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ABSTRACT. In this work we attempt to answer the following question: How large a
graph can we process using a vertex-centric model of computation in the main memory
of a single machine? Specifically, we use a modified Pregel framework to calculate
PageRank, identify connected components, and single source shortest path algorithms
on two large graphs. While it is not possible to load these graphs into memory with naive
representations, we show that by using well known graph compression techniques, we
can not only load the graphs but also run vertex centric programs on them, even on
machines with fairly limited memory.

We evaluate both adjacency list and adjacency matrix graph compression. For
high-degree vertices in an adjacency list, we show a space savings of around 70%, while
for all vertices in the graphs we saved around 45%. Using a compressed adjacency
matrix representation we saved around 40% for all vertices — high-degree vertices could
not be compressed further because of extra data associated with these vertices. After
compressing the LiveJournal graph, which has around five million vertices, we were
able to run the PageRank algorithm in approximately 10 seconds per superstep, while
the shortest path algorithm ran in 8 minutes per superstep.

1. Introduction. Graphs are ubiquitous: computer networks, social networks, mobile
call networks, the World Wide Web, protein regulation networks, to name a few. In recent
years, there has been a sharp surge in the volume of available data across all domains.
Analysts, sociologists, computer scientists and others are interested in exploring the
nature of relationships, patterns, occurence of communities, etc. to understand certain
types of behavior or predict events amongst many other objectives.

Designing scalable systems for analyzing, processing and mining huge real-world
graphs has become one of the most timely problems facing systems researchers. Conse-
quently, many existing data-parallel abstractions and new graph-parallel abstractions
have been proposed for efficient computing on such graphs. Data parallel abstractions,
like MapReduce [7], are argued to be inefficient on graphs (see [14], [5]). To this effect,
graph parallel abstractions like Pregel [16] and GraphLab [14], and high-performance
memory based computation engines like Spark [18] have been proposed. These sys-
tems are able to scale to graphs of billions of edges by distributing the computation.
Although distributed computational resources are now available, these systems have
to deal with issues of cluster management, fault tolerance, and often unpredictable
performance. On the contrary, systems like GraphChi [11], uses persistent storage
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as a memory extension for processing large graphs. GraphChi exploits properties of
sparse graphs to partition them into disk blocks and requires only a small number of
sequential disk block transfers to efficiently perform asynchronous computation.

None of the aforementioned systems thoroughly investigate the impact of graph
compression strategies to make the computation efficient. Graph compression strate-
gies are geared towards making efficient use of available memory/disk to store graph
structure, while permitting a given set of queries that can be answered on the com-
pressed representation. In this work, we investigate the performance trade-offs of using
graph compression techniques in a vertex centric framework. The two most common
graph representations are adjacency list and adjacency matrix, and many techniques
have been proposed to get a compact representation (using smallest number of bit-
s/edge) for both. To the best of our knowledge, this work takes the first steps in using
compressed graph representation to process large graphs in the memory of a single
machine.

The rest of our report is organized as follows: We outline the salient features of Pregel
and GraphLab and highlight the type of problems they are able to solve in Section
2. Section 4 discusses our vertex centric model in detail. Since we want to perform
the computation on a single machine, we look at graph compression as a tool to help
us represent large-size graphs. We talk about our specific compression techniques in
Section 5. We present our preliminary evaluation of these techniques in Section 6 and
conclude in Section 7.

2. Related Work. Recently, new parallel abstractions like Pregel [16] and GraphLab [14]
[15] have been proposed to address the limitations in applying existing abstractions like
MapReduce[7] to Machine Learning algorithms on graph data. The common theme in
these abstractions is a vertex-centric model of computation. In this model, the frame-
work provides an ability to execute user defined update functions on a vertex which
operates on the data associated with small neighborhoods of the vertex. These frame-
works are able to scale to graphs of billions of edges by distributing the computation
across a cluster of machines. We describe each of them next.

