JORGE: APPROXIMATE PRECONDITIONING FOR GPU-
EFFICIENT SECOND-ORDER OPTIMIZATION

Siddharth Singh, Zachary Sating, Abhinav Bhatele
Department of Computer Science, University of Maryland
ssingh37 @umd.edu, zsating@umd.edu, bhatele @cs.umd.edu

ABSTRACT

Despite their better convergence properties compared to first-order optimizers,
second-order optimizers for deep learning have been less popular due to their
significant computational costs. The primary efficiency bottleneck in such op-
timizers is matrix inverse calculations in the preconditioning step, which are ex-
pensive to compute on GPUs. In this paper, we introduce Jorge, a second-order
optimization technique maintains the statistical efficiency of second-order opti-
mizers, while getting closer to first-order optimizers in terms of wall-clock time.
We address the primary computational bottleneck of computing matrix inverses by
completely eliminating them using an approximation of the preconditioner com-
putation. This makes Jorge optimizers extremely efficient on GPUs in terms of
wall-clock time. Our empirical evaluations demonstrate the distinct advantages of
using Jorge, outperforming state-of-the-art optimizers such as SGD, AdamW, and
Shampoo across multiple deep learning models, both in terms of sample efficiency
and wall-clock time.

1 INTRODUCTION

Stochastic optimization methods such as stochastic gradient descent (SGD) (?) and Adam (?) are
the de-facto standard for optimizing the objective function in the training of deep neural networks.
These first-order optimization methods are relatively inexpensive in terms of their compute and
memory requirements, and hence extremely popular. Second-order optimization methods typically
have better convergence properties (fewer epochs to reach target validation metrics) than those of
first-order methods. However, they are considerably slower in terms of per-iteration (per-batch) wall-
clock times for training than first-order methods. This is because they often use a preconditioner,
which multiplies the gradient by a matrix before taking a step. Computing these preconditioners
requires performing matrix inversions, which are highly inefficient on GPU platforms due to the
iterative nature of matrix inverse algorithms and their irregular memory access patterns.

If one could develop a second-order optimizer that has better convergence than first-order methods
and is on par with them in terms of wall-clock time per iteration, we could achieve the best of
both worlds. In this paper, we present Jorgeﬂ a new second-order optimizer method that uses an
approximation for preconditioning by avoiding the calculation of the inverse of matrices in all steps.
It has similar convergence properties to other second-order optimization methods but its wall-clock
time per iteration, when applied to a second-order optimizer, is similar to that of inexpensive first-
order methods. This is a win-win situation, which leads to much faster total training times for several
different deep learning models when compared to other state-of-the-art optimizers.

A new optimization method is most useful and promising if users do not have to spend significant
time in tuning its hyperparameters. We show in Section ?? that JorgeKFAC consistently outperforms
SGD and AdamW at various common hyperparameter values, making hyperparameter tuning less
of a hassle for practitioners.

1.1 CONTRIBUTIONS

This paper makes the following important contributions:

!Jorge is named after Dr. Jorge Nocedal, an applied mathematician & expert in nonlinear optimization.



* 2 new second-order optimizers (JorgeShampoo, JorgeKFAC) that avoid matrix inverse calcula-
tions when computing the preconditioner, making them extremely efficient on GPUs. This results
in per-iteration wall-clock times within 5-10% of those of first-order optimizers such as SGD and
AdamW, while matching the sample efficiency of Shampoo, a second-order optimizer. For train-
ing ResNet-50 on ImageNet, we demonstrate improvements of nearly 25% in the total training
wall-clock time over SGD.

* Most second-order optimizers need to exploit complex parallelism requiring multiple GPUs to get
their total training times to be faster than those of first-order optimizers. Since Jorge optimizers
are highly efficient, they can be run locally on each GPU and still outperform highly optimized
parallel implementations of second-order optimizers.

1.2  RELATED WORK

There have been several research efforts to develop computationally tractable second-order opti-
mizers for deep learning. ? proposes Hessian-free optimization, which exploits conjugate gradient
(CG) to directly compute Hessian-vector products without explicitly computing the Hessian. Since
CG requires multiple iterations, there has been subsequent work on reducing this cost (?). Several
optimizers based on the L-BFGS method have also been proposed that approximate Hessian-vector
products from the history of past gradients, again without explicitly computing the Hessian (??2?).

Most state-of-the-art second-order optimizers rely on block-diagonal approximations of the Hes-
sian to reduce the computational and memory requirements. The “blocks” typically correspond to
substructures in the neural network, like a layer or a parameter tensor. Some recent methods in
this category include Shampoo (?), K-FAC (??), K-BFGS (?) and the GGT method (?). How-
ever, these methods need to compute the inverse of their approximate Hessian matrices, which can
be expensive to compute even with the block-diagonal approximations. As we show later in Sec-
tion [5] JorgeShampoo outperforms one such optimizer, Shampoo, by nearly 37% in terms of the
total wall-clock time for training ResNet-50 on ImageNet. Closely related to Jorge is a line of work
that exploits the Sherman-Morrison based Matrix identity to approximate the update steps in K-FAC
without computing any matrix inverses (???).

