
Improving Rule Extraction from Neural Networks by Modifying
Hidden Layer Representation

Thuan Q. Huynh

Abstract— This paper describes a new method for extracting
symbolic rules from multilayer feedforward neural network s.
Our approach is to encourage backpropagation to learn a
sparser representation at the hidden layer and to use the
improved representation to extract fewer, easier to understand
rules. A new error term defined over the hidden layer is
added to the standard sum of squared error so that the total
squared distance between hidden activation vectors is increased.
We show that this method helps extract fewer rules without
decreasing classification accuracy in four publicly available data
sets.

I. I NTRODUCTION

Error backpropagation is the most widely used supervised
learning method for neural networks and has achieved suc-
cess in many classification and prediction applications. A
typical network has an architecture consisting of an input
layer, one or more hidden layers, and an output layer (Figure
1). There are several variants of the algorithm, all driven by
minimizing the sum of squared errorE =

∑

(correcti −
outputi)

2 at output units. The network learns a mapping
between the input and output units, while the hidden units
and the weights between them and other units contain the net-
work’s internal representation of the input. This distributed
representation as large matrices of floating point numbers
makes it very difficult for a person to understand what the
network has learned. This difficulty has inspired substantial
past research on how to extract symbolic, human-readable
rules from a network so that we can be more confident
about its classifications and understand more about what has
been learned from the data. In spite of a large amount of
work addressing this issue ([1], [2], [3], [4], [5]), the results
obtained are still very limited.

There are three main approaches that have been taken in
past work on rule extraction from neural networks: pedagog-
ical, decompositional and eclectic (hybrid of the other two).
Pedagogical methods consider a neural network as a black-
box oracle that provides cleaner and more class labels. They
extract input-output rules without looking at the units and
weights. Decompositional methods investigate hidden units
and weight matrices to produce rules that follow the internal
working of the networks. Beside good classification accuracy,
having a smaller number of rules is a very important criterion
for rule extraction algorithms so that a human can understand
their content easier.

Many of the decompositional approaches, including ours,
first extract the rules that explain the mapping between the
hidden unit activations and the output and then extract the
rules governing the input - hidden layer relationship. These
rules are then combined to produce the final input - output

rules. This approach tries to produce simpler and fewer rules
at the hidden - output layer so that it can generate fewer rules
overall. The number of rules depends heavily on how the
hidden unit activation vectors - encodings of the inputs - are
arranged in space. During learning, backpropagation is free to
create any encoding scheme over the hidden units as long as
the final error at the output layer is minimized. This presents
a problem to decompositional methods because sometimes
the hidden layer representations of the input patterns are so
complex or distributed that a lot of rules are required to
explain the hidden - output layer mapping. In this paper we
propose a new error term to augment the standard sum of
squared error. The new error term encourages backpropa-
gation to learn a sparser encoding over the hidden layer in
which vectors of hidden unit activations are further apart
than they would normally be with standard backpropagation.
Gradient descent is used to modify error backpropagation
when using this new error term. Our hypothesis was that this
would result in fewer rules. Our computational experiments
thus compared the same rule generation procedure using
error backpropagation with and without the new error term
to assess its impact on the number of rules generated.

The rest of this paper is organized as follows: Section
II describes the new error term and the rule extraction
algorithm. Experimental results are presented in Section III.
Section IV gives conclusion and discussion.

II. T HE ALGORITHM

In this section, we first describe the new error term that
makes the hidden unit activation representation sparser and
an efficient way to compute the derivative of this term for
training using error backpropagation. Then we present an
algorithm to extract symbolic rules that utilizes the improved
representation at the hidden layer.

A. New error term

In this work we are interested in extracting rules from
multilayer feedforward neural networks with one hidden
layer as shown in Figure 1.

The activation of thejth hidden unit when thepth instance
is presented is calculated as the logistic function of the
weighted sum of inputs:

ap
Hj

= σ(

input
∑

i=1

wjix
p
i)

where
• xp

i is the ith input unit value of thepth instance.

Fig. 1. A typical fully connected feedforward neural network

• wji is the weight from theith input unit to thejth

hidden unit.
• σ() is the logistic function.

