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Abstract— This paper describes a new method for extracting rules. This approach tries to produce simpler and fewesrule
symbolic rules from multilayer feedforward neural networks.  at the hidden - output layer so that it can generate fewesrule
Our approach is to encourage backpropagation to leam a ,yergll. The number of rules depends heavily on how the

sparser representation at the hidden layer and to use the . . S . .
improved representation to extract fewer, easier to undergnd hidden unit activation vectors - encodings of the inputse- ar

rules. A new error term defined over the hidden layer is arranged in space. During learning, backpropagationésttre
added to the standard sum of squared error so that the total create any encoding scheme over the hidden units as long as

squared distance .between hidden activation vectors is ine!ased. the final error at the output layer is minimized. This present
We show that this method helps extract fewer rules without 5 hrohjem to decompositional methods because sometimes
decreasing classification accuracy in four publicly availale data . . .
sets. the hidden layer representations of the input patternsare s
complex or distributed that a lot of rules are required to
l. INTRODUCTION explain the hidden - output layer mapping. In this paper we
Error backpropagation is the most widely used supervisqgatopose a new error term to augment the standard sum of
learning method for neural networks and has achieved sugquared error. The new error term encourages backpropa-
cess in many classification and prediction applications. @ation to learn a sparser encoding over the hidden layer in
typical network has an architecture consisting of an inpwhich vectors of hidden unit activations are further apart
layer, one or more hidden layers, and an output layer (Figutlkan they would normally be with standard backpropagation.
1). There are several variants of the algorithm, all drivgn bGradient descent is used to modify error backpropagation
minimizing the sum of squared errdt = Y (correct; — when using this new error term. Our hypothesis was that this
output;)? at output units. The network learns a mappingvould result in fewer rules. Our computational experiments
between the input and output units, while the hidden unithus compared the same rule generation procedure using
and the weights between them and other units contain the netror backpropagation with and without the new error term
work’s internal representation of the input. This disttémli to assess its impact on the number of rules generated.
representation as large matrices of floating point numbersThe rest of this paper is organized as follows: Section
makes it very difficult for a person to understand what thél describes the new error term and the rule extraction
network has learned. This difficulty has inspired substdntialgorithm. Experimental results are presented in Section |
past research on how to extract symbolic, human-readal$ection 1V gives conclusion and discussion.
rules from a network so that we can be more confident
about its classifications and understand more about what has ] . }
been learned from the data. In spite of a large amount of IN this section, we first describe the new error term that
work addressing this issue ([1], [2], [3], [4], [5]), the téts makes the hidden unit activation representation sparsgr an
obtained are still very limited. an efficient way to compute the derivative of this term for
There are three main approaches that have been takerf"@Ning using error backpropagation. Then we present an
past work on rule extraction from neural networks: pedagog/gorithm to extract symbolic rules that utilizes the imyed
ical, decompositional and eclectic (hybrid of the other )wo FePresentation at the hidden layer.
Pedagogical methods consider a neural network as a blagk- New error term
box oracle that provides cleaner and more class labels. They

extract input-output rules without looking at the units and In this work we are interested in extracting rules from

weights. Decompositional methods investigate hiddensuniP]UItIIayer feedforward neural networks with one hidden

and weight matrices to produce rules that follow the interna™y €' @3 shown in Figure 1.

working of the networks. Beside good classification accyrac The activation of thg* hidden unit when thet" instance

having a smaller number of rules is a very important crineriois presented is calculated as the logistic function of the
for rule extraction algorithms so that a human can undedStaQ/eighted sum of inputs:

their content easier.
Many of the decompositional approaches, including ours, » v
first extract the rules that explain the mapping between the Oy, = o Z wjiTy)
hidden unit activations and the output and then extract the =1
rules governing the input - hidden layer relationship. Eheswhere
rules are then combined to produce the final input - output « 2% is thei*" input unit value of thep!” instance.

