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ABSTRACT

This paper presents a novel approach for predicting hu-

man poses using IMU data, diverging from previous stud-

ies such as DIP-IMU, IMUPoser, and TransPose, which use

up to 6 IMUs in conjunction with bidirectional RNNs. We

introduce two main innovations: a data-driven strategy for

optimal IMU placement and a transformer-based model ar-

chitecture for time series analysis. Our findings indicate

that our approach not only outperforms traditional 6 IMU-

based biRNN models but also that the transformer architec-

ture significantly enhances pose reconstruction from data ob-

tained from 24 IMU locations, with equivalent performance

to biRNNs when using only 6 IMUs. The enhanced accuracy

provided by our optimally chosen locations, when coupled

with the parallelizability and performance of transformers,

provides significant improvements to the field of IMU-based

pose estimation.

1 Introduction

Human pose estimation is essential for applications
in animation, gaming, healthcare, and autonomous
driving. Recent integration of full-body motion cap-
ture technologies like Xsens [3] has expanded possibili-
ties in gaming, fitness, and rehabilitation. Despite ben-
efits, consumer adoption remains limited due to incon-
veniences associated with retrofitting homes or wearing
specialized suits.

Traditionally dominated by vision-based techniques
utilizing cameras, pose estimation faces challenges in
environments with occlusions, lighting variations, or in-
complete subject visibility. Recent computer vision ad-
vancements have improved accuracy, but challenges per-
sist in occlusion and constrained environments.

An alternative involves leveraging Inertial Mea-
surement Units (IMUs) in everyday devices, including
smartphones, smartwatches, and wearables like activ-
PAL[1]. This project explores infrastructure-free body

pose estimation using IMU data. IMUs, measuring ro-
tational velocity and linear acceleration, o↵er advan-
tages over vision-based methods, being less a↵ected by
environmental factors and providing real-time pose in-
formation. Highly portable and suitable for various ap-
plications, IMUs are promising for fitness tracking, re-
habilitation, and virtual reality.

The motivation for using IMUs in pose estimation
stems from their ability to capture motion data directly
from the subject, thus providing a high degree of free-
dom and flexibility. This is particularly beneficial in
scenarios where camera-based systems are impractical
or intrusive. Furthermore, the proliferation of consumer
devices equipped with IMUs, such as smartphones and
smartwatches, opens up new possibilities for accessible
and ubiquitous pose estimation solutions.

In this project, we push the boundaries of pose es-
timation by delving into the realm of sparse Inertial
Measurement Unit (IMU) configurations [15, 14], en-
deavoring to reconstruct precise user poses using a sig-
nificantly reduced number of sensors compared to con-
ventional approaches [3]. This endeavor introduces a
unique set of di�culties stemming from the inherent
ambiguity of sparse IMU data, where a given set of IMU
readings may correspond to a myriad of potential poses.
The previous works on using sparse IMUs such as DIP-
IMU[7], TransPose [15], and PIP [14] intuitively selected
6 joints to place sensors. However, our methodology
goes beyond traditional strategic methods, incorporat-
ing an LSTM to extract more nuanced information from
the sparse IMU data. Using model interpretation tools
such as [2], we find the joints that most contribute to
the pose estimation and cherry-pick them for our model.
Finally, we develop a novel network based on the trans-
former and investigate its potential as a replacement for
the LSTM.
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2 Related works

We begin by examining the Deep Inertial Poser
(DIP-IMU) presented by Huang et al. [7]. This ground-
breaking work introduces a method for real-time 3D
human pose reconstruction using a minimal set of six
body-worn Inertial Measurement Units (IMUs). The
core innovation of DIP-IMU lies in its e↵ective use
of deep learning, particularly a bidirectional Recurrent
Neural Network (RNN), to overcome the challenge of
inferring complex human poses from sparse IMU data.
By leveraging synthetic data generated from extensive
motion capture databases, DIP-IMU trains its model
to accurately predict human poses in a variety of real-
world scenarios. This approach not only advances the
field of pose estimation by reducing the need for ex-
tensive sensor setups but also demonstrates significant
improvements in terms of accuracy and computational
e�ciency over previous methods.