The activation of thekth output is calculated as the logistic
function of the weighted sum of hidden unit activations:

ap
Ok

= σ(

hidden
∑

j=1

vkjaHj
)

wherevkj is the weight from thejth hidden unit to thekth

output unit.
The usual error function computed over the output units

is:

E =

N
∑

p=1

output
∑

k=1

(tpk − ap
Ok

)2

where tpk is the target output for thekth output unit when
the pth input pattern is presented, and N is the size of the
input data set (number of input - output pairs).

We introduce a penalty termE2 that decreases as the
hidden unit activation vectors are further apart.

E2 = −
1

2

N
∑

p=1

N
∑

q=1

hidden
∑

k=1

(ap
Hk

− aq
Hk

)2

where ap
Hk

is the activation of thekth hidden unit when
the pth input sample is presented.E2 is the sum over all
pairs (p, q) of the squared Euclidean distance between two
hidden activation vectors for thepth andqth input patterns.
The negative sign ensures that when neural network training
minimizes the error, it will maximize the distances between
the hidden layer vectors.

The new total error function guiding learning is:

E′ = αE + βE2

whereα, β > 0, α + β = 1. Note that the double sum over
p and q can makeE2 quite large relative to E, soβ must be
quite small to scaleE andE2 appropriately.

In order to train the network with error backpropagation,
we need to compute∂E′

∂w
= α∂E

∂w
+β ∂E2

∂w
. First, the standard

term ∂E
∂w

can be computed efficiently as in [6].

We have ∂E2

∂vkj
= 0 with vkj being the weight to thekth

output unit from thejth hidden unit becauseE2 does not
have anyvkj component.

With wji being the weight from theith input unit to the
jth hidden unit, we have derived an efficient way to compute
the derivative∂E2

∂wji
as follows:

Let E2 =
∑

p Ep
2

where:

Ep
2

= −
1

2

N
∑

q=1

hidden
∑

k=1

(ap
Hk

− aq
Hk

)2

Then we can calculate the gradient of the errorEp
2

with
respect to weightwji:

∂Ep
2

∂wji

=

hidden
∑

k=1

∂Ep
2

∂ap
Hk

∂ap
Hk

∂wji

Because
∂a

p

Hk

∂wji
= 0 with k 6= j, we have:

∂Ep
2

∂wji

=
∂Ep

2

∂ap
Hj

∂ap
Hj

∂wji

= −
1

2

N
∑

q=1

hidden
∑

k=1

∂(ap
Hk

− aq
Hk

)2

∂ap
Hj

∂ap
Hj

∂wji

= −
1

2

N
∑

q=1

hidden
∑

k=1

2(ap
Hk

− aq
Hk

)

(

∂(ap
Hk

− aq
Hk

)

∂ap
Hj

)

∂ap
Hj

∂wji

= −

N
∑

q=1

hidden
∑

k=1

(ap
Hk

− aq
Hk

)

(

∂ap
Hk

∂ap
Hj

−
∂aq

Hk

∂ap
Hj

)

∂ap
Hj

∂wji

With k 6= j, we have
∂a

p

Hk

∂a
p

Hj

∂a
p

Hj

∂wji
= 0 and

∂a
q

Hk

∂a
p

Hj

∂a
p

Hj

∂wji
= 0

becauseap
Hk

andaq
Hk

do not havewji component. So:

∂Ep
2

∂wji

= −

N
∑

q=1

[

(ap
Hj

− aq
Hj

)

(

∂ap
Hj

∂ap
Hj

−
∂aq

Hj

∂ap
Hj

)]

×
∂ap

Hj

∂wji

= −

N
∑

q=1

[

(ap
Hj

− aq
Hj

)

(

1 −
∂aq

Hj

∂ap
Hj

)]

×
∂ap

Hj

∂wji

For p 6= q, we can assume thataq
Hj

does not change when

we process patternp. This leads to
∂a

q

Hj

∂a
p

Hj

= 0 or (1−
∂a

q

Hj

∂a
p

Hj

) =

1. Whenp = q, we have(ap
Hj

− aq
Hj

) = 0. So:

