem from a globally interconnected systeapled with the demands and
expectations of the growing web community have collecyivdriven a relevant research ef-
fort directed toward improving all aspects of web techng[@l) Addressing challenges that
threaten to diminish universal accessibility is one aspéthis multifaceted endeavor as well
as the motivation for the work presented here.

While there is a significant research effort directed towardroving accessibility for web
constituency with sensory, cognitive, and physical litigias, another important, yet less heav-
ily studied web usability factor is accessibility constitaiimposed by end-user browsing envi-
ronments. The existence and use of diverse, heterogenemisrations of browser, browser

version, and operating system can cause web page presaraatl functionality to vary signif-
icantly among users. Web pages that render and functiortexsdied in one environment may
be subject to missing page elements, ill-formatted layocansl erroneous scripts in another
[2]. Since the web audience is so diversely equipped, it goissible to know the combination
of web browser, browser version, and platform that will bézagd by all site visitors unless a
given website is being designed for a controlled intranensgquently, web developers who do
not adequately evaluate browsing environment acceggihil the risk of restricting the ability
to view and interact with website content to a subset of thie p@pulation, ultimately limit-
ing audience reach. The fundamental aim of this researahpsavide web developers with
an effective way of identifying browsing environment-sifiecaccessibility issues that could
hinder users from fully exploring and interacting with théarmation and services featured
on a given website. Effective accessibility evaluatiorhteques are no less than a necessity
for web content providers interested in maximizing audeareach by identifying the browsing
environment influenced accessibility issues that couldérirsome users from fully exploring
their site.

1.2 Current Approaches

One of the most widely used browsing environment accegtgiblaluations amongst web de-
velopers is dynamic, or execution-based. In this approaeb,browsers are the primary eval-
uation tool, and developers essentially load web pages ariaty of browsing environments
and observe subsequent presentation and functionalitiio@dh this evaluation strategy per-
mits a first-hand account of existing accessibility isstiggtations on time and other available
resources could severely limit the depth of the websiteeteahd the breadth of browsing en-
vironments explored. In most execution-based evaluatesabset of target environments are
identified and reserved as testing platforms leaving mamgrqirospective client environments
untested. As a result, the range of confidence in the acd@gibthe website is substantially
restricted and users with unanticipated browser, browsesion, and platform combinations
are subject to substandard presentation and functionality

An alternative, highly effective quality assurance evabrathat can be used to assess web
page viability across a series of client environments isctiie review, a static analysis tech-
nique aimed at identifying fragments of code consistengoaiated with faulty behavior. In
the domain of web applications, the source of these fauldedoagments, or bug patterns,
is quite straightforward; browsing environment obstaelese when unrecognized, or unsup-
ported, HyperText Markup Language (HTML) tags are encaeatén document source code.
More specifically, a page that renders correctly in one birmgvenvironment may be signifi-
cantly defective in another based on the relative suppdtteftags contained in the document
source code. Consequently, HTML tags are important aduégspredictors when support
for a given tag is known to be nonexistent or insufficient;leating the compliance of a web
page within an environment can be reduced to identifyingvsinog environment-specific bug
patterns. Since this type of static analysis does not regxecution and can essentially use
HTML source code as the basis for ensuring universal acttesslepth and breadth of evalua-
tion is expected to improve considerably in comparison &rekon-based approaches.

1.3 Contributions

Given the relatively efficient nature of accessibility exation based on tag support criteria, we
have developed a tool that will estimate website-to-bragggnvironment compliance based
on recognition of incompliant, or unsupported, tags withieb page source code. This tool
essentially automates the code review process for web pagdsghlights accessibility threats
based on knowledge of the tags that comprise the web pagekseasdpport provided for those
tags in various browsing environments. In direct relatiathwhe evaluation scheme, one of
the most important aspects of this tool is that it incorpesatomprehensive knowledge of tag
support rules so that the possibility of false negativegrosneous labeling of an incompliant
page as accessible in a given environment, is greatly redlic@ther words, conducting code
reviews with faulty knowledge can severely inhibit accarabmpliance analysis, causing a
web page to appear as if it will render properly in an incompiienvironment. In order to
address this issue, we have incorporated an inductiveitepnmechanism that can estimate the
compliance of HTML tags based on observations of positicedasible) and negative (inac-
cessible) examples of web page presentation and funditiypridbte, positive examples of web
pages can be accessed and utilized as intended by the dewebldggative examples of web
pages, on the other hand, are faulty in a given environmeht@mder improperly for users.
The underlying theory of the learning technique is that olzgéon of HTML tags that are posi-
tively correlated with negative examples can provide insigto the root causes of accessibility
issues.