Il. THE ALGORITHM
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We haveg=2 = 0 with v;; being the weight to thé'"
output unit from thej*” hidden unit becaus&, does not
have anyv,; component.

With wj; being the weight from thé'” input unit to the
5t hidden unit, we have derived an efficient way to compute
the derlvatlveé’E2 as follows:
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Fig. 1. A typical fully connected feedforward neural netkor

respect to weightv;;:

« wj; is the weight from thei*" input unit to the ;"
hidden unit.
« o() is the logistic function.

The activation of thé:'" output is calculated as the logistic
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Becauseﬁfjf = 0 with k£ # j, we have:

Then we can calculate the gradient of the erfgf with

function of the weigh m of hidden uni ivations: P
unction of the weighted sum of hidden unit activations OE? _ OE? 3‘1Hj
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whereuy,; is the weight from thej*" hidden unit to thek!” q;[ i .
. 2 €en
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The usual error function computed over the output units 2 k k Oa owj;
is: g=1 k=1 H; J
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wheret? is the target output for thé'" output unit when With & # j, we have4 e “i =0 and s s =0
th s Hj It
the p mput pattern is presented, and N is the size of thBecauseﬂ” andaH do not havew,; componént. So:
input data set (number of input - output pairs). k
We introduce a penalty ternk, that decreases as the 9E? XN: » . ) 8a%j 8a‘}1j 8a§{j
; ; wati = - Ay —a - X
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where af; is the activation of thek’" hidden unit when
the p** input sample is presented:, is the sum over all

P
day,

N [ dal,
(a];{j *a(}iﬂ <1 7
1 aaHj

I

For p # ¢, we can assume tha@l does not change when

awji

dal,
pairs (p, ) of the squared Euclidean distance between tw#e process pattern This leads tO— =0or(1 aa—gf) =
hidden activation vectors for the® and¢'" input patterns. . Whenp = ¢, we have(aH _ aH ) —0. So:
The negative sign ensures that when neural network training
minimizes the error, it will maximize the distances between OEY . N » q 5a%j
the hidden layer vectors. wi; > (afy, —afy) x ow;;
The new total error function guiding learning is: e=Larp N )
Oaly;.
— p q
E' = aF + 8F; = —((N- 1)aHJ - Z H]) ow ]
q=1,q7#p 7
wherea, 3 > 0,a + 5 = 1. Note that the double sum over N dak,
p and g can maké, quite large relative to E, sG must be = —(Naf; Z a%j) 3 2
quite small to scal&® and FE, appropriately. q=1 Wii
In order to train the network with error backpropagation, da¥,.
2)) = —Nf(a am;) J
we need to comput%— = aa + 85,2 First, the standard H; Hi ) 5es
Ji

term 6E can be computed eff|C|entIy as in [6].



with N being the number of training patterns ang, is merged because that would affect the classification acgurac
the average activation of thg#" hidden unit over all input For example, when there are two training examplesdq
samples As with the usual backpropagation derivation, weith different class labels such th@j({ is in the first interval
=ab, (1—ak, )aP. Thus, andag; is in the second interval, the two intervals cannot

’ be merged as we no longer can determine which class label

ign knowing only the interval th hidden uni
7@_11@)(1%1.(17&%]‘)36? it;)i:;ssg owing only the interval that th& hidden unit
In step 3, we extract rules having the for(#;, =
It is interesting to note that when computn%&— for the I, Hyy, = la,..) — class = ¢ which meansif the zﬁh

p'" input sample, besides looking at the activation of ffe  hidden unit's activation value is in intervdy and theit"
h|dden unit and the’” input unit as is done with the usual hidden unit’s activation value is in intervdh and ...then
backpropagation training, we only need one more vaige classify the sample as class. Rule extraction is done by
which can be computed and stored locally at jiiehidden C4.5. This extraction step is also a base step in other rule
unit. This local property is highly desired in neural netiwor extraction algorithms. It is very important to have feweesu

