
Information Flow Using CQual

Morgan Kleene

July 18, 2008

1 Introduction

The RIFLE [2] Architecture defines an architecture where memory addresses
are augmented with information flow information and flows are tracked at run-
time by the architecture. This, in conjunction with binary rewriting, allows all
information flows unrelated to timing and premature program termination to be
caught at runtime. Its weakness is that it is an architectural approach. There is
no efficient way to implement the dynamic checks required by the architecture
in software and it appears unlikely that such a system will be made available in
the near future.

2 Static Systems and Dynamic Systems

Dynamic systems have a few big advantages over static ones. The most impor-
tant one is that there are things that a program may do, according to what is
known statically, but never, or almost never does. If we rely on purely static
methods then we will reject many useful programs. For example, a webserver
does nothing but read from the filesystem and write to the network. Since, in
general, we do not know the names of the files being read and then written out to
the network, it is impossible to verify that such a program does not compromise
sensitive information without making use of somewhat heavyweight theoretical
tools, such as schemes where the sanitization of file names becomes part of the
static analysis.

For most applications that manipulate data in nontrivial ways, there will
certainly be static information flows that may, depending on which information
is accessed, compromise policy.

3 Our Approach

Motivated by the flexibility of dynamic systems and the efficiency of static ones
we make the following observation: there is no need for full-scale tracking as
long as we track the security relevant flows. In the webserver example, it is
clear how a user may enforce his privacy; he may simply look at the code, figure

1

out where the reads are, and not allow any reads of sensitive data. If we desire
a bit more flexibility, we could figure out which reads are dangerous, meaning
that the information returned from such reads might flow to a dangerous output
channel, and only monitor those. If we desire implement a scheme as general as
that of RIFLE we need to track the state of all information flows and then, when
we reach a program point where output is written to a potentially dangerous
channel, decide, based on the state of the channel, whether or not we should
allow this flow. It is the goal of this paper to assess whether such an approach
is feasible.

4 Subtyping and Information Flow

In a subtyping system, the notation A ≤ B denotes that anywhere a value
of type B is expected, it is acceptable to use a value of type A. This has a
straightforward interpretation in terms of information flow. If A ≤ B then if
it is acceptable to write B to a particular channel then it is also acceptable for
us to write A to that same output channel. So, we would expect that public ≤

secret.
All of the judgements which CQUAL [1] enforces are relevant and needed for

information flow but there were a few subtypting rules for control flow which
needed to be added. For an if statement, any variable assigned to on the if or
else arm needed to be a subtype of anything used as an r-value in the condition.
Loops were similar, everything assigned to in the body needed to be made a
subtype of everything used as an r-value in the condition statement.

5 Policy Specification

There are two parts of policy specification corresponding to the dynamic and
static mechanisms we describe.

5.1 Static Portions of Policies

Static policies conservatively describe the set of dangerous flows. We are con-
servative because there are many statically identifiable operations which may
carry out dangerous actions but often do not.

In general, a static policy consists on user-defined constraints on system
calls. In Linux we would annotate write(), read(), close(), open(), etc.
System calls define both the ways that sensitive data may enter our system
and the ways that sensitive data may leave the system. We use the notation of

CQUAL to denote qualifier constants (they are preceded by a ´$)́ and show an
example policy using three of the four system calls mentioned above.

• $secret int open(const char *pathname, int flags);

• int read($ 1 int fd, $ 1 void *buff, size t size);

2

• int write(int fd, const $public void* buff, size t size);

This policy reflects the flow of information from potentially sensitive information
sources (the file named in the ’pathname’ argument to open) to potentially
dangerous output channels. The policy on read states that if we have a $public
or $secret file descriptor we will get back data that has the same classification.
The policy on write reflects our pessimism about where the data will go.

Such a policy on the three essential system calls leads to the detection of
nearly all flows, given access to the full source code of a program. Consider the
following program:

#include <fcntl.h>

int main(int argc, char **argv)

{

char buff[20];

int fd1 = open("~/my_data", O_RDONLY),

fd2 = open(atoi(argv[1]), O_WRONLY);

read (fd1, buff, 20);

write(fd2, buff, 20);

return 0;

}

The program obviously has a potential information leak, and the system we
have put in place detects it. The error we get from CQUAL is:

buff[]: $public $secret

../test_programs/preludes/prelude.cq:230 $secret == open_ret

progs/test1.c:6 == fd1

progs/test1.c:8 == read_arg1@8

progs/test1.c:8 == buff[]

progs/test1.c:9 == *write_arg2

../test_programs/preludes/prelude.cq:245 == $public

In CQUAL functions have polymorphic types. In terms of constraint gen-
eration, this is modeled by giving each function call distinct qualifier variables
(for the function return, and its arguments). The decorations on the arguments
and return types denote relationships between the qualifiers we wish to enforce
at all function call sites. For example, open always returns a file descriptor
that is labeled with $secret, for all instantiations. The notation $ 1 2 denotes
a set of variables, in this case 1 and 2. Let set(A) denote the set of elements
which decorate a qualified type A. Then if set(B) ⊆ set(A) CQUAL enforces
the restriction that B ≤ A.