In this paper, we discuss the technique that we have dewthgpesvaluating browsing
environment accessibility based on tag support criteriaesas the learning mechanism we
have incorporated for updating knowledge of tag complian®er approach is expected to
be effective because it can identify accessibility basriacross a wide variety of browsing
environments with less time and resources than execuiseebtechniques and it can derive
rules about tag compliance based on examples of web pageshizdiin the field. The paper
is arranged as follows: Section 2 outlines the basis of tipecgeh in addition to background
definitions that support the underlying theory for the td®éction 3 provides an overview of
the tool and its components. Section 4 covers an initialitbdéayg study. Section 5 provides
insight into related work. Finally, Section 5 outlines frework and concludes.

2 Background

Subjective presentation of web pages across various bmgvesivironments is largely a resid-
ual effect of theBrowser Wars, a period of strong competition among browser vendors at the
dawn of the web. Although the web was conceived and initieiplemented as a platform
neutral, device independent means of accessing inform§®@| and HTML was originally
intended to be a simple language for describing informalégouts, several browser devel-
opers incorporated proprietary tags that were exclusisepported by their products. While
development and introduction of new HTML tags was initi@kpected to encourage a positive
drive toward improved capabilities and more control ovegeokayout, the frustration, loss of
productivity, and in some cases, loss of revenue that hatedsfrom inconsistent support of
tags across browsing environments has undoubtedly hadativeegnpact on the web user ex-
perience. Recognizing a need to correct this problem, thddMdide Web Consortium (W3C)
[32] set out to define a set of standard tags that all browsensld support. Theoretically, if all
browser vendors adhered to the standards, web users woallld& view a web page using

any given browser and gain access to consistent presantiith functionality of the corre-
sponding page. While some browsers claim to be standardpl@ont) there is evidence that
most truly are not in the sense that tags deemed standarce 3 remain unsupported or
are supported improperly [6]. As a result, using the W3Cdadbrs is not an adequate measure
of cross-browser and, more specifically, cross-browsimgyenment compliance.

As stated before, a better measure for determining the-tmasgser compliance of a web
page, at finest granularity, and a website on the whole isdotity incompliant tags within
document source code and to report predicted accessithifeats to the developer. Since un-
supported tags are most likely to be correlated with rerteners, they can be consideriaa
patterns. As a result, to recast the meaning of an earlier statemargffactive code review
strategy for accessibility evaluation can essentially gara HTML source code of a document
with the bug patterns associated with a given client envivent. The strength of such a code
review, however, would be heavily reliant on the comprehamess, or completeness of the
set of bug patterns. To further illustrate these ideas, wsemnt the following definitions:

Definition 1: EnvironmeniSpecificBug Patterns

Let £ denote a browsing environment defined by the tripl&t, V, O> whereB is the browser,
V is the browser version, ard is the operating system. Considgrthe space of all possible
HTML document source tags:

{{Ve; € B3I = {i1,ia,..., 01 }s.t.(I CT) A (unsupported(I,e;)}} 1)

That is, each browsing environment supports only a substbieodverall tag spacg. All
other tags are unrecognized or incompliant in the assace&teironment. Consequently, tags
in I could be considered bug patterns for web pages renderedviroemente; and cross
browser accessibility of a website can be evaluated in a mwdew by detecting the presence
of tagsi,, € I.

Examplel:
The tag<mar quee>, though a part of the comprehensive tag’Betnd supported by In-

ternet Explorer, is unsupported in browsing environmedmas feature Netscape. Consequently,
<mar quee> would be an element of for environmentst’ where B in the corresponding
triplet is Netscape.

The tool we have developed employs this evaluation straéeglycompares the HTML tags
appearing in the source document of a web page to an inveatdsyg patterns associated
with various browsing environments. While other tools,lsas Doctor HTML [10] and Bobby
[4] incorporate similar assessment techniques, we haegriated a mechanism that takes into
account the need for a complete and accurate definitidrfafeach client environment. Con-
sider the following:

Definition 2: Bug PatternrKnowledgeCompleteness
The accuracy of a code review based on the set of tagssitargely dependent upon the accu-
racy and completeness of the descriptiord offf for instance:

{3t € T's.t.(t; & I) A unsupported(t;, e;)} 2

performance of static analysis that does not inclyydes a bug pattern will be compromised.

Example2:

Consider<bl i nk>, a tag that is unsupported in browsing environments feagunter-
net Explorer. If compliance evaluation was executed for & wage that incorporated the
<bl i nk> tag yet the tag was not listed ihas a bug pattern, the accuracy of the resulting
report would be compromised, and developers would be suiojéatent failures and false con-
fidence in universal accessibility.