have
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training. here because the number of rules here strongly affects the
) ) final number of rules that ultimately specify the input - auttp
B. Rule extraction algorithm relationship.
The outline of our rule extraction algorithm is as follows The novelty of our method is in the use of the new error
« Step 1: Train the network term that “pushes” the hidden activation vectors away from
« Step 2: Cluster the hidden unit activation values each other, so that their component values tend to cluster
« Step 3: Extract rules explaining the output in term ofoward the two ends of the intervdl, 1]. This in turn results
clustered hidden unit activation values in many hidden units having values clustered into only two
« Step 4: Prune unnecessary weights connecting the ingtervals [0,r), (r, 1]. Having such simple splits is highly
layer to the hidden layer desirable for making fewer and simpler rules.

. Step 5a: If the data consists of continuous attributes: Step 4 prunes the network by removing unnecessary
generate rules in the form of linear inequa"ties on inpu(gonnectlons from the Input units to the hidden units. Prgnln
for hidden unit activation cluster values. reduces the number of Weights, thus making the rules with

« Step 5b: If the data consists of binary attributes: generag@ntinuous inputs simpler. It also helps extracting simple

decision tree rules for each hidden unit activation valugules for binary inputs. We use a simple pruning scheme
cluster using C4.5 [7] that greedily removes weights in increasing order of their

Step 1 to 4 are similar to [8], [9], [10] but differ in a magnitudes and stops when the accuracy in the validation

number of ways: we use (1) a different error function that®t drops below a specified threshold. . i
puts a strong emphasis on hidden unit activations’ sparsit Step 5 is different for continuous and discrete attribuites.
rather than pruning (2) a different learning algorithm a8} ( the inputs consist of continuous attributes, we can geeerat
C4.5 for extracting the simplified hidden - output mappingdiréctly rules that depend upon when tji hidden unit

In step 1, we use RPROP [11] (resilient backpropagatiofftivation is in an intervalr,, ;) stated as follows:
an improved backpropagation learning algorithm that #rain
networks faster by adjusting the weight update based on
the behavior of the gradient instead of the magnitude of "
the derivatives. It also requires few training parameters.c™*(r;)
We augment the error function with the populaeight
decayterm Eq = Y. 5", w?; to prevents weights from Not all z; are present in each rule because we have already
getting too large [12] We|ght decay has been shown tBruned unnecessary weights in step 4. Every hidden-output
improve the generalization performance of neural networklle produced in step 3 is a conjunction of which interval
(regularization). each hidden unit value must be in, so we can easily replace

The logistic hidden unit activation values are in thethe terms in the conjunctions with the above inequality to
range [0,1]. After training, the values at each hiddenproduce rules explaining the output classification digect|
units can be clustered together into disjoint interval§om the input.
[0,71),[r1,72), ..., [rn, 1] such that we only need to know For problems with binary inputs, we use C4.5 to generate
which interval the hidden activation values are in to deteione set of rules for each hidden unit's activation. The rules
mine the class label of training instances. We use the Chigll the conditions on inputs that would make a hidden unit
discretization algorithm [13] to cluster the activatiorlugs. activation value fall into one interval. For example, a ride
The algorithm first makes one interval for each activatiothe ;" hidden unit has the form:
value, sorts the intervals in increasing order, then uges  (zi, = b1, x;, = ba,...) = am, € kthinterval
statistics to determine which pair of adjacent intervalsusth  Because the rules in this step are only concerned with which
be merged next. Some pairs of intervals are not allowed to li@erval a hidden unit activation is in, they are much simple

71 amg; < T2

a(wﬂxl + wjoxe + ... + wjnacn) < T9
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wW;17T1 + Wj2T2 + ...+ WinTp < O (7’2)



We then replace each terff; = I; in step 3 with the input-
hidden layer rules, simplify the boolean expressions, and
remove the duplicates to have the final rules explaining the
classification directly from the input values.

class1 +
class 2
class3 O

1
C. lllustrative example
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We consider the hidden unit encodings learned by the neu-°°
ral network for thewaveformproblem [14] to illustrate our  °*§
approach. Thevaveformdata set consists of 5000 instances **
of waves. Each wave is characterized by 21 continuous inputs °
with noise. The problem is to classify these waves into one
of three classes.