∂Ep
2

∂wji

= −

N
∑

q=1,q 6=p

(ap
Hj

− aq
Hj

) ×
∂ap

Hj

∂wji

= −((N − 1)ap
Hj

−

N
∑

q=1,q 6=p

aq
Hj

)
∂ap

Hj

∂wji

= −(Nap
Hj

−

N
∑

q=1

aq
Hj

)
∂ap

Hj

∂wji

= −N(ap
Hj

− aHj
)
∂ap

Hj

∂wji

with N being the number of training patterns andaHj
is

the average activation of thejth hidden unit over all input
samples. As with the usual backpropagation derivation, we

have
∂a

p

Hj

∂wji
= ap

Hj
(1 − ap

Hj
)xp

i . Thus,

∂Ep
2

∂wji

= −N(ap
Hj

− aHj
)ap

Hj
(1 − ap

Hj
)xp

i

It is interesting to note that when computing∂E′

wji
for the

pth input sample, besides looking at the activation of thejth

hidden unit and theith input unit as is done with the usual
backpropagation training, we only need one more valueaHj

which can be computed and stored locally at thejth hidden
unit. This local property is highly desired in neural network
training.

B. Rule extraction algorithm

The outline of our rule extraction algorithm is as follows

• Step 1: Train the network
• Step 2: Cluster the hidden unit activation values
• Step 3: Extract rules explaining the output in term of

clustered hidden unit activation values
• Step 4: Prune unnecessary weights connecting the input

layer to the hidden layer
• Step 5a: If the data consists of continuous attributes:

generate rules in the form of linear inequalities on input
for hidden unit activation cluster values.

• Step 5b: If the data consists of binary attributes: generate
decision tree rules for each hidden unit activation value
cluster using C4.5 [7]

Step 1 to 4 are similar to [8], [9], [10] but differ in a
number of ways: we use (1) a different error function that
puts a strong emphasis on hidden unit activations’ sparsity
rather than pruning (2) a different learning algorithm and (3)
C4.5 for extracting the simplified hidden - output mapping.

In step 1, we use RPROP [11] (resilient backpropagation)
an improved backpropagation learning algorithm that trains
networks faster by adjusting the weight update based on
the behavior of the gradient instead of the magnitude of
the derivatives. It also requires few training parameters.
We augment the error function with the popularweight
decay term Ed = λ

∑

j

∑

j w2

ji to prevents weights from
getting too large [12]. Weight decay has been shown to
improve the generalization performance of neural networks
(regularization).

The logistic hidden unit activation values are in the
range [0, 1]. After training, the values at each hidden
units can be clustered together into disjoint intervals
[0, r1), [r1, r2), ..., [rn, 1] such that we only need to know
which interval the hidden activation values are in to deter-
mine the class label of training instances. We use the Chi2
discretization algorithm [13] to cluster the activation values.
The algorithm first makes one interval for each activation
value, sorts the intervals in increasing order, then usesχ2

statistics to determine which pair of adjacent intervals should
be merged next. Some pairs of intervals are not allowed to be

merged because that would affect the classification accuracy.
For example, when there are two training examplesp andq
with different class labels such thatap

Hj
is in the first interval

and aq
Hj

is in the second interval, the two intervals cannot
be merged as we no longer can determine which class label
to assign knowing only the interval that thejth hidden unit
is in.

In step 3, we extract rules having the form(Hi1 =
l1, Hi2 = l2, ...) → class = cj which meansif the ith

1

hidden unit’s activation value is in intervall1 and theith
2

hidden unit’s activation value is in intervall2 and . . . then
classify the sample as classcj . Rule extraction is done by
C4.5. This extraction step is also a base step in other rule
extraction algorithms. It is very important to have fewer rules
here because the number of rules here strongly affects the
final number of rules that ultimately specify the input - output
relationship.

The novelty of our method is in the use of the new error
term that “pushes” the hidden activation vectors away from
each other, so that their component values tend to cluster
toward the two ends of the interval[0, 1]. This in turn results
in many hidden units having values clustered into only two
intervals [0, r), (r, 1]. Having such simple splits is highly
desirable for making fewer and simpler rules.

Step 4 prunes the network by removing unnecessary
connections from the input units to the hidden units. Pruning
reduces the number of weights, thus making the rules with
continuous inputs simpler. It also helps extracting simpler
rules for binary inputs. We use a simple pruning scheme
that greedily removes weights in increasing order of their
magnitudes and stops when the accuracy in the validation
set drops below a specified threshold.