Building on the work done in DIP-IMU, TransPose
[13] attempts to predict translations as well as poses.
This innovative approach represents a significant ad-
vancement in the realm of IMU-based pose estimation,
as it not only captures the static poses but also the dy-
namic movements and global translations of the human
body. The methodology employed by TransPose is note-
worthy for its multi-stage network architecture, which
systematically breaks down the task of pose estimation
into more manageable sub-tasks. This design enhances
the system’s ability to interpret sparse IMU data, lead-
ing to more accurate and granular pose reconstructions.
TransPose’s ability to estimate global translations sets
it apart from its predecessors. It utilizes a fusion of
two complementary methods: a foot-ground contact es-
timation based on the IMU measurements, and a root
velocity regressor that predicts the local velocities of
the root in its coordinate frame. The combination of
these methods allows for a more robust and precise es-
timation of the body’s movement in space, which is a
critical aspect often overlooked in traditional pose esti-
mation systems.

Finally, IMUPoser [9] builds on the foundations laid
by DIP-IMU and TransPose, pioneering an approach
that integrates inertial data from widely-used consumer
devices such as smartphones, smartwatches, and ear-
buds. IMUPoser’s algorithm is adaptable, capable of
e↵ectively utilizing various configurations of IMUs, re-
gardless of their placement on the body. By prioritizing
user convenience and the practicality of device avail-
ability, IMUPoser addresses key challenges in the field
of motion capture.

However, each of these papers presents the same op-
portunity for advancement - IMU locations are either
chosen arbitrarily, in the case of DIP-IMU and Trans-
Pose, or somewhat inherited from the nature of the sys-
tem, as in the case of IMUPoser. We will build on the

pioneering work of these papers to try and figure out
exactly where we can place our IMUs to achieve higher
accuracy with the same, minimal number of IMUs.

3 Preliminaries

First, we should define pose estimation. Pose esti-
mation is the task of mapping some data X, in this case
IMU data, to a set of n (usually 24) joint rotations ✓⇤.
Take a moment to think about why all possible poses
can be uniquely represented by a set of joint rotations
(and why information like joint positions is redundant).

To achieve this task, Inertial Measurement Units are
central to our study. These devices fuse an accelerom-
eter and gyroscope to measure linear and angular mo-
tion. A sample from an IMU contains 3D acceleration
and rotation - so acceleration in x, y, and z directions,
along with roll, pitch, and yaw rotations. For reasons
discussed later, we’ll represent the gyroscope’s output
as a 3x3 rotation matrix, so it will require 9 scalars to
represent as opposed to just 3. So in our work, an IMU
sample is a vector 2 R12.

Actual poses will be represented and visualized com-
putationally using the SMPL model, which is used
to represent the human body in 3D. This parametric
model, built from a comprehensive database of body
scans, enables the creation of versatile and realistic hu-
man figures.

We’ll train our neural network on the AMASS
dataset [8], a rich collection of motion capture data.
It provides sequences of poses that we can use as labels
to our model.

The heart of our project lies in processing and in-
terpreting the orientation and acceleration data from
IMUs. This time-series data, characterized by its
sequential nature and temporal dependencies, is the
bedrock upon which our predictive models are built.
Our objective is to predict rotation data, but instead of
using Euler angles, which are prone to gimbal lock and
singularities, we opt for 3x3 rotation matrices. These
matrices provide a more stable and comprehensive rep-
resentation of three-dimensional rotations, crucial for
accurate pose estimation.

4 System design

To recap, we’re attempting to apply a data-driven
approach to figure out optimal IMU positions. More for-
mally, our objective is to devise a function F (X) ! ✓⇤

that maps IMU data to a set of joint rotations, repre-
senting the actual pose. Here, X represents a subset of
the available 24 joints on the SMPL skeleton, specifi-
cally those most pertinent to our task.

The primary question is: How do we determine the
most relevant IMUs from the 24 joints available? This
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query may initially seem akin to a dimensionality re-
duction problem. However, unlike Principal Compo-
nent Analysis (PCA) that transforms high-dimensional
data into a lower-dimensional space, our goal is to as-
certain which dimensions (IMUs) can be discarded or
not collected altogether.

