
An	
 Introduction	
 to	
 Temporal	
 Graph	
 Data	

Management1	

Udayan Khurana

Computer Science Department
University of Maryland
College Park MD 20740
udayan@cs.umd.edu

Abstract. This paper presents an introduction to the problem of temporal graph
data management in the form of a survey of relevant techniques from database
management and graph processing. Social network analytics, which focuses on
finding interesting facts over static graphs, has gathered much attention lately.
However, there hasn’t been much work on analysis of temporal or evolving
graphs. We believe that efficient techniques to store and query temporal graphs
are essential in order to build tools for such analytical tasks. We present
previous work done in the areas of temporal relational databases, geospatial
databases, graph data management and models of network evolution etc. Also,
we present a glimpse of our ongoing work to perform efficient Snapshot
Retrieval on Historical Graphs.

Keywords: Temporal Networks, Graph Data Management, Social Network
Analysis

1 Introduction

In recent years, there has been a sharp surge in the availability of information network
data. Ranging from the digital footprint of online social networks (e.g. Facebook,
LinkedIn, Orkut), social media (e.g. Youtube, Flickr, Blogs) to biological networks
(e.g. Protein-Protein interaction) and financial transactional networks, large
information graphs are ubiquitous. Analysts, sociologists, computer scientists and
others are interested in exploring the nature of relationships, patterns, occurrence of
communities etc. to understand certain types of behavior or predict events amongst
many other objectives. Appropriately, many tools and libraries have been developed
to conduct social network analysis (e.g. NodeXL[31], SNAP[32], Blueprints[8]) on

1 Submitted for the fulfillment of requirement of a Scholarly Paper for Master of Science

without thesis option. Supervised by Prof. Amol Deshpande (amol@cs.umd.edu).

2 Udayan Khurana

graph datasets. However, most of the work in Social Network Analysis till date has
focused on examination of static network snapshots. While there has been some
recent work in dynamic network visualization [16], demonstrating some interesting
scenarios on time evolving networks, we are unaware of any tools that handle
dynamic graphs at a reasonable scale. In a recent work, Ahn et al. [2] present an
exhaustive taxonomy of temporal visualization tasks. Ren et al. [28] analyze evolution
of shortest paths between a pair of vertices over a set of snapshots from the history.
Our goal is to explore possibilities to build a graph data management system that can
efficiently and scalably support these types of dynamic network analysis tasks over
large volumes of data in real-time.

In this paper, we focus on prior work in several connected areas. First, we talk
about the work on graph evolution to understand the nature of change in networks.
We then talk about related work in temporal relational databases and spatial databases
and their applicability in performing basic snapshot retrieval on temporal graphs. We
then talk about existing graph data stores and graph query languages. Finally, we talk
briefly about our ongoing work in efficient snapshot retrieval on temporal graph
datasets.

Figure 1. Evolution of communities in a network

An Introduction to Temporal Graph Data Management 3

2 Evolution of Networks

There has been an increasing interest in dynamic network analysis over the last
decade, fueled by the increasing availability of large volumes of temporally annotated
network data. Many works have focused on designing analytical models that capture
how a network evolves, with a primary focus on social networks and the Web.
Barabasi [5] showed that the topology of web follows a growth that can be explained
using a power law over degree distribution. Certain nodes in the network act as hubs
and there is a heavily tailed degree distribution. This phenomenon, known as “scale-
free networks” was recently extended by Leskovec and others [20] with discovery of
properties of real networks like decrease in diameter, densification over time and the
Forest Fire Model which explains a sharp transition between sparse graphs and graphs
that are densifying. Work by Kumar and others [17] tells us that a real network is
composed of a) singletons, who do not participate in the network, b) isolated
communities, which overwhelmingly display star structure, c) a giant component,
anchored by a well-connected core region that persists even in the absence of stars. A
complete study of related work in this area is beyond the scope of this work. Overall,
the self-similarity and scale-free properties give us an interesting insight into the
temporal change in real networks.

