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Abstract— Analyzing multivariate datasets requires users to understand distributions of single variables and at least the two-way
relationships between the variables. Lower-dimension projection techniques may assist users in finding interesting combinations.
To explore the 2D relationships in a systematic way, we suggest ranking such relationships according to some measure of inter-
estingness. This approach has been valuable for continuous data; however, metrics for categorical data are a novel contribution.
We propose CateRank a tool for analyzing categorical datasets which visualizes one-dimensional relationships as histograms and
uses re-orderable matrix for two-dimensional relationships. CateRank implements several metrics based on the histogram and matrix
properties that enable users to discover relationships between the two categorical variables. User controls support data filtering to
remove extreme or uninteresting values.

Index Terms—Categorical data, systematic exploration, ranking, reorderable matrix.

1 INTRODUCTION

Large multivariate datasets are quite common today. Often, the dataset
is a mix of continuous and categorical variables and the number of
variables can be significant. US Census and credit approval records,
road accidents, protein interaction data are a few examples of such
datasets. To go through data similar to US Census data in a system-
atic way, users would first study single variables distribution, then it
would be logical for them to study the two-dimensional relationships
and then move up to the higher dimensions. However, if there are just
10 variables, there are C(2,10) = 10!/8!2! = 45 two-dimensional rela-
tionships, C(3,10) = 10!/7!3! = 120 three-dimensional relationships,
etc. Users can become overwhelmed with the amount of visualizations
they need to look at rather quickly.

Seo and Shneiderman [23] solve this problem by assigning a score
to each such relationship thus making the relationships comparable.
The users can choose more interesting relationships by looking at how
the relationship ranks against the others. Seo and Shneiderman applied
this approach in the Hierarchical Clustering Explorer (HCE) applica-
tion and HCE proved a valuable tool for a variety of data including
the Census and gene ontology data. However, the original version of
HCE operated on continuous variables only; a later version [22] deals
with categorical variables only in a limited way. In general, metrics for
continuous data are not applicable to categorical data: categorical vari-
ables have no mean nor range, comparisons like greater than and less
than are not defined for categorical data, and the mapping from cate-
gorical to continuous domain does not always work (nominal variables
can not be converted into numbers without a loss of information).

In our work, we focused on ranking one- and two-dimensional cate-
gorical relationships. We visualize single variables through histograms
and two-dimensional relationships are displayed as contingency ta-
bles. We apply a barycentric heuristic to each table to reorder rows and
columns which results in a clustered view (see figure 1) and makes the
table a reorderable matrix as developed by Siirtola and Makinen [24].
Our contributions are the ranking criteria for histograms and reorder-
able matrices that allow for systematic exploration of the categorical
datasets.
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2 RELATED WORK

2.1 Multivariate datasets exploration
It is natural to browse through the data before attempting rigorous sta-
tistical analysis. In his book [29], Tukey says that ”‘it is important
to understand what you CAN DO before you learn to measure how
WELL you seem to have done it’”. The techniques and methods sum-
marized in the book make the data exploration easy and allow to look
at the data from all sides. Earlier, Friedman and Tukey introduced a
”‘projection pursuit”’ [9] concept: they suggested that the projections
of the multivariate data be ranked to allow quantitative comparison
among them. Assigning a score to each projection helps identify the
most revealing combintations.

There is a plethora of commercial and open-source applications for
multivariate data analysis, including: SAS [21], Spotfire [26], Tableau
[20], ManyEyes [31], GeoVista [19]. Users have access to a variety of
visualizations that accommodate both continuous and categorical vari-
ables. With the use of color, object size and shape, scatterplots, trel-
lises, and small multiples views the users can study several variables at
once. However, the space of all possible visualizations is large and the
interesting structures in it tend to be sparse [15]. With nothing guiding
them, the users are likely to stop upon finding a single interesting view
and overlook other significant insights.

To guide the users towards more interesting combination of vari-
ables, Spotfire [26] provides a ranking mechanism that finds correla-
tions between variables. Spotfire can handle many kinds of data rela-
tionships – numerical to numerical, numerical to categorical, and cat-
egorical to numerical, but for the categorical variables there is only a
χ2-test. χ2-test only tests the presence of correlation, but tells nothing
about its nature and strength.