First we standardized the inputs using z-values [15], and - =
used a three layer feedforward neural network with 4 hidden * g
units to train on 4000 instances. Another 500 instances were ) S
reserved for testing and 500 others were used for Valldatic]f, %, "ot PAtems troushaut naden unt sctvatomefor e

After training, we can compute the hidden unit activationgrror term
(aty,,aly,,aly ,af; ) of the four hidden units for each’”
instance. This vector is an encoding of the 21-dimension
vector input. We are interested in how these 4 dimensiontiree clusters are more visible as they move closer to the
vectors are arranged in the four dimensional space. Withogg@ges and three corners and fewer vectors are in the middle.
losing generality, we chose 3 of the 4 dimensions arbitraril

in order to plot the locations of these vectors in the follogyi Ill. EXPERIMENTAL RESULTS
TABLE |
cass1 DATA SETS USED FOR EVALUATION
|
Sased ¢} data set | no.attrs | no.class| no.instances| input
waveform 21 3 5000 continuous
yeast 8 10 1484 continuous
nursery 8 5 1296 discrete
splice 60 4 3190 discrete
TABLE Il
EFFECT OFE3 ON NEURAL NETWORK TRAINING
data set —Ey/N? E/N
regular new regular | new
waveform | 1.631 1.769 (+9%) | 0.357 | 0.361

yeast 0.696 | 0.954 (+36%)| 0.618 | 0.620
nursery 1.049 | 1.233 (+18%)| 0.271 | 0.279
splice 0.616 | 0.878 (+42%)| 0.229 | 0.275

Fig. 2. Input patterns throughout hidden unit activatioracep for the
waveformproblem after training with regular backpropagation The goal of this evaluation was to compare the number of
rules extracted from a trained error backpropagation ntwo
Figure 2 shows the plot after the network has been trainaghen E, was included in the error function (experimental
with the regular sum of squared error function used igondition) versus the number whe, was not included
standard backpropagation. It can be seen that the vect®rs @rontrol condition, i.e., standard backpropagation). Wai-e
clustered into 3 groups corresponding to the 3 classes.@Vhilated the effectiveness of our rule extraction method by
many of them are in the corners or along the edges, quitesalecting five arbitrary data sets having more than 1000
number are spread out instead. These vectors make it hamdtances from the UCI Machine Learning Repository [14]:
to draw planes separating the clusters; in other words, mottee waveform, yeast, image-segmentation, nursenysplice
rules would be expected to be needed to explain the hiddgroblems. These are large and difficult datasets with many
activation - output relationship. attributes and classes. The method performed well on four
What we want to do is to push these vectors further awagut of five of these data setazaveform, yeast, nursemgnd
from each other during learning so that it is easier to seéparasplice For image-segmentatigrthe classification accuracy
them. This is done with the help of the new error teffm went down as we increased for reducing the number
that penalizes having vectors close together. The effeitteof of rules so our method was ineffective. We have therefore
training with this new error term is shown in Figure 3. Theomitted it from further consideration in the following.



TABLE Ill
EXPERIMENTAL SIMULATION RESULTS (AVERAGES OVER100RUNS)

data set —FEy/N? No. of I-H weights No. of rules Rule accuracy

regular| new | initial | reqular| new | regular| new | reduced| regular| new

waveform| 1.631 | 1.769| 86 53.14 | 5531 | 70.12 | 41.71 | 41% | 85.17%| 85.51%
yeast 0.696 | 0.954| 27 16.94 | 18.14 | 90.51 | 74.91 18% | 51.88%/| 51.95%
nursery | 1.049 | 1.233| 78 4255 | 4525 | 191.72| 136.83| 29% | 87.89%| 87.45%
splice 0.616 | 0.878| 482 | 239.67| 440.67| 567.43| 267.77| 53% | 91.97%/| 90.36%

Table | shows the other four data sets used in the exper-  of classes in the data. When doing classification, the
iments. Two of these have continuous inputs: wWee/eform class whose output unit has the highest activation value
probleminvolves classifying waves into one of three classes is chosen as the class for the instance.
based on 21 noisy features and ffeast problenis a protein 6) Continuous attribute values were standardized with z-

localization site determination problem. value scores [15].