To address the problem of defining a comprehensive repedgenof /, we have incor-
porated a learning mechanism that can extract this knowl&dgn observations of pages that
have positive and negative presentation and functionalidygiven environment. Although tag
support knowledge is available, obtaining a comprehersvef the issues that exist within
several different types of environments is relatively difft. Most information stores of tag
support knowledge only concentrate on Netscape or Intéxplorer compliance since they
are considered the more popular browsers. Given the factitbee is greater diversity in user
browsing environments, it is important that we get a betening of the tag support rules in
more environments to accurately evaluate browsing enmiart accessibility.

3 Tool Overview

As shown in Figure 1, users with different browser, browsgsion, and operating system com-
binations can experience a dramatic imbalance in web pggeaagnce and performance. In
this case, the Netscape 4.8 XP Professional environmenaisle to process the HTML direc-
tive, <di v styl e="background-i mage: url (/objects/...)" >, and the image
repeats in the rendered page as a result. The tool we haviepeslevould examine the source
code for this web page, compare it against an inventory & kagwn to be subjectively sup-
ported in a variety of browsing environments, such astbev styl e="...)" >example
provided above, and return a report indicating all deteatessibility threats.

To support the effort to effectively acknowledge and idigreixisting accessibility threats,
there are essentially three main tasks of the tool we deedlophey include:

e acquiring comprehensive, complete knowledge of tag supmpiberia within and across
browsing environments,

e utilizing tag support knowledge to evaluate accessibthtgats for web pages within a
website,

¢ and producing an accessibility evaluation report outtirttre existing accessibility threats
and their corresponding environments.

These tasks are carried out, respectively, byTdgeSupport Knowledge Base, the Compli-
ance Evaluator, and theAccessibility Report Generator. An overview of how these components
work together in the system is shown in Figure 2; a discussfa@ach component follows in
subsequent sections.

= Netscape: Hasbro Scrabble |
i v : el

f ¢ 3 4 2.0 S0 @
=

st

Protle

& TooL Box

—

B % 9P @ 2 Bt [T [menet

Netscape 4.8 XP Professional Internet Explorer 6.0 XP Bsiudaal

Figure 1: An example of the significant impact browsing emwiments can have on accessibil-
ity.

3.1 Tag Support Knowledge Base

Adequate population of the Tag Support Knowledge Base isabritbe most important as-

pects of the tool since attempting to detect accessibifitgdts with faulty knowledge can
severely inhibit an accurate report of web page compliaccaesequently, developing an ad-
equate knowledge base is imperative to identifying all asitelity threats that exist within

a website. To support tag criteria knowledge acquisitioa,have incorporated two distinct
methods:

e web developers can provide rules (Section 3.1.1),

¢ rules can be inductively learned based on observationssfiyand negative examples
of web pages (Section 3.1.2).

3.1.1 Manual Acquisition of Tag Support

Manual acquisition of tag support criteria involves acogptag support rules directly from
web developers. Since documentation on tag support erigxists, it is possible for web de-
velopers to gain access to these rules from various souncemanually enter them into the
system. In addition, however, this feature allows develepe specify, or design, arbitrary tag
rules to examine customized tag-related issues of inteféss essentially empowers users to
perform custom evaluations beyond the scope of browsingamment accessibility making
the tool more flexible and subsequently allowing more custechanalysis.

While manual acquisition of tag support criteria can be wesgful, making web develop-
ers solely responsible for providing all necessary supgritdria is potentially problematic. In
particular, a bottleneck could develop since developerdavoe responsible for both gathering
information and making it available to the tool; also, theuling accessibility analysis could
be compromised since the rules provided might be less thap@hensive. For instance, if a
support rule was not explicitly provided to the tool, it wdulot be applied during subsequent
analysis; this would undoubtedly have a negative impactatyais accuracy. To help combat

6

Compliance
Estimation

Accessibility
Report

Web Developer

Figure 2: System Overview

these issues, we have incorporated an automatic acquoisigthod as well.

3.1.2 Automatic Acquisition of Tag Support

Recognizing the benefit of having an automated method fdregiaig tag support in improv-
ing the accuracy of rules retrieved and reducing the burdémeoweb developer in providing
support criteria, we have implemented a learning algorjttiva goal of the algorithm will be

to determine the likelihood that an HTML tag is incompliastunsupported, given the magni-
tude of positive correlation with faulty web pages. In tewhshe definitions provided earlier,
the effort to maintain an accurate, comprehensive knovdduge of unsupported tags,as-
sociated with a given environment,, can greatly benefit from machine learning methods by
refining the definition of based on observation of pages that worked properly in arciaéed
environment (positive examples) and those that were fdnégative examples).