CQUAL uses prelude files, where the qualified types of functions may be
given statically. If we specify the type of a function in a prelude file then the
analysis of the internals of the function are suppressed and the type given in

3

the prelude file is assumed to be correct. This is useful in the case where we
wish to take into account more semantic information than can be encoded in
the subtyping system. For example, suppose we defined a version of open which
sanitized file accesses and only returned pointers to files which were deemed safe.
Then we could take into account these semantics and give our new function a
type consistent with its semantics; namely it would return a pointer qualified
by $public.

5.2 Dynamic Portions of Policies

The policies enforced by RIFLE are a superset of those enforceable by static
mechanisms because the ability to view what is actually happening during a
computation is so powerful. We propose to imitate the dynamic portion of
RIFLE but only do so during the security relevant portions of the program. Each
potentially dangerous information flow is monitored at runtime with inserted
instrumentation and if it appears that sensitive information is going to leave on
an inappropriate channel, the program is halted, as occurs in RIFLE. We have
the user specify a function for each security-relevant system call, the name and
purpose of which depend on how the function relates to the security policy, i.e. if
it is a channel whereby secret information enters the system or a channel where
secret information leaves the system. Here are the functions we would need for
the policy we have specified above. Each function returns true in the case that
a violation has occurred. The functions have access to runtime security relevant
information about the sensitive data.

• bool check open return(const char *pathname, int flags);

• bool check write(int fd, void *buff, size t size);

The check open function is entirely written by the user and should take
in a pathname and a set of flags and tell us whether or not the file descriptor
returned by write represents a security risk. If it does, then we add the fact
that the file descriptor returned by write is $secret and that any use of it in
a $public context should be flagged as an error. The check write function
checks if we are writing $secret data to a $public channel and if we are, returns
an error. This could actually be done by the system.

6 Runtime Monitoring of Flows

Every sequence of program actions resulting in a security violation occurs be-
cause of some sequence of program actions. The static portion of the policy
allows us to identify the sequence of actions responsible for a particular viola-
tion.

If we were to implement RIFLE in software the thing that would make it
completely impractical is the overhead required to give each memory address a
security type. The important thing about identifying dangerous flows is that

4

we only need to monitor those instructions involved with the flows. For this
approach to make sense it is important that flows are not too long and involved
or we may end up implementing RIFLE in software.

Consider this version of the above program:

#include <fcntl.h>

int main(int argc, char **argv)

{

char buff[20];

open_ret_check("~/my_data", 0_RDONLY, "fd1");

int fd1 = open("~/my_data", O_RDONLY)

open_ret_check(atoi(argv[1]), O_WRONLY, "fd2");

int fd2 = open(atoi(argv[1]), O_WRONLY);

read_arg2_check(fd1, buff, 20, "buff");

read (fd1, buff, 20);

write_arg2_check(fd2, buff, 20, "fd2");

write(fd2, buff, 20);

return 0;

}

Every step of the dangerous path found above has been checked, and all
decisions about policy can be encapsulated in checks of the arguments to read
and write. Other statements that propogate information may be checked sim-
ilarly, and casts will be dealt with in a sound manner, according to the policy
in place. The statements we would need to track assigments and control flow
could be inserted entirely independent of policy. The user would have no need
be involved himself. It is my hope, although I have only a tiny bit of data to
show it, that there are classes of applications for which such a policy will incur
too much overhead. This may only be settled with experience on a wide range
of applications.

7 Proposed Implementation of Runtime Moni-

toring

7.1 Architecture

CQUAL generates constraints and can be easily configured to print out the
constraints as it goes along. Each type variable corresponds to a declaration of
a data type, except for those associated with function calls. These are generated
implicitly each time a function is encountered. The first step is to generate all
constraints. When we generate the constraints we would dump information
about the location in the source file we are generating the constraint so we may
instrument the source file later.

5

At this point we do not have any constants involved yet. The constraints
we have generated describe the set of all possible information flows throughout
the program. The next step is to specify the set of flows that are interesting, by
using constants to constrain the types of system call return values and arguments
through greater-than and less-than relations. If we are considering a hybrid
dynamic/static approach, it really only makes sense to have two levels: safe and
potentially dangerous. These levels will define the sets of interesting flows that
we wish to monitor.

