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Abstract

This paper explores finding a graph that does not contain a K4 clique such that, for any 2-
coloring of its edges, a monochromatic triangle exists within the graph. A bound on the number
of vertices for a graph that holds this property has already been proven (3⇥ 108), but we attempt
to improve that bound using randomized algorithm techniques.

1 Introduction

The following is well known: for all 2-colorings of the edges of K6 there is a monochromatic K3. That
is, there are three edges that are all the same color that form a triangle. Are there graphs other than
K6 that have this property? A silly answer is YES: any graph that has K6 as a subgraph. Here are
the real questions:

Is there a graph G without K6 as a subgraph such that any 2-colorings of its edges has a monochro-
matic K3? Without K5? Without K4?

Notation. N is the set of natural numbers. If n 2 N, let [n] be the set {1, 2, ...n}.

Definition. The Random Graph G(n, p) is an undirected graph on n vertices (V = [n]) and whose
edge set E contains an edge (x, y) 2

�
V

2

�
with probability p.

Definition. RAM(G) indicates that for all 2 colorings COL:
�
V

2

�
! [2] for the edges of a graph

G, there exists a monochromatic triangle.

Ronald Graham [1] found a graph with eight vertices with no 6-clique that contains a mono-triangle
no matter its 2-coloring. Robert Irving [2] found an 18 vertex graph with no 5-clique that contains a
mono-triangle no matter it’s 2-coloring. Shen Lin [3] then proved that Graham’s 8 vertex bound was
the minimum for non 6-clique graphs, and put forth a 10 vertex lower bound for non 5-clique graphs.
Lastly, Joel Spencer [4] has thus far found the smallest known bound for graphs without a 4-clique,
currently sitting at 3⇥ 108! We will explore randomized algorithm techniques to attempt to search for
the needle in a haystack graph that improves upon Spencer’s bound.

1.1 A Summary of Spencer’s Construction

Every definition and theorem that follows is due to Spencer’s [4] work.

Definition. The set U is defined as:

U =
[

x,y,z2(V3)

{(x, xyz) : xyz is a � in G}

Definition. For x 2 V , the functions U(x), N(x) are defined as:

U(x) = {(x, xyz) : xyz is a � in G}

N(x) = {y : (x, y) 2 E}
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Definition. U
COL is a subset of U that uses an edge coloring of the graph COL:

�
V

2

�
! [2]:

U
COL =

[

x,y,z2(V3)

{(x, xyz) : xyz is a � in G & COL(x, y) 6= COL(x, z)}

With these definitions come the following theorems (proofs omitted):

Theorem 1.1. |UCOL| = 2
3 |U |

Theorem 1.2. Let x 2 V , R(x) = {y : COL(x, y) = R}, and B(x) = {z : COL(x, z) = B}. It
follows that:

• |UCOL| = |{(y, z) 2 E : y 2 R(x) ^ z 2 B(x)}|

• |UCOL|  maxN(x)=Y [Z |{(y, z) 2 E : y 2 Y ^ z 2 Z}|

We can now state our final definition:

Definition. The function A(x) is defined as:

A(x) = max
N(x)=R[B

{(y, z) 2 E : y 2 R ^ z 2 B}

With some mathemagic and algebraic manipulation, this definition provides our star theorem for the
overall purpose of this paper:

Theorem 1.3. If
P

x2V
A(x) < 2

3 |U |, then RAM(G).

This theorem is the condition our proceeding randomized algorithms will use to check whether or
not a given graph has no 4-clique but for any 2-coloring contains a monochromatic triangle. It is truly
a golden marvel as it allows one to test for RAM(G) without having to brute force every possible
coloring of a given graph.

2 Approaches

There are three main points to consider when considering the use of randomized algorithms to approach
this problem.

1. Graph Instantiation

2. Computation of
P

x2V
A(x)

3. Computation of 2
3 |U |

Because the graphs we explore have vertex magnitudes of up to 108, my approaches to these three
main points consider approaches which are at most O(n2) (generally O(n) or better), otherwise, they
become nearly computationally infeasible.