As stated before, the major drawback to execution-baseekaitility evaluations is the
fact that web developers generally lack the time and enwment access necessary to perform
a thorough assessment. The fact that execution-baseddeebrfeature a first hand account
of accessibility issues is actually quite attractive, heereand could provide more insight into
existing problems. In designing the learning mechanismhawe established an infrastructure
in which average users can submit the URL of a web page they dede inaccessible or
improperly rendered in their given environment over a ndrbmawsing session; this essen-
tially allows first-hand accounts of faults encountered éddctored into the analysis. In the
next section, we offer insight into how the results of usgreziences can be used to support
detection of accessibility threats in subsequent codewesi

Learning Technique: In the inductive, or learning by example, methodology pnése here,
web pages are the raw material for training. The HTML tags shaicture the web page and
the manually defined classification of the web page as eitlparsdive or negative example
provides a statistical basis for determining the influengésan tag has on web page accessi-
bility. To evaluate the association of a given tag with iressibility in our current tool, thg?

[33] value of the tag will be evaluated. In shox uses observance of positive and negative
examples to estimate the association of an element to oegargtor another. In our tool, the
\? statistic measures the lack of independence of atfamd a category, and evaluates to 0

if the term is independent. The equation is provided below:

1.0) = N x (AD — CB)? @)
M= AY O x B+ D) x (A+ B) x (C+ D)
Here, A is the number of positive examples that contain ataf,is the number of negative

examples that contaif) C is the number of positive examples that do not contaand D is
the number of negative examples that do not include the dagn.

Web Page Collector: To briefly take a step back, let’s consider how the systemauidjuire
the raw material for induction. A web page collector will pide the front end of the learn-
ing component, allowing users to submit URLSs of both positimd negative examples of web
pages in associated environments. Next, the collectoretiileve the corresponding web page
and update the values df, B, C', and D for tags found in the source code; this process will
help to establish the likelihood that a given tag is assediatith diminished accessibility in an
associated browsing environment.

Inference Mechanism: To facilitate the learning process, the inference mechamgorpo-
rates a structure that maintains the value for each tag. In particular, each environment is
assigned am x 2 table in which the first column lists the tags found in examples and the
second column of the table hold tié value for the corresponding tags.

To illustrate the learning strategy and use of the inferestiaecture, consider the following
results obtained after observing positive/negative ms#a and calculating? for each tag re-
covered:

Tag X

HTML 0
Java 1.3 | 15
Java 1.2 | 2.0
Java 1.1 | 0.33
Tabl e 5.0
Bol d 1.3

Given the data presented and the criteria stated beforétgheonclusion that can be drawn
is that theHTM_ tag is independent of whether the page is classified as wpddifaulty. As a
result, the inference mechanism can delete this partitaggirom the inference table and place
it on a list of accepted tags resulting in the following:

Tag X
Java 1.3 | 15
Java 1.2 | 2.0
Java 1.1 | 0.33

Tabl e 5.0

Bol d 1.3

| Supported Tag$ HTM_ |

Next, the inference mechanism can observe that, in thecpéatiset of examples submit-
ted, theJava 1. 1 tag never occurs in a negative web page although it has sgipbeeseveral
positive documents provided in the database. The same farlttse Bol d tag as well. Con-
sequently, those tags can be removed form the inference aabll added to the list of accepted
tags:

Tag %
Java 1.3 |15
Java 1.2 |20

Tabl e 5.0

| Supported Tags HTM. | Java 1.1 | Bol d |

Given this latest development, it can be assumedithea 1. 3,Java 1. 2,andTabl e
are possibly faulty tags, and the inference mechanism aathes? value to estimate the like-
lihood that the associated tag is associated with faulty pagdes. More specifically, when
reporting to the result generator, the inference mechao#&@mncorporate a threshold to deter-
mine y? values that correspond with highly probable faulty tags.

3.2 Compliance Evaluator

Once rules have been entered, the system will be primed toateaveb page accessibility. To
begin evaluation, web pages are retrieved from a userfsggubcoot and a web crawler sends
the retrieved HTML code to the Compliance Evaluator for gsigl The Compliance Evaluator
is essentially responsible for using knowledge of incoarltags to estimate the prospective
accessibility of a given web page within a respective emritent. More specifically, using
regularized versions of bug patterns stored in the Tag Stpgpowledge Base, the Compliance
Evaluator accepts a series of web pages from the web craayplies the tag-based regular
expressions to them, and indicates matches to the repatajen

3.3 Accessibility Report Generator

The accessibility report generator provides tool userh watit overview of the pages traversed
from a root, most likely a home page, in a hierarchical lgtri pages encountered in addition
to, and most importantly, an outline of the pages that areebegl to fail in a corresponding
environment. The hierarchy of the site, as outlined in tta, tprovides users with a general
idea of the shortest path from the root URL to the page of @stiefollowing a series of links.
The tool also provides indicators of unreachable, or brpkeks as well. An example of this
is shown in Figure 3.