The constraints, which now specify types for the system calls specified in
our arguments are solved using IQUALS, an interface to the CQUAL constraint
solver. If we deduce that all type qualifiers are either $public or $secret but
not both, then there are no security violations. Otherwise, we must, for all type
qualifiers that have been deduced to have two inconsistent types, add statements
which check the runtime type of the qualifiers for all inconsistent derivations.

The overhead involved in such instrumentation is related to the amount
of code involved in the total number of program statements in statements on
sensitive paths. There are other concerns as well; if we instrument extremely
well-trodden portions of the control flow graph then performance will suffer a
great deal.

7.2 Memory Safety

In the absence of memory safety all bets are off. Any array access is potentially
an alias of every other array. This is the major weakness of such an approach
for a language like C. We could envision using separate heaps, one for data of
each security level and then sandboxing accesses to these heaps. All reads from
$secret heaps would taint the variables that received such values. However, the
more serious problem that there would be no such thing as a local variable with
a classified type would remain. It seems that this approach would not work well
without array bounds checks and so forth.

8 thttpd

thttpd is a tiny webserver. The information leaks in such a program are obvious
and flows were found without too much effort. In terms of static policies, it
is clear that programs like are guaranteed to leak information, that is their
purpose. Any webserver must interact with the filesystem using system calls.
These system calls have a restrictive type, indicating that subject to the users
judgement, sensitive data may be leaked. The files users have requested are
then sent out over the network. Two example information flows found were the
following:

prelude.cq:42 $secret == *fread_arg1

libhttpd.c:863 == buf[]

libhttpd.c:867 == *str

libhttpd.c:556 == *memmove_arg2@556

6

../preludes/prelude.cq:94 == *memmove_ret@556

libhttpd.c:556 == *hc->response

thttpd.c:1737 == *iv[].iov_base

thttpd.c:1739 == *hc->file_address

thttpd.c:1727 == *write_arg2

../preludes/prelude.cq:239 == $public

../preludes/prelude.cq:39 $secret == *fgets_ret@1016

thttpd.c:1016 == line[]

thttpd.c:1023 == *cp

thttpd.c:1024 == *strspn_arg1

libhttpd.c:3274 == *cp

libhttpd.c:3265 == *headers

libhttpd.c:3304 == *buf

libhttpd.c:4213 == *cast649

libhttpd.c:4213 == *write_arg2 == $public

The lines from the preludes directory are lines that we have specified our-
selves, either as part of the policy, or part of the approximation of library files
for which we do not have source code. The above appears to be a genuine leak
of information, that a user might wish to impose policy decisions on. The above
error is typical of the errors found: a file is read, and after some transformations,
sent out over the network, which is exactly what one would expect.

The use of polymorphic functions is essential. Without them, it is impossible
to specify any kind of reasonable policy. thttpd is a small program, but the
constraints generated for it took up 1.75 KB. It will be interesting to see how this
number increases as the size of programs increase. I was able to ascertain that 5
truly dangerous flows were reported (probably more a sign of poor annotations
than a lack of flows). This also might be a consequence of the structure of the
program, there are actually very few channels leading to the network. The above
flow can be annotated easily in the manner we have described above. Overall,
the annotations to secure thttpd as described should take no more than 40 or so
function calls. If we include the checks that would be included had we included
the spurious annotations we would need more like 120.

9 Future Work

The next step would be to validate these results for a wider class of applications
and actually insert the needed instrumentation, assessing the penalty one would
pay for runtime enforcement of the policies. Hopefully the set of flows is small
enough that the runtime cost is not prohibitive. It also seems possible to do the
same thing on binaries, since if we only consider system calls it may be possible
to map high level operations like file accesses to memory locations. The main
difficulty here would be the need for some kind of memory safety. Without
having at least an estimate of the type of an object we would not even know
what the simplifying assumption should be.

7

References

[1] Jeffrey Foster. Type Qualifiers: Lightweight Specifications to Improve Soft-
ware Quality. PhD thesis, University of California, Berkeley, September
2002.

[2] Neil Vachharajani, Matthew J. Bridges, Jonathan Chang, Ram Rangan,
Guilherme Ottoni, Jason A. Blome, George A. Reis, Manishi Vachharajani,
and David I. August. Rifle: An architectural framework for user-centric in-
formation flow security. In Proceedings of the 27th International Symposium
on Microarchitecture (MICRO), December 2004.

8