2.1. Pregel. Introduced in 2010, Google’s Pregel[16] system is a computational model
used for processing large graphs in a scalable manner. Programs in Pregel are executed
as a sequence of iterations or rounds. Within each round, a vertex can receive messages
sent in the previous round, send messages to other vertices for the next round, and
modify its own state or its outgoing edges. In Pregel, the rounds are called supersteps.
Pregel operates based on user-defined compute functions which do the tasks of a
vertex. After each superstep, the vertices vote to halt, and once all vertices have halted,
the execution ends. The halting is determined on some satisfactory computation
result. The model has been designed for efficient and scalable execution on clusters
of thousands of computers. This model can be used to efficiently compute widely
used graph algorithms such as Page Rank, Shortest Paths, Bipartite Matching, and a
Semi-Clustering. This open source framework’s ease of implementation and powerful
computation makes it a great choice for large scale graph algorithms.

2.2. GraphLab/PowerGraph. GraphLab[14][15], compared to Pregel’s synchronous
model, is an asynchronous (or automatic synchronization) parallel framework geared
more for Machine Learning tasks due to higher efficiency for ML tasks. GraphLab is a
graph-based data model. It consists of a shared data table which consists of global data,
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a scheduler, and update functions. GraphLab operates based on user-defined update
functions which are applied on a vertex and transform the data in the scope of the
vertex. In other words, compared to Pregel, there are no messages passed from vertices.
GraphLab’s scheduler determines the order of the update functions. GraphLab has
various schedulers available such as a synchronous scheduler, a round-robin scheduler,
and dynamic schedulers. With the synchronous scheduler, every vertex is updated
simultaneously. With the Round Robin scheduler, every vertex updated sequentially.
GraphLab ensures serializability by preventing neighboring program instances from
running simultaneously. The GraphLab framework can be used to design and imple-
ment parallel versions of ML algorithms such as belief propagation, Gibbs sampling,
Co-EM, Lasso and Compressed Sensing.

Pregel and early version of GraphLab were not found to be suitable for natural graphs
or very large graphs with billions of vertices and edges. Specifically, natural graphs have
large neighborhoods with high degree vertices. Additionally, natural graphs have highly
skewed Power Law degrees, where the top 1% are part of a large percentage of the edges.
In other words, there are certain super-nodes or popular nodes in the social network
setting. To address the challenges of power-law graph computation, the PowerGraph [9]
exploits the structure of vertex-programs and explicitly factors computation over edges
instead of vertices. The PowerGraph introduces greater parallelism, reduces network
communication and storage costs, and provides a new highly effective approach to
distributed graph placement. The PowerGraph uses individual vertex-programs, a delta
caching procedure which allows computation state to be dynamically maintained, a
fast approach to data layout for power-law graphs in distributed environments. The
order in which active vertices are executed is up to the PowerGraph execution engine.
PowerGraph programs can be executed both synchronously and asynchronously.

2.3. GraphChi. GraphChi[11]which is a spin-off of the GraphLab project can run very
large graph computations on a single machine. It processes the graph from disk, but
does so in a manner so as to avoid performing random IO. Their main contribution is
the method of processing graph patitions incrementally (in shards) from disk using a
technique called as the Parallel Sliding Windows algorithm.

3. Graph Compression. Letusconsider graphs G =(V, E) where V is the set of vertices
and E is the set of edges. Let n = |V| and e = |E|. The adjacency matrix representa-
tion requires O(n?) bits and the adjacency list representation requires e log n bits to
represent the graph. We call the neighbors of a node v € V those u € V such that
(v,u)eE.

A fundamental primitive in the study of graphs is adjacency queries: seek the neigh-
boring vertices of a given vertex. The Web graph (Web pages are nodes, hyperlinks
are directed edges) is known to be highly compressible, as shown by [4]. In particular,
Boldi and Vigna [4] exploit lexicographic locality in the Web graph: when web pages
are ordered lexicographically by URL, proximal pages have similar neighborhoods.
Empirically, two properties of the ordering by URL are observed to hold:

Similarity: pages that are close to each other in the lexicographic ordering tend to
have similar sets of neighbors

Locality: many hyperlinks are intra-domain, and therefore likely to point to pages
nearby in the lexicographic ordering
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These two properties are exploited to compress the Web graph down to an amortized
storage of a few bits per link, leading to efficient in-memory data strcutres for Web
page adjacency queries. In essence, their compression scheme incorporates three
main ideas. First, if the graph has many nodes whose neighborhoods are similar, then
the neighborhood of a node can be expressed in terms of other nodes with similar
neighborhoods. Second, if the destinations of edges exhibit locality, then small integers
can be used to encode them. Third, rather than store the destination of each edge
separately, one can use gap encodings to store a sequence of edge destinations. We
illustrate a simplified version of this scheme in SectionXX.