Fekete et al. [6] take a different direction in multidimensional
dataset exploration: they construct a scatterplot matrix and order its
rows and columns according to a dimension similarity measure. Not-
ing that row and column orderings are independent, they place similar
columns next to each other and bring dissimilar rows closer together.
Users then navigate through the scatterplots either stepping left and
right to the next similar view or up and down to the most dissimilar
view (only rectilinear movements are allowed). Interactive exploration
allows users to become more familiar with a dataset; however, tasks
such as identifying the two most dissimilar rows or finding a group of
columns that are all similar to each other are hard.

Parallel coordinates [16] are another powerful visual display for an-
alyzing multidimensional data. There are several issues to consider
with the parallel coordinates: the data clutter, occlusion, and the axis
arrangement. The data occlusion becomes especially prominent when
plotting categorical variables. Occlusion can be mitigated by using
transparent lines for each data record; overlapping lines will accumu-



late color intensity and become more prominent indicating that mul-
tiple data items are overlaid on top of each other. The clutter may
be reduced by permuting the axes algorithmically, using random sam-
pling or filtering [32], [5]. Finding a optimal permutation of axes that
minimizes the clutter is hard (NP-hard); filtering and random sampling
techniques that reduce the original dataset may actually obscure some
patterns. Besides, it is hard to reason about the relationship between
any non-consecutive axes.

Parallel Sets [18], a parallel coordinates adaptation for categorical
data, uses frequency bands instead of a single line per data record to
visualize the dataset. The frequency bands solve the occlusion prob-
lem, but the clutter and the axis arrangement are still a problem.

HCE [23], upon which the current work is built, stands out by pro-
viding rankings for every one- and two-dimensional relationship for
continuous variables. A later version of HCE [22] was adapted to work
with categorical variables and included histograms ranking, but, simi-
lar to Spotfire, did not provide ranking for two- or higher-dimensional
categorical relationships other than the χ2-test. Some work on ranking
the categorical relationships was also done in Fervor [8].

2.2 Views for categorical data
Bar and pie charts are the common visualizations for single categorical
variables in the same way the histograms are for the continouos data;
their use dating back to at least 1700s [17]. Bar charts are easier to
read than the pie charts (comparing items by height is visually easier
than comparing by area) and are the most widely used way of visual-
izing a single variable distribution. In CateRank, we visualize single
categorical variables as bar charts.

There is no single visualization that is commonly used to display a
two-dimensional categorical relationship. In statistics, a pair of binary
variables is usually given as a two-way table. The two-way table can
be easily extended for the general case of the multivariate variables
(multi-way, or contingency, table).

Fig. 1. Bertin’s vote matrix.

Friendly [11] has introduced the fourfold displays for analysis of the
2x2 distributions; however, unlike the two-way table, the fourfold dis-
play can not be extended to work with multivariate variables. Mosaic
plot, an adaptation of a contingency table concept to data visualization,
was introduced by Hartigan and Kleiner [13] and further developed by
Friendly [10]. Like the work by Fekete et al., mosaic plot lacks a quan-
tifiable comparison of the relationships between variables and is hard
to read when all rectangular areas are approximately the same size.

Upton [30] has suggested a cobweb diagram to visualize the rela-
tionship between the two categorical variables: the variable’s values
are placed as nodes on a circumference and are connected by lines
across the circle. The thickness of the lines is proportional to the
square of the adjusted differences between the actual frequencies in
the multiway table and the frequencies in independent model. Since
the values are laid out in a circle, the lines joining them result in a
cluttered view which only increases as the number of values that the
categorical variable takes grows.

A matrix in figure 1 is a simpler view for two-dimensional categor-
ical relationship. The matrix was pioneered by Jacques Bertin [2] and
further developed by Siirtola and Makinen [24], [25]. The matrix is
a multiway table where the cells at the intersection of each row and
column contain a count for the number of occurrences. The labels
may be replaced by a circle or rectangle proportional in size to the
original count; these nodes can also vary in color or transparency as
in [24]. In a sense, the matrix is analogous to the scatterplot for con-
tinuous data. However, unlike the values on the axes in scaterplots,
the rows and columns are independent, so one could permute them

to bring the nonempty cells together. Figure 1, right, is an example
of such permutation given by Bertin: before the matrix was sorted, it
was impossible to identify the clusters within the data; once the rows
and columns were permuted, the three clusters became prominent ex-
plaining the responses. Identifying clusters like these is an important
part of the analysis and is similar to finding clusters on a scatterplot
for two particular variables. Siirtola et al. suggested two algorithms
for permuting the matrix: 2D Sort and a barycenter heuristic. 2D Sort
produces different arrangements depending on the row that the matrix
is first sorted by; in this sense, the barycenter heuristic is a more sta-
ble algorithm. The paper by Sugiyama et al. [28] contains a detailed
description of the barycenter heuristic.