Given this distinction, we require an alternative ap-
proach to discern which among the 24 possible SMPL
joints best explain variance in the pose labels. Common
methods like p-value testing, often used in libraries like
sklearn, are impractical for our needs. P-values, in-
dicating the likelihood of feature-induced variance in
output, are more suited to simpler models and not to
the large-scale neural networks we intend to employ.

Therefore, our methodology involves:

1. Predicting poses using all 24 joints.

2. Quantitatively assessing which of these IMUs con-
tribute most significantly to this task.

3. Excluding non-contributory IMUs.

4.1 Data

In our study, we focus on mapping Inertial Measure-
ment Unit (IMU) data, specifically accelerations and
rotations, to full body poses. This approach is crucial
in understanding and interpreting the movement dy-
namics captured by IMU sensors.

Interestingly, the converse of the process is quite
easy to calculate. Using a formula derived from Trans-
Pose [13], we can calculate the acceleration data be-
tween two poses - i.e. we can easily find IMU data
given poses. This flexibility allows for the utilization of
completely synthetic data in our analysis. The formula
is given by:

a[i] = (v[i] + v[i+ 2]� 2 · v[i+ 1]) · 3600 (1)

where v represents an array of frames, and a[i] is the
acceleration at frame i.

Naturally, the rotation of each joint is equivalent to
the rotation of the corresponding synthetic IMU.

The base dataset for our study is AMASS [8],
an aggregation of numerous motion capture datasets.
AMASS provides data in the SMPL format, a mesh
model that demonstrates how a virtual ”body” is con-
torted by a given set of joint rotations. The SMPL
model is particularly significant as it contains a 24 ⇥
6890 matrix that transforms 24 joints into the 6980 ver-
tices of the model. By running an argmax operation on
each of the 24 weight sets, we can identify the vertex
that most closely corresponds to each joint.

Once we have vertices, which are points on the
SMPL mesh, and their corresponding joints, we can
compute IMU data on a per-joint basis by applying the
above formula to the motion of the vertices between
frames.

Joint Index Joint Name Joint Index Joint Name
0 Pelvis 12 Neck
1 L Hip 13 L Collar
2 R Hip 14 R Collar
3 Spine1 15 Head
4 L Knee 16 L Shoulder
5 R Knee 17 R Shoulder
6 Spine2 18 L Elbow
7 L Ankle 19 R Elbow
8 R Ankle 20 L Wrist
9 Spine3 21 R Wrist
10 L Foot 22 L Hand
11 R Foot 23 R Hand

Table 1: Mapping of SMPL Joint Indices to Joint

Names

4.2 The LSTM Model

In addressing this problem, it is crucial to understand
that we are dealing with a time series issue where
isolated pose frames are insu�cient. To synthesize
IMU data e↵ectively, one must consider the sequence of
frames and their context within the surrounding frames.
This calls for a model that ingests a series of X frames
of IMU data and outputs X corresponding poses.

Long Short-Term Memory (LSTM) networks are ex-
ceptionally suited for this challenge due to their ability
to process sequences, retain information about previous
frames, and apply this context to new ones. A predic-
tion at any frame is a weighted consideration f(h, x)
that considers both the current frame x, along with the
model’s “memory”, the hidden state h.

Below, we have provided our model architecture as
a list. Here, N is the number of sensors the model uses
- it will either be 24 or 6.

1. Linear Layer: Transform from shape N ⇤ (3⇤3+3)
to 1024.

2. LSTM Layer: Accept shape 1024 then feed it
through 2 recurrent layers, each with hidden size
1024. Produce output of shape 2 ⇤ 1024.

3. Linear Layer: Transform from shape 2 ⇤ 1024 to
final output shape 24 ⇤ (3 ⇤ 3).

RNN training was executed over 5 epochs, where
each epoch took approximately 20 minutes to run on
an RTX3090. Counterintuitively, note that we actually
want to overfit the model - we do not implement any
sort of regularization, since our desired result is actu-
ally the model conditioning heavily on a small set of
features, as opposed to using all the features equally.

4.3 Model Interpretation

To figure out which features are most important, we
need to leverage a model interpretation technique. Sim-
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pler models, like random forests and gradient-boosted
trees, [5] are easier to interpret, but since we work with
deep learning models, it can be a little harder to under-
stand what goes into the network’s prediction.