Chierichetti et al. [6] build upon the scheme mentioned above to compress social
networks. Specifically, they make use of link reciprocity in social networks. That is,
if Alice is Bob’s friend, then Bob is very likely to be Alice’s friend. However, unlike
Web graphs, where lexicographic ordering is both natural and crucial, social networks
do not have an obvious natural ordering. One of the heuristics they propose is the
shingle ordering heuristic: by building a fingerprint (shingle) of a node’s neighbors and
ordering them according to the shingles, if two nodes have significantly overlapping
out-neighbors, i.e., share a lot of common neighbors, then with high probability, they
will have the same shingle and hence by close to each other in the final ordering.

In addition to graph compression, [13] consider the application of large scale matrix-
vector multiplication for the adjacency matrix representation of the graph. In this
scenario, it is desired that the adjacency matrix has clustered edges: smaller number of
denser blocks is better than larger number of sparser blocks. This has two benefits. First,
dense blocks provide better opportunity for compression. Second, smaller number of
denser blocks reduces the number of disk accesses. Thus [13] look for an ordering of
nodes such that the adjacency matrix has the mentioned properties. They argue that
traditional approaches of using graph partitioning algorithms to find good cuts and
homogeneous regions so that nodes inside a region form dense communities, thereby
leading to better compressions, are not suited well for real world, power law graphs [12].

4. Graph Computation. In this section, we describe the computational setting of our
framework, outline the Java API and the graph input format we support.

4.1. Computational Model. We use the vertex centric model popularized by Pregel.
However, we currently support only a subset of the Pregel API. In general, the input
to our problem is a directed graph, G =(V, E) where V is the set of vertices and E is
the set of edges. We associate a value with each vertex v € V and possibly with each
edge e € E (we discuss more about this in Section 5). We assume that the vertices are
labeled from 0 to |V|—1. Given a directed edge e = (u, v) we refer to u as the out-vertex
and v as the in-vertex.

A typical computation consists of graph loading and initialization, followed by a
sequence of supersteps separated by global synchronization points until the algorithm
terminates. Within each supertep the vertices execute a user defined function (UDF) in
parallel. The UDF has access to the (local) vertex state and a list of messages sent to
the vertex by its neighbors. A vertex can modify its state or that of its outgoing edges,
receive messages sent to it in the previous superstep and send messages to its neighbors
(to be received in the next superstep). Note that we differ from the Pregel model of
computation here: Pregel allows the user defined function to mutate the topology of
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the graph and send messages to any vertex in the graph. Our current implementation
does not support these operations.

As in Pregel, algorithm termination is based on every vertex voting to halt. In super-
step 0, every vertex is in the activestate; all active vertices participate in the computation
of any given superstep. A vertex deactivates itself by voting to halt. This means that
the vertex has no further work to do unless triggered externally (one of its neighbors
sends a message to it), and the our framework will not execute the UDF for this vertex
in subsequent supersteps. A vertex can become active/deactive any number of times
during the course of the compuration. The computation terminates when all vertices
are simultaneously inactive and there are no messages in transit.