3 INTERFACE

CateRank, a tool developed for the categorical data analysis, exploits
the idea of guiding the users through the 1D and 2D categorical re-
lationships by assigning each relationship a score (CateRank is avail-
able from http://www.cs.umd.edu/hcil/caterank). Cat-
eRank’s major innovations are that it ranks categorical relationships
based on geometrical and statistical properties and that it provides an
interactive visualization that supports rapid exploration (fig. 2). As
with the rank-by-feature framework [23], users start with exploration
of single variables and later move on to visualizations for the pairs
of variables. Switching between ranking criteria (area 1, Fig. 2) al-
lows looking at one-dimensional variable distributions from different
perspectives. In the same manner, the users explore two-dimensional
relationships by going through their corresponding matrices and us-
ing ranking criteria to compare the relationships to each other (area 2,
figure 3).

Fig. 2. One-dimensional tab with a list of rankings on the left (1) and
the corresponding bar charts on the right (3). The weather variables
had 7 unique values which corresponds to 7 bars on the chart sorted
in an ascending order. The chart makes it clear that the majority of the
accidents happened during dry weather. Users can sort the rankings by
score or by the variable name (2).

To visualize one-dimensional relationships, CateRank uses bar
charts. Two-dimensional relationships are visualized as reorderable
matrices. In CateRank, the individual cells in the matrices are
color-coded according to their count; such representation resembles
a heatmap and highlights cells with the high counts. CateRank builds
a matrix for each pair of variables in the data set. To reorder the matrix,
we treat all non-zero values as 1’s and run the barycenter heuristic on
each table to find a permutation of rows and columns that yields a clus-
tered view (see fig. 10, right). When the barycenter heuristic has run
on all the tables, we rank the resulting reorderable matrices according
to the default criteria (variance).



Fig. 3. Users can choose one of several two-dimensional rankings (1). The variables’ relationships are listed on the left-hand side (2) together with
their ranking scores. Each relationship is visualized as a reorderable matrix on the right (4). Users can look at all the counts in the range set by the
range filter (3). The cutoff slider (3) allows users to set different cut-off values for the matrix that triggers a barycenter heuristic reordering on the
matrix. Users have control over the color scheme and the size of the squares in the matrix.

3.1 Example walkthrough
3.1.1 Drug and health data
The National Survey on Drug Use and Health (NSDUH) collects data
to estimate the level and patterns of drug abuse as well as to iden-
tify the groups at high risk for drug abuse. We have selected a recent
2008 survey [4] and filtered it to retain the respondents from 12 to 17
years old (school age) - this age group in particular is at high risk.
Our dataset contains 23257 records randomly sampled from the orig-
inal youth’s responses. We have selected 10 variables to work with:
age, race, health status, recency of use for the alcohol, cigarettes, mar-
ijuana, inhalants, hallucinogens, cocaine, and heroin. The dataset is
available online [3].

Users start by exploring the individual variables. The age vari-
able distribution tells the users that the majority (7860) of the respon-
dents were 15 years old; the majority of the respondents had good
to excellent health; an overwhelming 15327 identified themselves as
white/Caucasian. The disturbingly large percentage of respondents
(more than 50% - 13510 respondents) had had alcohol within the past
30 days of the survey date; while 6733 (29%) respondents have not
ever tried smoking, 6897 (29.6%) of them had smoked in the past 30
days and another 9627 (41.4%) had smoked within the past 3 years
(see fig. 4).

Now the question is how these variables relate to each other. The
users switch to the ”‘2D”’ tab (see fig 3) and start looking at the pairs
of variables and their associated scores. The lowest variance score be-
longs to the (age, health) pair and various combinations of the recency
of drug use variables (rec coc, rec inh, rec her) score highest - a large

Fig. 5. Recency of alcohol use (left), recency of cigarette use (center),
and recency of marijuana use (right)

number of the respondents have never tried either of those drugs (co-
caine, inhalants, hallucinogens, heroin) resulting in a high count for
”‘Never tried”’ (fig. 5).