There is also much work on understanding how communities evolve, identifying
key individuals, and locating hidden groups, in dynamic networks. Berger-Wolf et al.
[6, 37], Tang et al. [35] and Greene et al. [13] address the problem of community
evolution in dynamic networks. McCulloh and Carley [23] present techniques for
social change detection. Asur et al. [4] present a framework for characterizing the
complex behavioral patterns of individuals and communities over time.

3 Temporal and Spatial Databases

There is a vast body of literature on temporal relational databases, starting with the
early work in the 80’s on developing temporal data models and temporal query
languages. We won’t attempt to present a exhaustive survey of that work, but instead
refer the reader to several surveys and books on this topic [9, 33, 26, 36, 11, 33, 29].
The most basic concepts that a relational temporal database is based upon are valid
time and transaction time, considered orthogonal to each other. Valid time denotes the
time period during which a fact is true with respect to the real world. Transaction time
is the time when a fact is stored in the database. A valid-time temporal database
permits correction of a previously incorrectly stored fact [33], unlike transaction-time
databases where an inquiry into the past may yield the previously known, perhaps
incorrect version of a fact.
 From a querying perspective, both valid-time and transaction-time databases

4 Udayan Khurana

can be treated as simply collections of intervals [29], however indexing structures that
assume transaction times can often be simpler since they don’t need to support
arbitrary inserts or deletes into the index. Salzberg and Tsotras [29] present a
comprehensive survey of indexing structures for temporal databases. They also
present a classification of different queries that one may ask over a temporal database.
Under their notation, our focus in this survey is on the valid timeslice query, where
the goal is to retrieve all the entities and their attribute values that are valid as of a
specific time point.

An optimal solution to answering snapshot retrieval queries is based on an
external interval tree, presented by Arge and Vitter [3]. Their proposed index
structure uses optimal space on disk, and supports updates in optimal (logarithmic)
time. Segment trees [7] can also be used to solve this problem, but may store some
intervals in a duplicated manner and hence use more space. Tsotras and Kangelaris
[39] present snapshot index, an I/O optimal solution to the problem for transaction-
time databases. Salzberg and Tsotras [29] also discuss two extreme approaches to
supporting snapshot retrieval queries, called Copy and Log approaches. In the Copy
approach, a snapshot of the database is stored at each transaction state, the primary
benefit being fast retrieval times; however the space requirements make this approach
infeasible in practice. The other extreme approach is the Log approach, where only
and all the changes are recorded to the database, annotated by time. While this
approach is space-optimal and supports O(1)-time updates (for transaction-time
databases), answering a query may require scanning the entire list of changes and
takes prohibitive amount of time. A mix of those two approaches, called Copy+Log,
where a subset of the snapshots is explicitly stored, is often a better idea.

While these approaches serve can be used for the problem of snapshot retrieval in
temporal data, they are insufficient and inflexible for an efficient and general-purpose
solution to temporal graph data stores. First, they do not efficiently support multipoint
queries that are expected to be very commonly used in evolutionary analysis and need
to be optimized by avoiding duplicate reads and repeated processing of the events.
Second, to cater to the needs of a variety of different applications, such an index
structure needs to be highly tunable, and to allow trading off different resources and
user requirements (including memory, disk usage, and query latencies). Ideally one
would also like to control the distribution of average snapshot retrieval times over the
history, i.e., to be able to reduce the retrieval times for more recent snapshots at the
expense of increasing it for the older snapshots (while keeping the utilization of the
other resources the same), or vice-versa. For achieving low latencies, the chosen
index structure should support flexible pre-fetching of portions of the index into
memory and should avoid processing any events that are not needed by the query
(e.g., if only the network structure is needed, then we should not have to process any
events pertaining to the node or edge attributes). Finally, we would like the index
structure to be able to support different persistent storage options, ranging from a hard

An Introduction to Temporal Graph Data Management 5

disk to the cloud; most of the previously proposed index structures are optimized
primarily for disks.

4 Graph Data Management

There has been resurgence of interest in general-purpose graph data management
systems in both academia and industry. Several commercial and open-source graph
management systems are being actively developed (e.g., Neo4j2, GBase3, Pregel [16]).
Blueprints [8] is a set of interfaces which links graph stores like Neo4j with graph
algorithm APIs like JUNG (Java Universal Network/Graph Framework)4 to operate
upon the underlying graph data. There is much ongoing work on efficient techniques
for answering various types of queries over graphs and on building indexing
structures for the same. However, there do not exist any graph data management
system that focuses on optimizing snapshot retrieval queries over historical graph
traces, and on supporting rich temporal analysis of large networks.