Note, in Figure 3, the pane of the interface labeled (3) digpln overview of the pages
that are suspected to be faulty in the associated environmeback track, the area labeled (1)
allows users to specify the root URL from which to retrievésequent pages, the button la-
beled (2) allows the user to import a file of customized tagsand finally, the pane labeled (4)

9

&

(] page 7 e
‘ 1)L: [nttswswow 13p ume i ihtm | Seart Stop
=] My Firsk HTML document 4 wi\desktoplEatorf|Data.txt
-] Mumber 1 i@ Internet Explorer 4.X Compliant
L[] Number ¢ =4 Internet Explorer 5.5 Compliant
@ hitp: s, Jap.umd edujC htm [L I . edufCensus/BL htm
4] Mumber 2 [=-_4 Hekscape 4.% Compliant
] Number 7 - htpu/Jwwnlap,und.edujcensusibusinessinewipage him
-] Number 8 0w lap, umd eduj Census/BL 1.t
B[] hietpe fomaJap, umd. edufCe i it d edufCensus/BL htm
20 betp: foman Jap. umdl.ed. . d eddufCansus Bt it
{21 Mumber 3 d edu/Census/BL htm
@ hitp: s, Jap,umd eduiC 13.htm Lo i edujCensus/BL htr
<{2] hktp: ewarn.lap.umd.edufCensus/Business Mew/FOF . pdf P b hittpiiurlap.umd.edu]CensusfBL htm
- # WebT¥ Compliant
L@ AOL 4.4 Compliant @
Toggle OFf [Depth

Figure 3: System Interface

provides an overview of the site where the root node cormdpavith the root URL provided
by the user and all succeeding nodes represent reachableageb.

4 Feasibility Study

One of the major assertions of our work is that web developansdetermine the browsing
environment profiles that will not process their web pagesuaately based on the tags that
structure the page and the support provided for each tagvalaae the ability of our tool to
do this, we manually provided the tool with a list of tags thesre not supported in various
environments and applied it to a mock website in order tordetee how well the tool would
perform. To prime the knowledge base with environment-$igesuipport rules, we consulted
several sources on tag support provided in various envieosn From the data we attained
(a sample of which is shown in Figure 4(a)) we were able toveéean input file of browsing
environment bug patterns (a sample of which is shown in [€igb)).

Rule Set: Incompliant Netscape 4.0 HTML Rule Set: Incompliant Netscape 4.0 HTML
<script language = “javascript1.3"> Tag: script
<marquee> Attribute: language
Rule Set: Incompliant Internet Explorer 5.0 HTML Value: javascript1.3
<blink> Tag: marquee
<body marginwidth="*"> Rule Set: Incompliant Internet Explorer 5.0 HTML
(a) (b)

Figure 4: An example of tag support rules (a) and how devetopresent them during manual
acquisition (b).

To begin browsing environment accessibility analysis, we/jged the homepage URL of

the web site as the root in region (1) of Figure 3. Next, we irtgsban input file similar to
Figure 4(b). We were able to observe the arrangement of theitegn pane (4) of Figure 3 and

10

the accessibility threats detected in pane (3) of Figure SaAesult of our analysis, we were
able to quickly identify web pages with possible accesgybthreats, the unsupported tags
they contained, and the environments they would be unstggbor. Detecting the presence of
unsupported tags and presenting them to a web developer wghb Imave used a What You See
Is What You Get (WYSIWYG) development tool is expected to m#ie process of correcting
such issues much easier. As a result, we are highly confideheiviability of our tool. We
feel it will be highly beneficial to web developers by alegithem of the issues that must be
corrected in order to make the information or content theyuiee available to all web users
regardless of browsing environment.

5 Related Work

The overall endeavor to detect browsing environment aduégsbarriers and to ensure com-
prehensive knowledge of tag support falls under generalareb endeavors associated with
web testing, bug isolation, and bug patterns. While thaiogldo web testing may be obvious,
bug isolation is a related endeavor because the attempstowd#r new tag support rules is
largely an attempt to isolate faulty tags given observatiminsource documents. Bug patterns,
of course, are related because faulty tags can be recasy gmtiarns and used during a code
review to detect possible accessibility barriers. In tleistion, we discuss other work that ad-
dress these issues.

5.1 Web Testing
5.1.1 Web Accessibility

While ensuring and improving accessibility amongst webstiturency has been identified as
an important issue, most of the work in this area is directedatd improving accessibility

for individuals with physical limitations [1, 15, 30], ourosk, on the other hand, focuses on
the less heavily studied issue of accessibility constsamposed by end-user browsing envi-
ronments. Published work specifically targeted at imprgw@ocessibility evaluations based on
browsing environment related constraints [2, 3] is rekd$iscarce. In addition, there have been
relatively few tools created to detect threats to this djetyipe of accessibility factor [4, 5, 10].