However, if the users look at the pairs like (rec alc, rec her),
(rec cig, rec inh) they will notice that even though the respondents
mostly stayed away from cocaine, heroin, inhalants, or hallucinogens,
they did not abstain from cigarettes, alcohol, or marijuana - the more
popular and accessible substances (see fig 6).

The users can switch between various rankings to explore differ-
ent properties of the matrices. The ranking for the amount of empty
white space immediately draws attention to the pairs of variables one
of which is the recency of the heroin use: the matrices for these pairs



Fig. 4. Recency of alcohol use (left), recency of cigarette use (center), and recency of marijuana use (right)

Fig. 6. The matrix for recency of alcohol use (rec alc) and recency of
the heroin use (rec her) on the left shows that although the majority of
respondents have not tried heroin ever, 86% of them have at some point
tried alcohol. The matrices for recency of inhalants and heroin use as
compared to the cigarette use show the same pattern: 60% and 68% of
those that have never tried either subtance correspondingly have tried
cigarettes.

are filled out only partially which, firstly, is a result of a low number
of the respondents who tried heroin. Secondly, it may be indicative
of a vicious circle with cigarettes and alcohol serving as the gateway
drugs: from over 400 respondents who have tried heroin only 12 (less
than 3%) have never smoked a cigarette.

3.1.2 Accident data
The accident data set is a set of fatal road crashes in the state of Mary-
land in the year 2007 as provided by the FARS [7] encyclopedia. The
dataset contains a total of 2223 items. We have focused on the vari-
ables such as the data and time of the crash, weather conditions, car
type, airbag deployment, seating position for the injured person, the
point of impact direction. The dataset is available online [3].

As in the previous example, users start by exploring the one-
dimensional relationships. A few high-variance variables stand out:
weather, seat position, and point of initial impact. These bar charts
indicate that the majority of the accidents happen on the clear days;
people using the front seats are involved in fatal accidents more often
than people sitting elsewhere in the car; the overwhelming majority
of the fatal accidents (1433 out of 2223) were the head on collisions
followed by the side impact collisions (see figure 7). These obser-
vations are partially confirmed by the uniformity score: the weather
variable has the lowest score of (0.52) which indicates the the dataset
is skewed. Most uniformly distributed variables are month and hour
of the accident while the day of week variable’s score is in between
(2.80), therefore, day of week variable may display some bias.

Moving on to the two-dimensional relationships, users start by ex-
ploring the views by the variance score. The pairs having hour as one
of the variables get low variance: accidents are more or less evenly dis-
tributed throughout the day. The users saw that head on collisions were
the most common from the point of impact distribution. Now, look-
ing at the (weather, point of impact) matrix, users see that the head

Fig. 7. Weather (left) and seat position variables received a high vari-
ance score that indicates that the data was aggregated in the few values.

on collisions happened the most when the weather was fine. So what
explains such a large percentage of the head on incidents? Looking at
the (hour, point of impact) matrix, users observe that the majority of
the head on collisions happened around the evening rush hour time: 5
- 7 p.m. An interesting deviation form the pattern is 103 head on colli-
sions at 2p.m.: if we look at the (day of week, hour) matrix, we notice
that the majority of those 2p.m. collisions happened on Fridays and
may be explained by the increased traffic when people start leaving
jobs earlier on Friday. Accidents at the odd times, such as midnight
- 3a.m. happen mostly on Saturday and Sunday - times when people
go out to the bars and restaurants and tend to forget the driving safety
rules.

Fig. 8. Rows: weather, columns: point of impact. (weather, point of
impact) matrix displays a large cluster of accidents that happened on
the clear days. The majority of those were head on collisions (point of
impact value of 12).

Users then switch to the outlier ranking and study the matrices with
high number of outliers. One of them, (weather, body type), reveals
that sedans are involved in fatal crashes during the clear weather con-
ditions more often than other vehicles (766 crashes). This fact may be



explained by the number of sedans driven - it is the most common type
of a car on the roads and, therefore, if a car is involved in an accident,
it is more likely that the car is a sedan. Filtering out the sedans with
the range slider, users observe that pickups, utility vehicles, and mo-
torcycles follow the sedans in the number of fatal crashes (229, 208,
181).

As the number of views that users have to analyze grows, it becomes
increasingly important to provide users with some guidance. Ranking
the views is one such alternative. Below we discuss the one- and two-
dimensional categorical relationships in more detail.

3.2 Other controls
Below we describe the additional tools available to users allowing
them to control the visual displays.