4.2. Java API. Writing a program in our framework involves subclassing the PVertex
class and implementing the PVertexFactory interface (see Figure 1). Each vertex has
an associated value of type double. The user overrides the abstract compute () method
which will be executed at each active vertex in every superstep. Additional methods
are available to access meta-data about the vertex and the graph. The PVertexFactory
interface is needed so that our framework can create new vertices of the user defined
type. The user specifies the initialization parameters of a new vertex in the create()
method.

class PVertex {
abstract void compute(final Iterable<Double> messages);

int getVertexId();
int getSuperStep();

double getValue();
void setValue(final double newValue);

Iterable<Integer> getOutNeighborIds();
void sendMessage(final int outNeighborId, final double messageValue);
void sendMessageToAllOutNeighbors (final double messageValue);

void voteToHalt();
}

interface PVertexFactory<V extends PVertex> {
V create(int id);

}

FIGURE 1. Vertex API

Vertices communicate with their neighbors by sending messages. A common pat-
tern is for a vertex v to iterate over its outgoing edges and sending a message to the
destination vertex of each edge. In our implementation, the destination for a message
sent by v must be a neighbor of v.
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4.3. Input Formats. Theinputfile for the graphis an edgelist consisting of (outVertexId,
inVertexId) pairsor (outVertexId, inVertexId, edgeValue) triples, one pair/triple
per line. In the former case, we use an adjacency list representation while in the latter
case we use the adjacency matrix representation.

5. System Design and Implementation. In this section we describe the two strategies
we use to represent the input graph compactly.

5.1. Adjacency List. In the raw adjacency list representation, we maintain two arrays
at each vertex: One array stores all in-neighbors of the vertex while the other array
stores all out-neighbors. Since these lists contain 4-byte integers, the space required to
store the edges for a high-degree vertex is considerable. However, if we assume that the
neighbor vertex ids dont vary considerably in magnitude, we can use delta encoding to
reduce the memory footprint of our edge lists (see [2]).

Our delta encoding scheme works by first sorting the adjacency lists in ascending
order (see [4],[6] for more refined versions of this scheme). Then, we store the full id of
the first neighboring vertex and the remaining vertices are represented as the difference
of their ID with the preceding vertex’s ID. An example of this scheme in action is below:

Original | 17 [ 19 |24 | 24 | 33 | 119
Encoded | 17| 2 | 5| 0 | 9 | 86
TABLE 1. Example of delta encoding

From Table 5.1 itis apparent that delta encoding s less successful when the difference
between vertex ids in a sorted list is large. We were not sure if we could use delta
encoding to compress social network datasets because of this issue, but in practice (as
shown in the evaluation section) it worked effectively.

Amazon’s version of delta encoding stores the entire vertex id in a 4-byte integer if
its difference cannot be stored in 1 byte. Their claim is that the time spent decoding
differences is not worth the minimal space gains if those differences are large. However,
their decoding process has to differentiate between vertices that do not need to be
decoded versus ones that do. We decided to go for the more simple scheme, encoding
every difference regardless of its magnitude, in the hope that our graph was significantly
compressible. Since we did not assume that the differences could be encoded in a single
byte, we used variable-length encoding ([1]), to store the differences using the least
number of bytes.

In the above discussion we made the assumption that we have the entire edge lists
in memory before compression. For graphs that are very large (millions of vertices),
this assumption might not hold. Next, we describe how to incrementally compress the
edge lists such that the entire list is never stored directly.

The technique we use, called batch encoding, compresses an edge list whenever its
size reaches a threshold. This threshold is determined after considering both the graph
properties (number of vertices, number of edges) and system properties (available
memory). Instead of loading the entire edge lists for all vertices before compression
beings, we store a compressed byte array of edges as well as a number of uncompressed
vertices bounded by the batch size. When we've finished reading in the graph and
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FIGURE 2. Block encoding of adjacency matrices

loading the edges, we might still have edges in the uncompressed vertices list. Thus,
we also have to call the compression algorithm on every vertex once the graph has
been read. Batch delta encoding makes it possible to loading a large graph like the
live-journal data set into memory, which is infeasible when using the naive adjacency
list representation.

5.2. Adjacency Matrix. To represent the adjacency matrix of the graph compactly, we
use a scheme similar to the one proposed in [10] (see Figure 2). The idea here is to view
the adjacency matrix as sub-matrices of size b x b and write each sub-matrix to its own
file. Inside the file, we use 2log b bits to encode the source and destination vertex of
each edge, 8 bytes for the edge value, 8 bytes for the message value (we are assuming
message values to be of type double) and 1 byte boolean to indicate the state of the
message value. We note that while log b bits are enough to encode a vertex id inside
the block, we have only looked at byte level encoding. Once we encode all edges inside
a sub-matrix, we compress the file using GZip compression.