2.1 Graph Instantiation

When considering the instantiation of randomized graphs, one must first realize that the graphs we are
dealing with are connected graphs. Any connected graph has an underlying spanning tree. Thus, before
adding accessory edges through the use of randomized algorithms, I instantiated a random spanning
tree (takes O(n) time). I then took the following di↵erent approaches to instantiate randomized graphs.

• Technique 1) Look at all vertex pairs and with probability p, add an edge between them. Find
all K4 cliques and remove an edge from each of them so that the resulting graph has no K4

subgraphs.
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• Technique 2) Randomly add edges until you have a graph with probability p that does not
have a K4 subgraph. Instantiate around 1

p
of these graphs and check our graph conditions noted

above (expectation is that one of these graphs should be viable)

• Technique 3) Randomly add K3 triangles until you have a graph with probability p that does
not have a K4 subgraph. Instantiate around 1

p
of these graphs and check our graph conditions

noted above (expectation is that one of these graphs should be viable)

It should be noted that although the results of Technique 1 produce much more nuanced randomized
graphs, is extremely time intensive as the check of all K4 subgraphs is O(n4) time, while Technique
2 and Technique 3 use randomized algorithms to produce graphs in O(n) time.

It should also be noted that the number of edges to reach a desired probability level p for Tech-
niques 2 and 3 must be computed through the instantiation and checking of many graphs in this
format, greatly increasing the precomputation time for these instantiation techniques. An exploration
for Technique 2 at a 50% probability level is detailed below.

2.2 Computation of
P

x2V A(x)

Initially, I went for a brute force solution to compute
P

x2V
A(x). However, this involves finding the

max-cut of all vertex neighborhood sets present in a graph G, an O(2n) algorithm. With any graph
that includes neighborhood sets of � 20 vertices, this becomes computationally infeasible very quickly.

Thus, I opted to use the simple randomized max-cut algorithm which runs in linear time [5]. For the
purposes of finding a viable graph works extremely well since the expected value of this randomized
algorithm is half of the actual max-cut value, which for large random graphs gives pretty reliable
max-cut estimations, and can run in a reasonable time for graphs with vertex magnitude  108.

2.3 Computation of 2
3 |U |

I found no reliable way to implement a randomized algorithm to determine 2
3 |U | in linear time. My

approach involved checking all 3-subsets of [n] and seeing if edges existed between the vertices of all
elements in a given subset. Since this takes O(n3) time, it is only feasible for reasonably sized G, but
is generally less time intensive than graph instantiation.

One optimization consideration is that when performing 3) in my randomized graph creation algo-
rithms, you can easily bound |U | by the amount of triangles you add to the graph.

3 Findings and Considerations

Since the condition for finding a viable graph is
P

x2V
A(x) <

2
3 |U |, I created a metric of closeness

defined as P
x2V

A(x)� 2
3 |U |

P
x2V

A(x) + 2
3 |U |

I found that for extremely sparse graphs (i.e. ones nearly mimicking a spanning tree), the closeness of
these graphs is guaranteed to be 0.2.

3.1 Best Closeness Achieved

Since sparse graphs ended up leading to having a closeness around 0.2 it turns out that the randomized
algorithms which add edges up to a 50% probability of having a K4 clique tend to be too sparse and
converge to a closeness of 0.2. Increasing that probability to greater amounts and testing a larger
variety of graphs may prove to bring that closeness down, but becomes much more computationally
intensive.

When performing analysis on graphs with a significantly smaller amount of nodes Technique 1
gives good insight into what probability p in randomized graphs G(n, p) provides the best closeness.
Specifically, I tried this for n = 100 and got the following result:
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Table 1: Technique 1 Graph Instantiation on n = 100 for di↵erent p
p

P
x2V

A(x) U Closeness
1/2 2966 2036 0.186
1/3 2768 1902 0.185
1/4 2672 1834 0.186
1/5 2304 1578 0.187
1/6 1702 1184 0.179
1/7 1324 940 0.170
1/8 1080 756 0.176
1/9 716 518 0.160
1/10 578 412 0.168

This shows that there does seem to be somewhat of a sweet spot in terms of how many edges should
be added to find a viable graph.