3.2.1 Range slider
The range slider allows users to set the range of values that they want
to display in the matrix. The slider allows them to cut-off extreme
values bringing the focus to the mid range, or, conversely, focus on the
outliers by filtering the mid range values out.

When users start to drag the slider tick controlling the maximum
displayed value, CateRank adjusts the distribution of color in the ma-
trix. This way users can observe the emergence of the secondary high
values that were otherwise obscured by the maximum counts.

Fig. 9. Different views of the same matrix: on the left, the range slider
thumbs are set at 0 and 6 which includes all counts. On the right, the
thumbs are set at 0 and 4: all values above 4 are grayed out helping the
user concentrate on the filtered values.

3.2.2 Cutoff slider
By default, the algorithm for reordering the matrix considers all non-
zero counts as 1. This way, when calculating the weighted sums for
rows and columns (see [28] for the details of algorithm implementa-
tion), all non-zero values make the same contribution to the sum. The
cutoff slider allows users to change the cutoff value: if the cutoff is set
to x, then only the values that are greater than x would contribute to
the weighted sums. Moving the cutoff slider provides a new clustering
for each cutoff value (see Figure 10).

3.2.3 Other controls
Among other controls available to users is the color picker that gives
users an instrument to adjust the color scheme for the matrix. The ra-
dius slider changes the radius of individual counts in the matrix view:
moving the slider, users can zoom in on a matrix or zoom out to get an
overview of a particularly large matrix.

3.3 Implementation details
CateRank was developed in Flex/ActionScript3 and the sample
datasets we ran on the 2-core AMD Turion 64 1.90 GHz.machine with
3Gb of RAM.

We ran CateRank on several datasets to get a range for run times; ta-
ble 1 contains the datasets details. Cars dataset came from the CMU’s
StatLib [27] and describes car models produced by major car manu-
facturers in USA, Europe, and Japan from 1970 to 1980. The columns

Fig. 10. When the cutoff value is set to 1 (left), all non-zero counts
are taken into account when reordering the matrix. Toggling the cutoff
slider triggers the reordering with the counts less than or equal to the
slider’s value being ignored. The matrix to the right is the same matrix
but reordered with the counts below 4 ignored.

are miles per gallon (MPG), number of cylinders, horsepower, weight,
time to accelerate to 100 MPH, manufacturer, origin and model year.
Accidents1 dataset contains records on the accidents that happened
during 2004-2006 period on one of the busy streets in a city in the State
of Maryland as reported by State Police. The columns include colli-
sion type, harmful event, lighting conditions and weather, road surface
type (paved, gravel, etc.), road condition (ice, mud, snow, etc.), road
division type (undivided, double yellow line division, has a median,
etc.). Credit approval dataset comes from the UCI Machine Learning
Repository [1]. We removed real- and integer- valued columns which
left us with 9 categorical fields. Accidents2and accidents3 datasets
are collections of all fatal accident records in 2007 for the State of
Maryland as reported by FARS [7]. Accidents3 contains the same
data records as accidents2 but includes different columns with a high
unique value count. The size of the largest matrix for accidents3 ex-
plains the difference in running times between the two datasets. The
columns include first and most harmful events, injury, accident month,
weather, initial point of impact, air bag use, and the seating position of
the fatally injured occupant.

Name # Records # Columns Matrixx Time, ms
cars 406 9 13x30 11906
accidents1 504 10 10x17 4519
credit approval 690 9 8x14 1309
accidents2 2223 10 24x29 27314
accidents3 2223 8 34x35 34318

Table 1. Datasets details. The size of the largest matrix, number of
columns, and number of records all affect the time required for the initial
CateRank setup.

4 RANKINGS

The rankings guide the users through the individual variables and their
combinations. The rankings allow users to choose views that display
more ”‘interesting”’ features - be it the variance, outliers, or number
of unique values.

4.1 1D ranking

Variance and uniformity rankings are the discrete equivalents of those
used in HCE [23], [22] for continuous data and the rest are the novel
rankings.

4.1.1 Number of unique values

Number of unique values is a natural metric to consider when working
with categorical data. CateRank show the number of unique values for
each variable in a sortable table (figure 11).



Fig. 11. Number of unique values: variable on the left has 30 values
and the variable on the right has only 5 distinct values.