Step 5 is different for continuous and discrete attributes.If
the inputs consist of continuous attributes, we can generate
directly rules that depend upon when thejth hidden unit
activation is in an interval[r1, r2) stated as follows:

r1 ≤ aHj
< r2

r1 ≤ σ(wj1x1 + wj2x2 + ... + wjnxn) < r2

σ−1(r1) ≤ wj1x1 + wj2x2 + ... + wjnxn < σ−1(r2)

Not all xi are present in each rule because we have already
pruned unnecessary weights in step 4. Every hidden-output
rule produced in step 3 is a conjunction of which interval
each hidden unit value must be in, so we can easily replace
the terms in the conjunctions with the above inequality to
produce rules explaining the output classification directly
from the input.

For problems with binary inputs, we use C4.5 to generate
one set of rules for each hidden unit’s activation. The rules
tell the conditions on inputs that would make a hidden unit
activation value fall into one interval. For example, a rulefor
the jth hidden unit has the form:

(xi1 = b1, xi2 = b2, ...) → aHj
∈ kthinterval

Because the rules in this step are only concerned with which
interval a hidden unit activation is in, they are much simpler.

We then replace each termHi = li in step 3 with the input-
hidden layer rules, simplify the boolean expressions, and
remove the duplicates to have the final rules explaining the
classification directly from the input values.

C. Illustrative example

We consider the hidden unit encodings learned by the neu-
ral network for thewaveformproblem [14] to illustrate our
approach. Thewaveformdata set consists of 5000 instances
of waves. Each wave is characterized by 21 continuous inputs
with noise. The problem is to classify these waves into one
of three classes.

First we standardized the inputs using z-values [15], and
used a three layer feedforward neural network with 4 hidden
units to train on 4000 instances. Another 500 instances were
reserved for testing and 500 others were used for validation.

After training, we can compute the hidden unit activations
(ap

H1
, ap

H2
, ap

H3
, ap

H4
) of the four hidden units for eachpth

instance. This vector is an encoding of the 21-dimension
vector input. We are interested in how these 4 dimensional
vectors are arranged in the four dimensional space. Without
losing generality, we chose 3 of the 4 dimensions arbitrarily
in order to plot the locations of these vectors in the following.

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

class 1
class 2
class 3

Fig. 2. Input patterns throughout hidden unit activation space for the
waveformproblem after training with regular backpropagation

Figure 2 shows the plot after the network has been trained
with the regular sum of squared error function used in
standard backpropagation. It can be seen that the vectors are
clustered into 3 groups corresponding to the 3 classes. While
many of them are in the corners or along the edges, quite a
number are spread out instead. These vectors make it hard
to draw planes separating the clusters; in other words, more
rules would be expected to be needed to explain the hidden
activation - output relationship.

What we want to do is to push these vectors further away
from each other during learning so that it is easier to separate
them. This is done with the help of the new error termE2

that penalizes having vectors close together. The effect ofthe
training with this new error term is shown in Figure 3. The

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

class 1
class 2
class 3

Fig. 3. Input patterns throughout hidden unit activation spae for the
waveformproblem after backpropagation training that incorporatesthe new
error term

three clusters are more visible as they move closer to the
edges and three corners and fewer vectors are in the middle.

III. E XPERIMENTAL RESULTS

TABLE I

DATA SETS USED FOR EVALUATION

data set no.attrs no.class no.instances input
waveform 21 3 5000 continuous

yeast 8 10 1484 continuous
nursery 8 5 1296 discrete
splice 60 4 3190 discrete

TABLE II

EFFECT OFE2 ON NEURAL NETWORK TRAINING

data set −E2/N2 E/N
regular new regular new

waveform 1.631 1.769 (+9%) 0.357 0.361
yeast 0.696 0.954 (+36%) 0.618 0.620

nursery 1.049 1.233 (+18%) 0.271 0.279
splice 0.616 0.878 (+42%) 0.229 0.275

The goal of this evaluation was to compare the number of
rules extracted from a trained error backpropagation network
when E2 was included in the error function (experimental
condition) versus the number whenE2 was not included
(control condition, i.e., standard backpropagation). We eval-
uated the effectiveness of our rule extraction method by
selecting five arbitrary data sets having more than 1000
instances from the UCI Machine Learning Repository [14]:
thewaveform, yeast, image-segmentation, nurseryandsplice
problems. These are large and difficult datasets with many
attributes and classes. The method performed well on four
out of five of these data sets:waveform, yeast, nurseryand
splice. For image-segmentation, the classification accuracy
went down as we increasedβ for reducing the number
of rules so our method was ineffective. We have therefore
omitted it from further consideration in the following.