In terms of published work, Berghel [3] presented an acbdigievaluation framework
based on the concept of the test patterns used in earliertdagpair and adjust television
sets. In Berghel’'s approach, the so-callbeb Test Pattern was comprised of a suite of test
web pages, each of which incorporated several HTML tags eadrgptions of the impact they
would have if rendered correctly. This approach essentalbwed users to test their partic-
ular client environments to determine compliance levals for web developers interested in
establishing compliance across a wide variety of platfotims type of dynamic testing could
be severely inefficient. The Browser Photo [5] tool improwaeghe idea of the test pattern by
automatically loading and testing specific pages in a wyagebrowsing environments and pro-
viding screenshots of the results back to the user. Thougtv&r Photo [5] does not restrict
developers to a predefined list of tags and eliminates the foeeisers to manually load pages
themselves, this approach is weakened by the fact that weiityacan only be observed above
the fold since scrolling to see the entire screen is not awopt individual screenshots; it also

11

limits the amount of browsing environments that can be tegig¢he ones featured within the
tool.

Other tools that address this problem [4, 10] employ statatyesis to identify environment-
specific bugs by observing the source code of HTML documemdsdetecting tags that are
known to be incompliant in browsing environments. Yet, ag#hese tools constrains users
to the browsing environments featured and their evaluatése limited by the comprehensive
nature of tag support knowledge. As it stands, our systempsated to improve environment
accessibility evaluation for tools like these by observiagl-word examples of positive and
negative page behavior, determining the actual tag supptetia in corresponding browsing
environments, and providing this knowledge to such toohsd $upport criteria can be updated
accordingly.

5.1.2 MoreGeneral Concerns

Ensuring web page quality has become a significant reseaalhoger the years; in general,
there has been a great deal of effort placed in applyingttoadil quality assurance measures
to web-based software from object-oriented solutions [24), to reverse engineering tech-
niques [13, 16, 20]. Yet, there are several differences éetviraditional software systems and
the web environment that complicate the endeavor. For dimmugh traditional software de-
velopers had to be relatively familiar with a language befoeing confident enough to create
and distribute products publicly, a growing number of autigptools providing WYSIWYG
tools allow developers to create web pages without beinglitarvith HTML[30]. The fact
that web designers are not necessarily technology spasidlireatens the goal of universal
quality assurance largely because successful delivergartle web pages is dependent upon
the developers awareness of the aspects involved [27]. eiise endeavors share the spirit
of our work, assessing the correctness of web applicatieftsd®they are released in the field,
we are most concerned with the challenges presented wheamwebnments are untested and
the corresponding environment does not support page etsmen

5.2 Bug lsolation and Bug Patterns

On a more general level, there is a body of work related to eerall goal of providing a
practical and effective tool for helping software develspaetect errors and identify their root
causes. In this section, we discuss work involved with batatgon and bug pattern generation
in more traditional software. In [12], Hangal and Lam pre42fDUCE, a tool that isolates the
root of errors based on identification of system invariaifitse work presented in [19] is very
similar to our own because the goal is to recognize bugs itesysbased on user experiences
with faulty executions. The idea is to gather user execytiafiles, identify predicates in the
source code and, use logistic regression to determine abensents most strongly correlated
with system failure. As noted in [11], one of the major obkado finding program errors is
simply knowing the correctness rules the system must obleg.tdchnique they present looks
for contradiction in code constructs, points out the ddferes, and allows users an opportunity
to determine which of the two is incorrect. Once a contraalicts identified, a template rule,
or bug pattern, is devised to identify other code that mayheerbot of similar errors. In
[22], Matsumura et. al use bug code patterns to identifyatiohs of implicit coding rules.

In other words, legacy systems usually incorporate a sefiemdocumented, implicit rules
that effect execution; new developers to a team may be ueavfathem and violate them
during maintenance. The idea is to investigate bug repidesfify the error, and derive a bug

12

pattern that can be used to identify similar code constrdnteur case, novice developers are
analogous to new developers on a team unaware of implicihgadles, individuals in the field
encountering faulty executions essentially submit bugmspand the learning mechanism we
have developed identifies the faulty tags and derive cooredipg bug patterns.

6 FutureWork and Conclusion

6.1 Future Work

The algorithms presented here represent our initial attemopeffectively identify tag-related
hindrances to universal accessibility and to devise a mamtiuctively determining the tags
that are unsupported or incompliant in associated bronasmgonments. While we are fairly
confident in the design we have incorporated for evaluatomgptiance for individual web
pages, we plan to expand the scope of the learning algoritiimfuther investigation. More
specifically, at the very beginning of this project, our imlitapproach to this problem was
to exploit the model of text classification. Yet, instead etatting words or features most
associated with a category, we wanted to determine the sibdég constraints associated with
source HTML tags given the strength of association withqategorized web pages. In this
sense, our interests align because we want to classify #erés, or tags, of web documents
based on their appearance in, and subsequent associatlgnaatessible and inaccessible
pages.