With the best p value being 1/9 above, I explored whether randomly adding triangles into the
graph would a↵ect the closeness (since our overall goal is to find a graph that has a monochromatic
triangle), leading to these results:

Table 2: Technique 3 Graph Instantiation on n = 100 for di↵erent 4 amounts and p = 1
9

�’s
P

x2V
A(x) U Closeness

0 918 642 0.177
10 1096 760 0.181
20 902 648 0.164
30 1282 926 0.161
40 1254 874 0.179
50 1464 1018 0.180
60 1550 1068 0.184
70 1490 1020 0.187
80 1614 1126 0.178
90 1860 1296 0.179

Similarly to changing the value of p, it seems that there tends to be a bit of a ”sweet spot” in
terms of how adding triangles improves upon the bounds of the closeness for graphs. Adding too
many triangles will likely cause many K4 cliques to form, and after removing random edges probably
becomes synonymous with simply adding random edges at a certain point.

Overall, I believe a combination of these two techniques for much greater values of n can lead to
significant improvements in closeness and possibly the discovery of a viable graph that improves upon
the known 3⇥ 108 bound.

3.2 Randomized Edge Insertion K4 Creation Probability

When randomly adding edges into a spanning tree, I found the following amount of added edges led
to 50% probability of a K4 becoming present in the graph:

Table 3: Edges added until a graph with n vertices has a K4 with 50% probability
n e’s added
100 300
200 775
500 2750
1000 7125
10000 150000

One can see that the number of edges added grows non-linearly with the value of n. I attempted a
polynomial least squares fit with these data points, but it poorly estimated what the 50% probability
value was for larger data points. Although this technique showed promise in terms of instantiating
graphs with far greater vertex magnitude compared to Technique 1, the resulting graphs were far too
sparse to provide impressive closeness levels for computationally feasible probability levels (like 50%).
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3.3 Time + Space Complexity Considerations

Since traversing all possible edges in a graph G is O(n2), the randomized algorithms used in this paper
generally added a linear amount of edges, not a quadratic amount. However, this leads to generally
sparse graphs which as mentioned before, leads to a closeness that converges to around 0.2.

When considering the best graph representation to use, adjacency matrix seems like an obvious
choice since array/matrix indexing is O(1) time, however, this involves O(n2) space, which is typically
infeasible for most computational environments. Thus, I utilized an adjacency set representation
(which is an adjacency list that uses sets instead of lists) to achieve O(n+ |E|) space complexity while
keeping constant time edge lookup time.

Although our goal of finding a graph that improved upon Spencer’s 3⇥108 bound was not achieved,
the most promising graph instantiation approach was Technique 1 of looking at all edges and inserting
them with probability p may work with faster computers or more cleverness. Our current limitations
lie in how runtimes of O(n2) or worse are too extreme for our input sizes of magnitude n � 106, but
advances in computational power or technology (like the recent advent of quantum chips) may reduce
these issues in the future.

4 Appendix

4.1 Thought Process

When approaching this problem, my general approach was to try to brute force all the algorithms
to find correct implementations of all the function definitions and then utilize randomized algorithms
to improve upon runtime when necessary. This led to my usage of randomized algorithms in graph
instantiation and computing

P
x2V

A(x).
Unfortunately, it seems as if the biggest headway into solving this problem involves the usage of at

minimum a randomized algorithm to add all edges with some probability into a randomized spanning
tree. This in itself is O(n2), and combined with the fact that computing 2

3 |U | is O(n3), will take much
more computational power to solve in the future.

4.2 Code snippets

The following are pseudocode snippets for the versions of my randomized algorithms:

Algorithm 1 Random Graph Instantiation

procedure randomGraph(n,m, ts, p)
G Spanning Tree
for each edge e in G do

G e with probability p

end for
for i 1 to m do

e random edge in G
G e

end for
for i 1 to ts do

e1, e2, e3 3 random edges that form a 4 in G
G e1, e2, e3

end for
for each K4 clique in G do

e a random edge in K4

Remove e from G

end for
return G

end procedure
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Algorithm 2 Randomized Computation of
P

x2V
A(x)

procedure randSumAx(G)
count 0
for each vertex v do

neighbors the neighboring vertices of v
S, T  {}, {}
for each neighbor n do

n is put into S with 50% probability, else T

end for
count count + number of edges between vertices in S and T

end for
return count⇥ 2

end procedure
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