 There is also prior work on temporal RDF data and temporal XML Data.
Motik [24] presents a logic-based approach to representing valid time in RDF and
OWL. Several works (e.g., [27, 38]) have considered the problems of subgraph
pattern matching or SPARQL query evaluation over temporally annotated RDF data.
There is also much work on version management in XML data stores. Most scientific
datasets are semistructured in nature and can be effectively represented in XML
format [10]. Lam and Wong [19] use complete deltas, which can be traversed in either
direction of time for efficient retrieval. Other systems store the current version as a
snapshot and the historical versions as deltas from the current version [22]. For such a
system, the deltas only need to be unidirectional. Ghandeharizadeh et al. [12] provide
a formalism on deltas, which includes a delta arithmetic. All these approaches assume
unique node identifiers to merge deltas with deltas or snapshots. Buneman et al. [10]
propose merging all the versions of the database into one single hierarchical data
structure for efficient retrieval. However, none of that prior work focuses on snapshot
retrieval in general graph databases, or proposes techniques that can flexibly exploit
the memory-resident information.

2 http://www.neo4j.org
3 http://www.graphbase.net
4 http://jung.sourceforge.net

6 Udayan Khurana

5 Introduction to HGDB

Historical Graph Database (HGDB) is the part of ongoing work at University of
Maryland that is aimed at creating a database optimized for retrieving Historical
Snapshots and performing analytical tasks on temporal networks [15]. The core ideas
behind this system are to store the historical trace of the network on disk in a space
efficient manner, and to load the required graphs on-demand in memory in a compact,
non-redundant manner.

Figure 2 shows a high level overview of our system and its key components. At a
high level, there are multiple ways that a user or an application may interact with a
historical graph database. Given the wide variety of network analysis or visualization
tasks that are commonly executed against an information network, we expect a large
fraction of these interactions will be through a programmatic API where the user or
the application programmer writes her own code to operate on the graph. Such
interactions result in what we call snapshot queries being executed against the
database system. Executing such queries is the primary focus of this system. In
ongoing work, we are also working on developing a high-level declarative query
language (similar to TSQL [24]) and query processing techniques to execute such
queries against our database. As a concrete example, an analyst who may have
designed a new network evolution model and wants to see how it fits the observed
data, may want to retrieve a set of historical snapshots and process them using the
programmatic API. On the other hand, a declarative query language may better fit the
needs of a user interested in searching for a temporal pattern (e.g., find nodes that had
the fastest growth in the number of neighbors since joining the network).

The most basic model of a graph over a period of time is as a collection of graph
snapshots, one corresponding to each time instance (we assume discrete time). Each
such graph snapshot contains a set of nodes and a set of edges. The nodes and edges
are assigned unique ids at the time of their creation, which are not reassigned after
deletion of the components (a deletion followed by a reinsertion results in assignment
of a new id). A node or an edge may be associated with a list of attribute-value pairs;
the list of attribute names is not fixed a priori and new attributes may be added at any
time. Additionally an edge contains the information about whether it is a directed
edge or an undirected edge.

We define an event as the record of an atomic activity in the network. An event
could pertain to either the creation or deletion of an edge or node, or change in an
attribute value of a node or an edge. Alternatively, an event can express the
occurrence of a transient edge or node, which is valid only for that time instance
instead of an interval (e.g., a “message” from a node to another node). Being atomic
refers to the fact that the activity cannot be logically broken down further into smaller
events. Hence, an event always corresponds to a single timepoint. So, the valid time
interval of an edge, [ts,te], is expressed by two different events, edge addition and

An Introduction to Temporal Graph Data Management 7

deletion events at ts and te respectively. All events are recorded in the direction of
evolving time, i.e., going ahead in time. A list of chronologically organized events is
called an eventlist.