4.1.2 Variance
Variance provides users with a measure of how spread the distribution
is for some variable x. We assume that the variable x takes a particular
value i with equal probability p = 1

n where n is the number of unique
values x can take. Then the expected value for x is

x̄ =

n

∑
i=1

xi

n
=

N
n

where xi is the number of times the variable takes the value i and N
is the total number of records in the dataset. For each variable x, the
variance is calculated by the formula:

Var(x) = ∑
xi

p · (xi− x̄)2

Figure 12 shows an example of high and low variance histograms.

Fig. 12. A variable on the left has a higher variance than the variable on
the right.

4.1.3 Uniformity of the distribution
Uniformity of distribution ranking is the entropy measure as in [23].
The distribution with the higher entropy is closer to a uniform distri-
bution and the variable’s histogram looks like figure 13, left. The low
entropy value indicates that the distribution is non-uniform (skewed);
figure 13, right, is an example of such a histogram. If the variable x
takes n different values with each value appearing in xi records in the
dataset, then

H(x) =
n

∑
i=1

xi

N
log

xi

N

is the x’s uniformity score.

4.1.4 Number of outliers
We use the same principle for calculating the outliers as HCE [23]
does; however, to calculate the interquartile range we had to use the
counts per variable’s value. First, we obtain the counts for the vari-
able’s unique values, sort the counts in an ascending order, and cal-
culate first (Q1) and third (Q3) quartiles. From that, we derive the
interquartile range (IQR) and search for the values that have counts
above Q3 + 1.5∗ IQR or below Q1−1.5∗ IQR. Such values are con-
sidered outliers. Figure 14 demonstrates the concept.

Fig. 13. Accident dataset: month of accident bar chart got the highest
3.50 score in entropy ranking (left) and low entropy of 1.74 (right) for the
seat position.

Fig. 14. Number of outliers: 2 outliers on the left and 0 on the right.

4.2 2D ranking
Two-dimensional rankings describe the geometrical properties of the
matrices corresponding to the pairs of variables as well as the matrices’
quantifiable properties.

4.2.1 Variance
We calculate the variance for the pairs of variables x, y in a manner
similar to the one-dimensional case. We treat the pair’s counts as a
one-dimensional variable with nm values (assuming x takes n values
and y - m values) and naively assume that the variable has a uniform
distribution. Then the variance for x,y is

Var(M) = ∑
i, j

(ai j −
N
nm

)2

Figure 15 contains an example of high and low variance matrices.

Fig. 15. A high variance matrix on the left on the left has a single count
of 20603 aggregating the majority of items in the dataset. The counts in
the lower variance matrix on the right are distributed more evenly.

4.2.2 Crossover
The barycenter heuristic tries to re-order rows and columns in the
bipartite graph corresponding to the (x,y) matrix to minimize the
crossovers (see [24]). The crossover ranking indicates how well the
barycenter heuristic was able to reorganize the bipartite graph. A
crossover score closer to 0 means that there are much fewer edges



between the vertices of the bipartite graph that is theoretically possi-
ble, in other words, it is more likely that the bipartite graph, and the
matrix, has segmented into separate clusters.

The crossover score is a ratio between the actual number of
crossovers and the maximum number possible for a given graph:

e
emax

where e is the number of edges in the bipartite graph corresponding to
the matrix and

emax =
mn(m−1)(m−1)

4
is the number of edges in the full bipartite graph (two sets of vertices
are connected by every possible edge), m, n as above.

Fig. 16. High crossover score matrix (left) is dense compared to the low
crossover score matrix (right).

4.2.3 Uniformity of distribution
Uniformity score is calculated similarly to the variance score: we treat
the matrix as a single variable with n ·m counts and compute its uni-
formity as follows:

H(X) = ∑
i

pi log pi

where pi = ai j

∑
i j

ai j
= ai j

N .

4.2.4 Non-null values
A non-null measure tells the user the amount of the white space in
matrix display. This measure indicates how values are spread in the
table. The low score for this ranking would indicate that all items are
concentrated around the few pairs of values. The matrix on the left in
figure 16 gets a higher non-null values score than its neighbor instantly
tells the users that the left matrix is almost all filled in.

4.2.5 Null values
Null values measure is an inverse of the non-null values measures; in
other words, it is the a ratio of the number of null counts to the total
number of counts (nm) in the matrix.

4.2.6 Number of outliers
CateRank applies the outlier detection method in 1D to 2D relation-
ships. To calculate the number of outliers in 2D, CateRank merges
the counts from all matrix rows, sorts them in the ascending order and
then applies the outlier measure to that array.