TABLE III

EXPERIMENTAL SIMULATION RESULTS (AVERAGES OVER100RUNS)

data set −E2/N
2 No. of I-H weights No. of rules Rule accuracy

regular new initial regular new regular new reduced regular new
waveform 1.631 1.769 86 53.14 55.31 70.12 41.71 41% 85.17% 85.51%

yeast 0.696 0.954 27 16.94 18.14 90.51 74.91 18% 51.88% 51.95%
nursery 1.049 1.233 78 42.55 45.25 191.72 136.83 29% 87.89% 87.45%
splice 0.616 0.878 482 239.67 440.67 567.43 267.77 53% 91.97% 90.36%

Table I shows the other four data sets used in the exper-
iments. Two of these have continuous inputs: thewaveform
probleminvolves classifying waves into one of three classes
based on 21 noisy features and theyeast problemis a protein
localization site determination problem.

The other two data sets have discrete/categorical inputs.
Data set nursery is an application ranking database for
admission to nursery schools. Applications are classified into
5 classes indicating how strongly the applicant is recom-
mended. The 8 categorical attributes are encoded into 25
binary input units using nominal encodings: a category with
m unique values is encoded asm binary input units, with
only one bit corresponding to the value being on. We only
used 10% of the available instances in this case. Thesplice
problem is to recognize the boundary between exons and
introns giving a DNA sequence. The 60 attributes, each
representing one nucleotide{A,T,G,C}, are encoded into 240
binary input units.

For each dataset, the settings for the experiments are as
follows:

1) Ten-fold cross validation scheme: We split each data
set randomly into 10 subsets of equal size. Eight sub-
sets were used for training, one was used for validation
and one for measuring the accuracy of the extracted
rules. We repeated the procedure 10 times, each time
one different subset was used as the testing set. We also
ran each experiment 10 times with different random
initial weights. The reported number of rules and
accuracy are averages over all 100 runs. Having so
many runs ensures that any improvement comes from
the method and not just by chance.

2) The initial weights and test set division were held the
same for the experiments with and without our new
error term. This gave the same starting point for both.

3) Weight decay rate was set to0.00001.
4) β was set to0.00001 for waveformand nursery, and

0.00005 for yeastand splice problems. The contribu-
tion of βE2 is much more significant than it looks. At
the end of training,E is in the order of102 because it
is a sum of over1000 squared errors from all output
units. E2 is in the order of106 because it is the sum
overall pairs of Euclidean distances. These choices of
β make the contribution ofE2 about5% ∼ 30% of E′

for the four problems.
5) The number of output units corresponds to the number

of classes in the data. When doing classification, the
class whose output unit has the highest activation value
is chosen as the class for the instance.

6) Continuous attribute values were standardized with z-
value scores [15].

7) RPROP with weight backtracking was set up to run
with a maximum 400 epochs or until validation error
goes up for 10 consecutive epochs. The network with
highest validation accuracy was saved for subsequent
rule extraction.

Table II shows the effect of the new error term onE
and E2. The regular columns show results when we train
with regular backpropagation andE. Thenewcolumns show
the improved results withE′. They show that−E2 was
increased up to42% with only a small change inE. So
backpropagation was able to learn an improved encoding
at the hidden layer that has higher total squared distances
between the hidden unit activation vectors while still main-
taining near minimum error at the output layer. The choice
of β has a strong impact on the accuracy andE2. If β is
too high, backpropagation would focus too much onE2 and
push all activation vectors to the corners resulting in low
classifying accuracy. The smallerβ is, the less increase in
sum of squared distances is observed, and the number of
rules will stay the same.

Table III presents the experimental results concerning rule
extraction. The new error term helped reduce the number of
rules significantly, at least18% for theyeastproblem and up
to 53% for thespliceproblem. The new, smaller sets of rules
also have roughly the same classification rates as the ones
produced without the new error term (right most columns
of table III). The largest accuracy rate drop is only1.8%
for the splice result. We may note that the accuracy rate for
yeastis quite low, but it is still comparable to the published
results54% in [16]. The reason for such allow accuracy rate
is that the data set is very difficult with 10 classes unevenly
distributed.