We apply Captum, a powerful library for model in-
terpretability in PyTorch. Captum o↵ers various meth-
ods for attributing model outputs to input features, aid-
ing in the understanding of the model’s decision-making
process. Given that our model input is a tensor of size
288, representing 24 joints with 3-axis acceleration and
3x3 elements for rotations, we employ Captum’s fea-
ture masking capabilities to analyze the importance of
individual IMUs.

Feature masking involves selectively hiding or mask-
ing certain features during model evaluation to observe
their impact on predictions. Notably, since only a sub-
set of methods in Captum supports feature masks, we
focus on those that apply to our scenario. We tried
Shapley value, Shapley value sampling, and feature ab-
lation - we found that feature ablation was the most
convenient to use and provided the best results.

Feature ablation is known as a perturbation ap-

proach: it systematically replaces given features or
groups of features with a baseline, then evaluates how
much this influences predictions. Of course, this means
that it requires data to operate on - unlike static anal-
ysis methods that directly inspect the parameters of
the model, feature ablation requires that the dataset be
passed in as a parameter. Thus, we reserved a set of
test data, separate from the training dataset, that we
could use for model evaluation and interpretation.

4.4 Adding The Transformer

Transformers, as introduced in [12], have recently
brought about significant advancements in time series
analysis. Although groundbreaking in the field of large
language models, where transformers are arranged in
an encoder/decoder architecture to generate coherent
text, the fundamental principle of self attention under-
lying transformers is applicable to a wide variety of time
series tasks.

RNNs like LSTMs store context over time in a “hid-
den state” - after consuming each element x of the in-
put sequence, this hidden state is updated by passing
it through a function f(x, h) ! (y, h), a function that
accepts an input x and the current hidden state h, then
returns an output y and a new hidden state. The output
of the RNN is the last y produced - which means that
the information that is used to compute the final output
of the RNN is limited to the second-to-last hidden state
and the last element. Although in theory, RNNs can
operate on infinitely long sequences, the actual amount
of context that can be used to compute the output of a
given sequence element is limited to the amount of infor-
mation that can be encoded by the hidden state vector.

This results in a temporal dependency: the context to
compute the output of any sequence element must come
from sequence elements close to it.

More damaging is the inherently sequential nature
of RNNs. The computation of hidden state hk depends
on hk�1. This unfortunate fact means that the compu-
tation of output yn requires the computation of the n�1
hidden states before it, rendering parallelization impos-
sible. We’d like a model that is capable of leveraging
modern GPUs.

Transformers address both of these issues through a
mechanism known as “self attention”. Rather than se-
quentially computing hidden states / sequence outputs,
self attention applies 3 separate transformations to the
input, turning it into “query”, “key”, and “value” vec-
tors (matrices, in practice). The query and key vectors
are multiplied and transformed in a pairwise fashion,
allowing the computation of a matrix called the “at-
tention weights”. Essentially, this matrix encodes how
important each element of the input is to each element
of the output. It’s somewhat analogous to computing
all of the hidden states in a single matrix multiplication,
all at once. It can then be used to transform the“value”
vector into a final output sequence.

Since the attention weights are computed by running
some transformation f(a, b) on every single pair (a, b),
the context usable by each sequence element includes
the entire sequence, with equal potential importance
given to each element (the actual importance is the at-
tention weight). This successfully breaks temporal de-
pendency. Furthermore, since the attention weights are
computed all at once in a single matrix multiplication,
this breaks the sequential nature of RNNs and lends
itself to massive parallelization.

Therefore, we developed a transformer-based archi-
tecture to replace the LSTM. Generative applications of
the transformer usually leverage both an encoder and
a decoder, wherein previous sequences are used as in-
put to the decoder in order to generate new sequences.
However, since each pose sequence in our application is
independent, we actually do not need a decoder at all
and our model can perform with just an encoder.

Below, we have provided our model architecture as
a list. Here, N is the number of sensors the model uses
- it will either be 24 or 6.

1. Linear Layer: Transform from shape N ⇤ (3⇤3+3)
to 512.

2. Positional Encoding: Since transformers have no
notion of position, augment each input with infor-
mation about where it occurs in the sequence as
per [12]. Transforms from 512 to 512.