6. Evaluation.

6.1. Test Setup. We evaluated our implementation on a quad-core 2.4 GHz Intel Core
i7 processor, 6GB of memory given to the Java process (8GB system memory) and
running Windows 8 (64-bit). We ran three algorithms: Page Rank (PR), finding weakly
connected components (CC) and single source shortest paths (SSSP). Details about the
input graphs for the three algorithms is shown in Table 6.1.

Graph name | Vertices | Edges
pokec 1632803 | 30622564

live-journal | 4847571 | 68993773
TABLE 2. Experiment graphs
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pokec live-journal
Graph creation time (ms) 21771 139055
Compression Time (ms) 2822 48941
Total links (2x) 61245128 | 137987546
Total number of bytes for all links | 141766607 | 289780956
Space savings 0.42 0.47
TABLE 3. Adjacency list compression
Total Edges (in and out) | Byte array size | Space savings

20518 21680 0.73

16978 18144 0.73

15177 16139 0.73

8733 9757 0.72

7559 7834 0.74

6770 8541 0.68

4667 6314 0.66

4204 4935 0.70

2442 3569 0.63

2029 2984 0.63

TABLE 4. Savings for top 10 high degree vertices in Pokec dataset

6.2. Compression Gains. On an average (taken over 5 runs), the PR algorithm took
386 seconds on the pokec graph and 883 seconds on the live-journal graph. Runtime
for SSSP algorithm is discussed in the next sub-section.

In the following discussion, we calculate the compression ratio as the ratio of the size
of the data structure after compression to the un-compressed size. We define the space
savings to be (1 — compression ratio).

6.2.1. Adjacency list compression. Table 6.2.1 gives a summary of the delta encoding
scheme applied on the two datasets.

Table 6.2.1 and 6.2.1 outline the space savings for the top 10 high degree vertices in
the Pokec and Live Journal dataset respectively.

6.2.2. Adjacency matrix compression. We used the adjacency matrix representation in
order to run the SSSP algorithm. In the raw representation, we use 25 bytes per edge —
4 bytes each for the vertex ids, 8 bytes each for the edge weight and message value and
1 byte boolean to indicate the state of the message with respect to the current super
step. Since we have to store additional data per edge, we process the graph in partitions

with each partition having size at most 100000. Table 6.2.2 presents the summary of
our results.
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Total Edges (in and out) | Byte array size | Space savings
22889 25568 0.72
15554 17249 0.72
15218 19313 0.68
14029 15526 0.72
13439 17815 0.67
13183 15830 0.70
12422 16442 0.67
11861 13243 0.72

9787 11009 0.72
9312 10957 0.70

TABLE 5. Savings for top 10 high degree vertices in Live Journal dataset

pokec | live-journal
Number of partitions 17 49
Per edge data after compression (bytes) | 15.1 14.74
Time for one superstep (ms) 199956 472312
Min time for one partition (ms) 869 622
Max time for one partition (ms) 24468 49827

TABLE 6. Adjacency matrix compression

7. Conclusion and Future Work. In this work, we showed how using techniques from
graph compression literature, we can load and process graphs that are too large to
fit in main memory of a single machine. In addition, we can also run graph analysis
algorithms, using the vertex centric model of computation, over the compressed graphs.
Our results show that even simple compression techniques can dramatically improve
the capability of a single machine to store and process large graphs. Graph compression
techniques can also be used in existing graph parallel systems to make effective use of
available resources.

Some of the directions for future work include identifying appropriate orderings
of the vertices at runtime for effective adjacency list compression. We can also look
at more sophisticated techniques of graph structure compression (like [8], [3], [17]).
In addition to compressing the graph structure, we can also identify opportunities
to compress graph data, i.e., vertex and edge attributes and messages passed around
during computation.
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