In identifying other fields from which a strong learning aligiom can be based, one highly
analogous field is epidemiological study in which the causa disease is identified. One
particular class of experiment, the case-control studpast commonly used to study disease
etiology and the premise of this type of investigation isimedt alignment with our method for
discovering incompliant tags. In short, case-controligsidre retrospective in that researchers
start with the knowledge of disease occurrence and workvieaals to identify any risk factors
which can be associated with the outcome. Risk factors jsditimain, are conditions, events,
or characteristics which are associated with an increagskiffior a given disease. Similarly, in
our mechanism for learning tag compliance, web pages areceqbto be preclassified, mean-
ing the outcome is already known. We essentially want tordetes the tags most responsible
for the classification by identifying tags that have highoasation with faulty web pages. Given
the high level of similarity to case-control studies, oneoaf future endeavors is to observe
the range of techniques employed in case control studiedB,£23, 26] in addition to specific
techniques for determining the most significant featureslearning set [8, 17, 28], alternative
techniques for determining causation [21, 31], and metl@dsandling conflicts among data
sets in order to identify other, perhaps more approprigpeagehes to this problem.

Also, as noted in [25], while building knowledge bases by snadllaboration can greatly
improve the time and effort needed to accumulate informasach an approach brings issues
such as quality, consistency, and relevance of submittechiration and the scalability of learn-
ing algorithms used to surface. In our particular case,esthe knowledge derived is heavily
dependent on examples, it is important that users categpeges accurately, that examples
provide a relevant bases for inference, and that the akgori$ able to process large numbers
of contributions accurately. Ensuring that pages provigetie engine actually represent pos-
itive and negative examples as labeled and that the popnlsize observed is large enough to
derive accurate generalizations will have a direct impacthe success of the approach. Ad-
dressing such issues is expected to be a significant partuttieefendeavor to maximize the
potential of this system on a whole, and the learning meciaim particular.

13

6.2 Conclusion

The motivation of this work is one facet of a general endedawosupport and improve the
quality of user experiences on the web. The diversity in Isingy environments used to nav-
igate the web present a unique challenge for web contenidem/to effectively asses and
correct threats to universal accessibility. Our contituto this problem has been to derive
a framework that can detect accessibility threats basedowik bug patterns and to improve
knowledge of tag support rules for browsing environmentgidyctively learning from work-
ing and faulty examples of page behavior or appearance. Bintong to observe alternative
etiological measures and persistently updating and regfiour tool based on our findings, we
believe that we can provide an extremely effective defemgsenat the lost productivity and
revenue associated with browser-related accessibiityes.

References

[1] Dorothy Ann Amsler. Establishing standards for usalld accessible user services web
sites. INSIGUCCS'03: Proceeding®f the31stAnnual ACM SIGUCCSConferencen
UserServices, pages 63—64, New York, NY, USA, 2003. ACM Press.

[2] Hal Berghel. Using the WWW test pattern to check HTML cdiapce. Computer,
28(9):63-65, 1995.

[3] Hal Berghel. HTML compliance and the return of the tedtigran. Communication®f
the ACM, 39(2):19-22, 1996.

[4] Bobby. http://www.watchfire.com/products/webxm/lbgtaspx.
[5] Browser photo by NetMechanic. http://www.netmechatom/browser-index.htm.

[6] Joe Clark. The glorious Peoples myth of standards canpé.
http://www.joeclark.org/glorious.html.

[7] Francesco Coda, Carlo Ghezzi, Giovanni Vigna, and Fa@warzotto. Towards a software
engineering approach to web site developmentlWi$SD '98: Proceeding®f the 9th
InternationalWorkshopon SoftwareSpecificationand Design, page 8. IEEE Computer
Society, 1998.

[8] David R. Cox and E. Joyce Snell. The choice of variable®lservational studies.
Applied Statistics, 23(1):51-59, 1974.

[9] Pei Hsia D.C. Kung, Chien-Hung Liu. An object-orientedlmvest model for testing web
applications. InProceedingskirst Asia-PacificConferenceon Quality Software, pages
111-120, 2000.

[10] Doctor HTML. http://www2.imagiware.com/RxHTML/.

[11] Dawson Engler, David Yu Chen, Seth Hallem, Andy Choul Benjamin Chelf. Bugs as
deviant behavior: a general approach to inferring errorsystems code. I8OSP'01.:
Proceeding®f the eighteenthrACM symposiunon Operatingsystemsprinciples, pages
57-72. ACM Press, 2001.