The other two data sets have discrete/categorical inputs.7) RPROP with weight backtracking was set up to run
Data setnursery is an application ranking database for with a maximum 400 epochs or until validation error
admission to nursery schools. Applications are classifiéadl i goes up for 10 consecutive epochs. The network with

5 classes indicating how strongly the applicant is recom- highest validation accuracy was saved for subsequent
mended. The 8 categorical attributes are encoded into 25 rule extraction.

binary input units using nominal encodings: a category with Taple Il shows the effect of the new error term @h

m unique values is encoded as binary input units, with  and E,. The regular columns show results when we train
only one bit corresponding to the value being on. We onlwith regular backpropagation ariél Thenewcolumns show
used 10% of the available instances in this case. Sjiee  the improved results with?’. They show that—FE, was
problem is to recognize the boundary between exons apgtreased up to!2% with only a small change in. So
introns giving a DNA sequence. The 60 attributes, eachackpropagation was able to learn an improved encoding
representing one nucleotidé, T,G,C}, are encoded into 240 at the hidden layer that has higher total squared distances

binary input units. _ _ between the hidden unit activation vectors while still main
For each dataset, the settings for the experiments are taging near minimum error at the output layer. The choice
follows: of 3 has a strong impact on the accuracy angd If 3 is

1) Ten-fold cross validation scheme: We split each datmo high, backpropagation would focus too muchiénand
set randomly into 10 subsets of equal size. Eight sulpush all activation vectors to the corners resulting in low
sets were used for training, one was used for validatiotlassifying accuracy. The smallgr is, the less increase in
and one for measuring the accuracy of the extractesim of squared distances is observed, and the number of
rules. We repeated the procedure 10 times, each timeles will stay the same.
one different subset was used as the testing set. We alsdlable Il presents the experimental results concerning rul
ran each experiment 10 times with different randonextraction. The new error term helped reduce the number of
initial weights. The reported number of rules andules significantly, at least8% for the yeastproblem and up
accuracy are averages over all 100 runs. Having g0 53% for the spliceproblem. The new, smaller sets of rules
many runs ensures that any improvement comes froalso have roughly the same classification rates as the ones
the method and not just by chance. produced without the new error term (right most columns
2) The initial weights and test set division were held thef table IIl). The largest accuracy rate drop is onlyg%
same for the experiments with and without our newor the spliceresult. We may note that the accuracy rate for
error term. This gave the same starting point for bothyeastis quite low, but it is still comparable to the published
3) Weight decay rate was set 6000001. results54% in [16]. The reason for such allow accuracy rate
4) (¢ was set t00.00001 for waveformand nursery and is that the data set is very difficult with 10 classes unevenly
0.00005 for yeastand splice problems. The contribu- distributed.
tion of 5E5 is much more significant than it looks. At  The numbers of initial and pruned weights of the con-
the end of trainingF is in the order ofl0? because it nections from the input layer to the hidden layer are given
is a sum of overl000 squared errors from all output in the columnsNo. of I-H weights For the two problems
units. E is in the order ofl0° because it is the sum waveformandyeastwith continuous attributes, the numbers
overall pairs of Euclidean distances. These choices obf weights show how simple the final rules are. Although
(B make the contribution oF, abouts% ~ 30% of E/  they are not as important as the number of rules, a smaller
for the four problems. number of weights is desirable because there will be fewer
5) The number of output units corresponds to the numbégrms in the rule’s inequalities produced in Step 5a. Inghes
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