There are two key data structure components of our system.
 1. GraphPool is an in-memory data structure that can store multiple graphs
together in a compact way by overlaying the graphs on top of each other. At any time,
the GraphPool contains: (1) the current graph that reflects the current state of the
network, (2) the historical snapshots, retrieved from the past using the commands
above and possibly modified by an application program, and (3) materialized graphs,
which are graphs that correspond interior or leaf nodes in the DeltaGraph, but may not
correspond to any valid graph snapshot. GraphPool exploits redundancy amongst the
different graph snapshots that need to be retrieved, and considerably reduces the
memory requirements for historical queries. More specifically, memory footprint of
the system is given by: |Gc + G1 + … + Gn| ≈ |Gc ∪ G1 ∪ G2 … ∪ Gn|+z, where Gc is
the current graph, G1 … Gn are retrieved snapshots, and z is the small extra overhead
of maintaining the overlaid structure.
 2. DeltaGraph is a disk-resident index structure that stores the historical
network data using a hierarchical index structure over deltas and leaf-level eventlists
(called leaf-eventlists). To execute a snapshot retrieval query, a set of appropriate
deltas and leaf-eventlists are fetched and the resulting graph snapshot is overlaid on
the existing set of graphs in the GraphPool. The structure of the DeltaGraph itself,
called DeltaGraph skeleton, is maintained as a weighted graph in memory (it contains
statistics about the deltas and eventlists, but not the actual data). The skeleton is used
during query planning to choose the optimal set of deltas and eventlists for a given
query.
 The data structures are managed and maintained by several system
components. HistoryManager deals with the construction of the DeltaGraph, plans
how to execute a singlepoint or multipoint snapshot query, and reads the required
deltas and eventlists from the disk. GraphManager is responsible for managing the
GraphPool data structure, including the overlaying of deltas and eventlists, bit
assignment, and post-query clean up. Finally, the QueryManager manages the
interface with the user or the application program, and extracts a snapshot query to be
executed against the DeltaGraph.

Using DeltaGraph index, snapshot retrieval involves finding the correct and
optimal set of deltas and events (through eventlists) to be read from the disk and be
loaded into the GraphPool (in memory). Once, the required snapshot or the graph is in
GraphPool, it may be used for the desired computational objective, e.g. executing
PageRank or determining shortest paths.

8 Udayan Khurana

6 Conclusion

In this paper, we discussed the problem of managing historical or temporal
information of large networks. While there has been considerable work in temporal
relational data management and graph data management respectively, the area of
temporal graph management still lies unaddressed to a large extent. It is clear that
temporal social network analytics on any scale of a reasonable size would require an

Figure 2. System Architecture for our proposed Historical Graph Data
Management System

An Introduction to Temporal Graph Data Management 9

underlying system for efficiently managing such data. We also presented an outline of
our ongoing work on snapshot retrieval on historical graphs.

References

1. C. C. Aggarwal and H. Wang. Graph data management and mining: A
survey of algorithms and applications. In Managing and Mining Graph Data,
pages 13–68. 2010.

2. J. Ahn, C. Plaisant, and B. Shneiderman. A task taxonomy of network
evolution analysis. HCIL Technical Reports, 2011.

3. L. Arge and J. Vitter. Optimal dynamic interval management in external
memory. In FOCS, 1996.

4. S. Asur, S. Parthasarathy, and D. Ucar. An event-based framework for
characterizing the evolutionary behavior of interaction graphs. ACM TKDD,
2009.

5. A. Barabási. Emergence of scaling in random networks. Science 1999
(286), 509–512.

6. T. Berger-Wolf and J. Saia. A framework for analysis of dynamic social
networks. In KDD, 2006.

7. G. Blankenagel and R. Guting. External segment trees. Algorithmica, 12(6):
498–532, 1994.

8. Blueprints, https://github.com/tinkerpop/blueprints/wiki/
9. A. Bolour, T. L. Anderson, L. J. Dekeyser, H. K. T. Wong. The role of time

in information processing: a survey. SIGMOD Rec., 1982.
10. P. Buneman, S. Khanna, K. Tajima, and W. Tan. Archiving scientific data.