3. Transformer Encoder: Stack of 6 identical layers,
each accepting and returning 512. Each layer im-
plements multi-headed self attention with 4 heads,
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Table 2: DIP-IMU Model Performance On TotalCapture

Method µang [deg] �ang [deg] µpos [cm] �pos [cm]
SOP 22.18 17.34 8.39 7.57
SIP 16.98 13.26 5.97 5.50
RNN (Dropout) 16.83 13.41 6.27 6.32
RNN (Acc) 16.07 13.16 6.06 6.01
RNN (Acc+Dropout) 16.08 13.46 6.21 6.27
BiRNN (Dropout) 15.86 13.12 6.09 6.01
BiRNN (Acc) 16.31 12.28 5.78 5.62
BiRNN (Acc+Dropout) 15.85 12.87 5.98 6.03
BiRNN (after fine-tuning) 16.84 13.22 6.51 6.17

then runs the concatenated result through a feed-
forward network to transform it back to 512.

4. Linear Layer: Transform from 512 back to 24⇤(3⇤
3).

We trained this for 5 epochs on an RTX3090, where
each epoch took around 4 minutes. The transformer
architecture yields performance around 5 times as fast
as the LSTM.

5 Results and Discussion

In this study, our objective was to attain higher pose
estimation accuracy through a combination of data-
driven IMU placement and a novel application of the
transformer network architecture.

5.1 Discussion of Model Performance

As a result of our data-driven IMU placement strat-
egy, both our LSTM and transformer-powered models
achieve better performance on the TotalCapture [11]
dataset than DIP-IMU, the previous work in this do-
main [7]. See table 2 for DIP-IMU’s results on Total-
Capture - the µang captures local rotation errors for
each type of model. The important value is 15.85, which
is the best local rotation error that DIP-IMU achieved
on TotalCapture.

Attribute Value
crit type MSELoss()
crit score 0.010
pos err 0.094
loc rot err 8.695
global rot err 15.221

Table 3: Transformer TotalCapture Performance With

24 Sensors

To evaluate baseline performance - i.e. the best pos-
sible rotational error that our models could achieve -
we ran evaluations on the models trained on 24 IMUs.
Table 4 captures the evaluations for the LSTM, while
table 3 captures the evaluations for the transformer.

Attribute Value
crit type MSELoss()
crit score 0.025
pos err 0.184
loc rot err 13.892
global rot err 40.588

Table 4: BiRNN TotalCapture Performance With 24

Sensors

Therefore, the ideal rotational error we hope to achieve
would be 13.892 degrees with an LSTM, and 8.695 de-
grees with a transformer.

That said, tables 5 and 6 reveal the performance of
the optimized LSTM and transformer models, respec-
tively. Notice that the optimized LSTM has a local
rotation error of 13.018 on TotalCapture, while the op-
timized transformer has a local rotation error of 12.916.
Both models yield significantly better performance than
TotalCapture’s solution, while the transformer, as ex-
pected, performs slightly better than the LSTM.

Table 5: BiRNN TotalCapture Performance With 6

Sensors

Attribute Value
crit type MSELoss()
crit score 0.023
pos err 0.155
loc rot err 13.018
global rot err 29.308

Table 6: Transformer TotalCapture Performance With

6 Sensors

Attribute Value
crit type MSELoss()
crit score 0.021
pos err 0.125
loc rot err 12.916
global rot err 25.088
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Do remember, however, that even though the ac-
curacy delta between the LSTM and transformer isn’t
that large, the transformer’s massively parallel nature
meant that it only took a fifth of the time to train.

5.2 Discussion of “Optimal” IMU Locations

Just looking at model evaluations hides some really in-
teresting parts of the story. When we ran feature ab-
lation, we observed that the most relevant IMUs were
quite dataset dependent, in addition to the fact that the
transformer and LSTM seemed to prefer vastly di↵erent
sets of IMUs.