The numbers of initial and pruned weights of the con-
nections from the input layer to the hidden layer are given
in the columnsNo. of I-H weights. For the two problems
waveformandyeastwith continuous attributes, the numbers
of weights show how simple the final rules are. Although
they are not as important as the number of rules, a smaller
number of weights is desirable because there will be fewer
terms in the rule’s inequalities produced in Step 5a. In these

problems, our simple pruning scheme was able to reduce the
number of weights about35%. The numbers of weights left
do not affect the readability of rules for the two problems
nurseryand splice with discrete attributes because they do
not translate directly to the complexity of boolean rules.

IV. CONCLUSION AND DISCUSSION

We have presented an improved method to extract sym-
bolic rules from multilayer feedforward neural networks.
Experiments with four large publicly available data sets
showed that the method helped reduce the number of rules
significantly without sacrificing classification accuracy.Our
approach was not successful on a fifth data set as explained
above. The main contribution is the new error term that
encourages backpropagation to learn a better encoding at the
hidden layer and an efficient way to compute its derivative
for fast network training.

The method only performed well on four out of the five
large data sets we have tested. Although the method has
reduced the number of rules significantly, it still cannot
do as well as rule-based system such as C4.5. We plan to
investigate the method on more data sets and explore ways
to reduce the number of rules further.

REFERENCES

[1] A. Darbari, “Rule extraction from trained ANN: A survey”, Technical
Report, Institute of Artificial Iintelligence, Department of Computer
Science, TU Dresden, Germany, 2000.

[2] H. Jacobsson, “Rule extraction from recurrent neural networks: A
taxonomy and review”,Neural Computation, volume 17, pages 1223-
1263, 2005.

[3] I.A. Taha and J. Ghosh, “Symbolic interpretation of artificial neural
networks.”, IEEE Transactions on Knowledge and Data Engineering,
11(3):448-463, 1999.

[4] A.B. Tickle, R. Andres, M. Golea and J. Diederich, “The truth will
come to light: directions and challenges in extracting the knowledge
embedded within trained artifical neural networks”,IEEE Transactions
on Neural Networks, volume 9, pages 1057-1068, 1998.

[5] R. Andres, J. Diederich and A.B. Tickle, “A survey and critique of
techniques for extracting rules from trained artificial neural networks”,
Knowledge-Based Systems, volume 8, pages 373-389, 1995.

[6] S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice
Hall PTR Upper Saddle River, NJ, USA, 1998

[7] R. Quinlan,C4.5: Programs for Machine Learning, Morgan Kaufman,
San Mateo, CA, 1993.

[8] G.G. Towell and J.W. Shavlik, “Extracting refined rules from
knowledge-based neural networks”,Machine Learning, volume 13,
number 1, pages 71-101, Springer, 1993

[9] R. Setiono and W.K. Leow, “FERNN: An algorithm for fast extraction
of rules from neural networks”,Applied Intelligence, volume 12,
number 1, pages 15-25, Springer, 2000.

[10] H. Lu, R. Setiono and H. Liu, “NeuroRule: A connectionist approach
to data mining”,Proceedings of the International Conference on Very
Large Data Bases, pages 478-489, Institute of electrical and electronic
engineers (IEEE), 1995.

[11] M. Riedmiller and H. Braun, “Rprop: A fast adaptive learning al-
gorithm”, Proc. of the Int. Symposium on Computer and Information
Science VII, 1992.

[12] A. Krogh and J. Hertz, “A simple weight decay can improvegen-
eralization.”, Advances in Neural Information Processing Systems, 4,
1992.

[13] H. Liu and R. Setiono, “Chi2: Feature selection and discretization
of numeric attributes”,Proceedings of the Seventh International Con-
ference on Tools with Artificial Intelligence, IEEE Computer Society
Washington, DC, USA, 1995.

[14] A. Asuncion and D.J. Newman, “UCI Machine Learning Repository”,
http://www.ics.uci.edu/∼mlearn/MLRepository.html, University of Cal-
ifornia, School of Information and Computer Science, Irvine, CA.

[15] R.O. Duda, P.E. Hart and D.G. Stork,Pattern Classification, Wiley
New York, 2001.

[16] P. Horton and K. Nakai, “A Probablistic Classification System for Pre-
dicting the Cellular Localization Sites of Proteins”Intelligent Systems
in Molecular Biology.109-115, St. Louis, USA, 1996.