ACM TODS, 29(1):2–42, 2004.
11. C. Date, H. Darwen, and N. Lorentzos. Temporal data and the relational

model. Elsevier, 2002.
12. S. Ghandeharizadeh, R. Hull, and D. Jacobs. Heraclitus: elevating deltas to

be first-class citizens in a database programming language. ACM TODS,
21(3), 1996.

13. D. Greene, D. Doyle, and P. Cunningham. Tracking the evolution of
communities in dynamic social networks. In ASONAM, 2010.

14. H. He and A. Singh. Graphs-at-a-time: query language and access methods
for graph databases. In SIGMOD, 2008.

15. U. Khurana, A. Deshpande. Historical Graph Data Management. Submitted
to VLDB 2012.

16. U. Khurana, V Nguyen, H. Cheng, Ahn, X. Chen, B. Shneiderman. Visual
Analysis of Temporal Trends in Social Networks Using Edge Color Coding
and Metric Timelines. IEEE Social Computing 2011.

10 Udayan Khurana

17. R. Kumar, J. Novak, and A. Tomkins. Structure and evolution of online
social networks. In KDD, 2006.

18. A. Lakshman and P. Malik. Cassandra: a decentralized structured storage
system. SIGOPS Oper. Syst. Rev., 2010.

19. N. Lam and R. Wong. A fast index for XML document version management.
In APWeb, 2003.

20. J. Leskovec, J. Kleinberg, and C. Faloutsos. Graph evolution: Densification
and shrinking diameters. ACM TKDD, 2007.

21. G. Malewicz, M. Austern, A. Bik, J. Dehnert, I. Horn, N. Leiser, and G.
Czajkowski. Pregel: a system for large-scale graph processing. In PODC,
2009.

22. A. Marian, S. Abiteboul, G. Cobena, and L. Mignet. Change-centric
management of versions in an XML warehouse. In VLDB, 2001.

23. I. McCulloh and K. Carley. Social network change detection. Center for the
Computational Analysis, 2008.

24. B. Motik. Representing and querying validity time in RDF and OWL: A
logic-based approach. In ISWC, 2010.

25. S. Navlakha, C. Kingsford. Network archaeology: Uncovering ancient
networks from present-day interactions. PLoS Comput Biol, 2011.

26. G. Ozsoyoglu and R.T. Snodgrass. Temporal and real-time databases: a
survey. IEEE TKDE, 7(4):513 –532, aug 1995.

27. A. Pugliese, O. Udrea, and V. Subrahmanian. Scaling RDF with time. In
WWW, 2008.

28. C. Ren, E. Lo, B. Kao, X. Zhu, and R. Cheng. On querying historial evolving
graph sequences. In VLDB, 2011.

29. B. Salzberg and V. Tsotras. Comparison of access methods for time-evolving
data. ACM Comput. Surv., 31(2), 1999.

30. A. Seering, P. Cudre-Mauroux, S. Madden, and M. Stonebraker. Efficient
versioning for scientific array databases. In ICDE, 2012.

31. M. Smith, N. Milic-Frayling, B. Shneiderman, E. Rodrigues, J. Leskovec, C.
Dunne. NodeXL: a free and open network overview, discovery and
exploration add-in for Excel 2007/2010, http://nodexl.codeplex.com/, 2010.

32. SNAP: Stanford Network Analysis Project, http://snap.stanford.edu/
33. R. Snodgrass and I. Ahn. A taxonomy of time in databases. In SIGMOD,

pages 236–246, 1985.
34. Richard T. Snodgrass, editor. The TSQL2 Temporal Query Language.

Kluwer, 1995.
35. L. Tang, H. Liu, J. Zhang, and Z. Nazeri. Community evolution in dynamic

multi-mode networks. In KDD, 2008.
36. A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass

(editors). Temporal Databases: Theory, Design, and Implementation. 1993.

An Introduction to Temporal Graph Data Management 11

37. C. Tantipathananandh, T. Berger-Wolf, D. Kempe. A framework for
community identification in dynamic social networks. In KDD, 2007.

38. J. Tappolet and A. Bernstein. Applied temporal RDF: Efficient temporal
querying of RDF data with SPARQL. In ESWC, 2009.

39. V. Tsotras and N. Kangelaris. The snapshot index: an I/O-optimal access
method for timeslice queries. Inf. Syst., 1995.