Start o↵ by looking at figures 1 and 2. Immediately,
a disparity in preferred IMUs emerges - the BiRNN
prefers the pelvis, left shoulder, left wrist, right knee,
upper spine, and left knee, in that order. However,
the transformer prefers the pelvis, upper spine, middle
spine, left foot, right hip, and left knee, in that order.
Although there are certainly some overlaps - namely the
pelvis, upper spine, and left knee, three of the joints dif-
fer.

Figure 1: Global BiRNN Feature Ablation

Figure 2: Global Transformer Feature Ablation

Another disparity appears on a per-dataset basis.
Figures 6, 3, 4, and 5 reveal the feature ablation re-
sults on the TotalCapture [11], ACCAD [4], CMU [6],

and BioMotionLab Ntroj [10] datasets. Although each
dataset does seem to yield the same set of optimal IMUs
as the globally optimal BiRNN IMUs, they occur with
di↵erent degrees of importance.

1. ACCAD: Pelvis, left shoulder, upper spine, left
knee, left wrist, right knee

2. BioMotionLab Ntroj: Left shoulder, pelvis, left
wrist, right knee, upper spine, left knee.

3. CMU: Pelvis, left shoulder, left wrist, right knee,
left knee, upper spine

4. TotalCapture: Pelvis, left shoulder, left wrist,
right knee, upper spine, left knee

Figure 3: ACCAD BiRNN Feature Ablation

Figure 4: BioMotionLab NTroj BiRNN Feature Abla-

tion

A similar sort of disparity occurs with the trans-
former - take a look at the listing below:

1. ACCAD: Pelvis, upper spine, left knee, left foot,
right knee, right elbow

2. BioMotionLab NTroj: Upper spine, left foot, mid-
dle spine, left knee, right foot, right hip

6



Figure 5: CMU BiRNN Feature Ablation

Figure 6: TotalCapture BiRNN Feature Ablation

3. CMU: Pelvis, upper spine, left foot, right knee,
middle spine, right hip

4. TotalCapture: Pelvis, upper spine, middle spine,
left foot, left knee, right foot

Figure 7: ACCAD Transformer Feature Ablation

This time, many individual joints di↵er as well,
rather than just being reordered. This could point to
the transformer’s potential for extracting finer nuances
of the data - but in either case, reveals that finding

Figure 8: BioMotionLab NTroj Transformer Feature

Ablation

Figure 9: CMU Transformer Feature Ablation

Figure 10: TotalCapture Transformer Feature Ablation

globally optimal IMUs in all situations might not be
possible. The vastly di↵ering results between datasets
and model architectures reveals that IMUs should be
carefully chosen in a data-driven manner with regards
to individual activity types. Although this paper does
try to approximate an optimal set of IMUs for each
model architecture, the true result of our study is that
the “optimal” set of IMUs for pose estimation should be
tailored to the situation.
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6 Conclusion

Our exploration into the use of sparse IMU con-
figurations for human pose estimation has culminated
in a robust methodology that outpaces the capabili-
ties of conventional biRNN models. By employing a
data-driven strategy to determine the optimal place-
ment of IMUs on the body and leveraging the computa-
tional strengths of the transformer architecture, we have
achieved notable advancements in pose reconstruction
accuracy from IMU data.

Our findings underscore the significance of IMU
placement, revealing that the strategic selection of sen-
sor locations is crucial and highly contingent on the
dataset and activity type. The contrasting prefer-
ences between LSTM and transformer models for cer-
tain IMUs, along with the variations across di↵erent
datasets, illuminate the complexity and situational de-
pendency of optimal sensor placement. This work em-
phasizes that there is no one-size-fits-all solution; in-
stead, IMU placement must be tailored to the specific
context and objectives of the application.

Furthermore, the rapid training times and parallel
processing capabilities of the transformer model present
compelling advantages over traditional LSTM models.
This e�ciency, combined with the transformer’s profi-
ciency in time-series analysis, positions our approach as
a scalable and practical solution for real-world applica-
tions.

In summary, this study not only contributes a novel
methodological framework for IMU-based pose estima-
tion but also provides key insights into the nuanced re-
lationships between IMU data and human pose. Our re-
sults pave the way for future research in this domain, en-
couraging the development of more adaptive, e�cient,
and precise pose estimation systems that capitalize on
the ubiquity and versatility of IMUs in consumer de-
vices.
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