These measures do not describe every possible aspect of the vari-
able or relationship distribution, but serve as a good starting point for
the further analysis.

5 DISCUSSION

While variables with a large number of values produce complex and
interesting matrices, the matrices produced for the binary variables
are simple 2x2 tables with little to explore visually. Sometimes the
binary values can be merged into a single variable as it was done for
the voting example in figure 1. The matrix in 1 reflects only the ”yes”
votes; however, one may look at the votes against as well.

Continuous variables are often converted into categorical through
binning. For example, time of day can be easily aggregated by the hour

Fig. 17. Matrix with two outliers: from all respondents, 4629 (19.7%)
have consumed alcohol in the past 30 days while additional 4787
(20.4%) not only drank, but also smoked within 30 days of the survey.

or into four generic categories morning, afternoon, evening, night; age
can be broken down into the age groups, etc.

For the smaller datasets, CateRank aggregates data and gener-
ates matrices instantly with a hardly noticeable delay. However, as
the number of variables grows, the number of pairs increases expo-
nentially, therefore, increasing the runtime. For larger datasets, the
barycenter heuristic becomes a bottleneck since it has to converge for
every matrix. In turn, the barycenter heuristic is dependent on the ma-
trix size (note the difference in runtime for accidents2 and accidents3
datasets). We are investigating ways to speed up the barycenter heuris-
tic to accommodate for larger matrices and larger datasets.

We asked four users to complete a series of tasks using CateRank
during an informal study. We described the main UI parts, their pur-
pose, and the dataset to the users. After the introduction, the users
were given unlimited time to complete the tasks. Two users were Mas-
ters students (computer science, education); two had Bachelor degrees
(computer science, engineering). All participants were experienced
computer users. The users provided correct answers for most ques-
tions: on average, users answered correctly 8 out of 10 questions.
However, the cutoff and range sliders were the source of confusion
for two users leaving them wondering why the rows and columns got
reordered when they moved the cutoff slider. Two other users used the
range slider successfully (”it hides unnecessary information”, ”it was
very useful to find four largest counts”). To complete the tasks, users
had to use rankings for 1D and 2D relationships and the users reported
that rankings helped them to gain some interesting insights (for ex-
ample, using the outlier ranking, the user found that ”Ford” produced
more car models than any other manufacturer).

Based on these observations, it is clear that users needed a more
thorough introduction that would explain the concept of the reorder-
able matrix in more detail. The sliders were not the main focus of
our attention, but the responses we got make us think that a more ex-
tensive introduction would be beneficial to the users as well. Overall,
the users found the whole experience pleasant and completed the tasks
”with ease”. Users also appreciated the fact that the matrices (espe-
cially large ones) were initially reordered allowing the participants to
focus on the analysis.

6 CONCLUSIONS AND FUTURE WORK

CateRank is a useful tool for an initial analysis of the categorical data
and can provide insight about the datasets. However, the informal user
observation made it obvious that CateRank needs additional work on
rankings to provide the users with a powerful set of tools.

Further investigation into the ranking measures can continue in the
direction of estimating the strength of variables’ correlation. It would
be interesting to devise a measure that calculates the number of geo-
metrical clusters in 2D matrices (as the three clusters in figure 1, right);
however, this ranking highly depends on the definition of clusters. As
we have observed with many datasets, it may be difficult to draw the
actual borders for a cluster unless some counts are ignored. It is also
necessary to add the standard measures used in statistics for estimat-
ing the correlation between the categorical variables such as χ2 test,



Cramer’s V . It may also be useful to incorporate the information on
the expected counts for each cell in the matrix and to color the cells
according to the amount of deviation from the cell’s expected value.

During the trial runs with the users, we observed that often the users
wanted to see the percentages instead of the counts. Percentages will
help the users estimate the contributions of a particular value in the
variable’s distribution.

It will be helpful to equip the matrices with counts along the rows
and columns so that the users could see the counts for the individual
variables making up the matrix. Making the rows and columns of the
matrix sortable by these aggregate counts would give the users more
control over the matrix.

The real-world data rarely comes as purely categorical or purely
numerical. It would be an interesting and challenging task to analyze
numerical-to-categorical relationships and come up with the meaning-
ful rankings for them.

Following the example of HCE, it may prove useful to combine
ranking criteria with categorical clustering algorithms. Several such
algorithms have been used successfully in the area of machine learn-
ing, for example, categorical k-means [14] and categorical subspace
clustering [12].
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