14

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Sudheendra Hangal and Monica S. Lam. Tracking dowmso# bugs using automatic
anomaly detection. IWCSE’02: Proceeding®f the 24th InternationalConferenceon
SoftwareEngineering, pages 291-301. ACM Press, 2002.

Ahmed E. Hassan and Richard C. Holt. Architecture recpwf web applications. In
ICSE '02: Proceeding®f the 24th InternationalConferenceon SoftwareEngineering,

pages 349-359. ACM Press, 2002.

John H. Holmes. Discovering risk of disease with a lgagnclassifier system. In
InternationalConferenceon GeneticAlgorithms, pages 426-433. Morgan Kaufmann,

1997.

Leonard R. Kasday. A tool to evaluate universal web ssitdlity. In CUU ’00:
Proceeding®n the 2000Conferenceon UniversalUsability, pages 161-162, New York,

NY, USA, 2000. ACM Press.

Holger M. Kienle and Hausi A. Mller. Leveraging progranalysis for web site reverse
engineering. INWSE'01: Proceeding®f the 3rd InternationalWorkshopon Web Site
Evolution(WSE'01), page 117. IEEE Computer Society, 2001.

George V. Lashkia. Learning with relevant features amdmples. Ininternational
Conferenceon PatternRecognition, pages 68—71, 2002.

Susan Lewallen and Paul Courtright. Epidemiology iagbice: Case-control studies.
CommunityEyeHealthJournal, 11(28):57-58, 1998.

Ben Liblit, Alex Aiken, Alice X. Zheng, and Michael I. Jdan. Bug isolation via re-
mote program sampling. IRroceeding®f the ACM SIGPLAN 2003 Conferenceon
Programming_anguageDesignand Implementation, San Diego, California, June 9-11

2003.

Giuseppe A. Di Lucca, Massimiliano Di Penta, Giulianoténiol, and Gerardo Casazza.
An approach for reverse engineering of web-based apmitati In WCRE '01:
Proceedingf the Eighth Working Conferenceon ReverseEngineering(WCRE’01),

pages 231-240. IEEE Computer Society, 2001.

lain Martel. Probabilistic empiricism: In defence oR&ichenbachian theory of causation
and the direction of timeThesis-Universityof Colorado, 2000.

Tomoko Matsumura, Akito Monden, and Ken ichi Matsumotd method for detect-
ing faulty code violating implicit coding rules. IHBWPSE '02: Proceedingsof the
InternationalWorkshopon Principlesof SoftwareEvolution, pages 15-21. ACM Press,

2002.

Dirk Pfeiffer and Roger S. Morris. Comparison of four lixariate techniques for
causal analysis of epidemiological field studies.Piwceeding®f the 7th International
Symposiunon VeterinaryEpidemiologyandEconomics, pages 165-170, San Francisco,

CA, USA, 1994. Morgan Kaufmann Publishers Inc.

Filippo Ricca and Paolo Tonella. Analysis and testifgveb applications. INCSE’01:
Proceedingsf the 23rdInternationalConferencen SoftwareEngineering, pages 25-34.

IEEE Computer Society, 2001.

15

[25] Matthew Richardson and Pedro Domingos. Building lakgewledge bases by mass
collaboration. IrK-CAP '03: Proceedingsf thelnternationalConferencen Knowledge
Capture, pages 129-137. ACM Press, 2003.

[26] Shaun R. Seaman and Sylvia Richardson. Bayesian amallysase-control studies with
categorical covariate®iometrika, 88(4):1073-1088, 2001.

[27] Brian Sierkowski. Achieving web accessibility. RProceeding®f the ACM SIGUCS
Conferenceon UserServices, pages 288—-291, 2002.

[28] Keith W. Smillie. Regression analysis: Theory and comagion. InProceeding®f the
Eigth InternationalConferenceon APL, pages 401-407, 1976.

[29] Terry Sullivan and Rebecca Matson. Barriers to usebilisgaand content accessibility
on the web’s most popular sites. GUU '00: Proceeding®n the 2000 conferenceon
UniversalUsability, pages 139-144, New York, NY, USA, 2000. ACM Press

[30] C. A. Velasco and T. Verelest. Raising awareness amesigders of accessibility issues.
In ACM SIGRAPHComputersandthe PhysicallyHandicapped, pages 8-3, 2001.

[31] Peter Vineis. Causality in epidemiologgozPraventivMed, 48(2):80-87, 2003.

[32] W3C. http://www.w3.org/.

[33] Yiming Yang and Jan O. Pedersen. A comparative studyeatufe selection in text
categorization. INCML '97: Proceeding®f the FourteentinternationalConferenceon
MachineLearning, pages 412—-420, San Francisco, CA, USA, 1997. Mokgaufmann
Publishers Inc.

16