To mitigate the large computational costs of matrix inverses, researchers have also proposed paral-
lel implementations of second-order optimizers, which aim to distribute the work of the optimizer
across multiple GPUs. Several efforts focus on developing efficient parallel implementations of the
K-FAC optimizer (??????). On the other hand, ? and ? aim to accelerate the Shampoo (?) optimizer
via parallelism. ? present a heterogeneous solution that offloads the computation of the inverses to
the CPU. Even though we implement Jorge without any multi-GPU parallelism, we demonstrate
that its performance is better than one of the state-of-the art parallel optimizers — Distributed Sham-

poo (?).

2 BACKGROUND

Second-order optimizers make use of both the gradients and curvature (second derivatives) of the

loss function. By considering the curvature, second-order methods can approximate the loss function

more accurately than first-order optimizers, and thus reduce the number of iterations required for

convergence. Most second-order optimizers approximate the Newton step shown in Equation T}
parameters at timestep t and t-1

0 = 61 — H' Gy (1)

Hessian at timestep J T gradients at timestep t

This equation can be derived by minimizing a second-order Taylor’s approximation of the loss func-
tion at ;. This step of multiplying the gradients with H, ' is called preconditioning, and H; * is
often referred to as a preconditioner.

Instead of using the actual Hessian, optimizers typically use positive semi-definite approximations
of the Hessian (??) to account for the non-convexity of the training objective (?????). One of our
proposed optimizers, JorgeKFAC, is of this class. Our other proposed optimizer, JorgeShampoo,



belongs to a class of methods called “adaptive optimizers”, which use the inverse of the gradient
covariance matrix (or the empirical Fisher matrix) to precondition gradients. Examples of adaptive
second-order optimizers include the full matrix version of Adagrad (?) and Shampoo (?). Note
that several first-order adaptive optimizers have also been proposed in literature, which only use the
diagonal elements of the covariance matrix. Popular examples include Adam (?) and RMSProp.
??? provide justification for the usage of the gradient covariance matrix as an approximation of the
Hessian.

3 APPROXIMATE PRECONDITIONING IN JORGESHAMPOO

As described in Section [I.2] the primary efficiency bottleneck in state-of-the-art second-order op-
timizers such as K-FAC (?) and Shampoo (?) is the matrix inverse computations performed to
calculate the preconditioners. To overcome this limitation, we introduce JorgeShampoo, an effi-
cient, adaptive, second-order optimizer tailored for GPU execution. JorgeShampoo’s formulation
eliminates computing explicit matrix inversions, and is solely comprised of matrix multiplications
and additions, which are highly optimized on GPUs. This results in JorgeShampoo’s wall-clock time
per iteration to be on par with those of first-order optimizers, while also having faster convergence
properties typical of a second-order optimizer.

We propose JorgeShampoo as an enhancement of Shampoo (?), another adaptive second-order op-
timizer. We first describe Shampoo’s optimizer algorithm at a high level before describing Jorge-
Shampoo’s optimizer algorithm. Note that, throughout this section, we discuss Shampoo and by
extension JorgeShampoo, within the context of a single layer. Application to multiple layers simply
involves repeating the same steps for their parameters.

Following ?, let us assume that the parameters, 6, of a single layer are organized in a two-
dimensional (2D) m x n matrix (N-dimensional parameter tensors, like those found in convolution
layers are typically collapsed into 2D matrices, in practice). Shampoo maintains the second-order
curvature information of the loss in two matrices — L; (size m x m) and R; (size n X n), which are
called the left and right preconditioners, respectively. It iteratively updates the preconditioners from
the current gradient information as shown in the equation below (for the left preconditioner):

left preconditioner at timestep t and t-1

Ly = Ba Li—1 +(1— B2) Gy GT 2)

smoothing parameter T Tgradients at timestep t

Algorithm [I| shows how the preconditioners are used in Shampoo. Additional terms used in the
algorithm are defined as follows. (7 and (32 are smoothing parameters for the exponential mov-
ing average (EMA) of the momentum and preconditioners. G is the preconditioned gradients at
timestep t. m, is the EMA of the preconditioned gradients, and 1, is the learning rate at timestep
t. Lines 5-8 of Algorithm T]show how the Shampoo optimizer iteratively updates the left and right
preconditioners from the current gradients’ information. Line 11 illustrates the preconditioning step,

-1 —1
wherein the gradients are multiplied by L, and R,* on the left and right, respectively. The pre-
conditioning step produces the preconditioned gradients, Gy, which minimize the loss faster than
the raw gradients. Finally, we update the momentum estimate of the preconditioned gradients (line
14), and then use the momentum to update the weights (line 15). The matrix inverse computation
in the preconditioning step (line 11) is the primary efficiency bottleneck in Shampoo, and is exactly
what we want to optimize in JorgeShampoo. JorgeKFAC, discussed in Section ??, follows a nearly
identical process.



Algorithm 1 Shampoo Algorithm 2 JorgeShampoo compared to Shampoo

1: Initialize 0o, Lo = €l 1: Initialize 0o, Lo=¢ 41, ., Ro=¢ i1,

2: Ro =e¢l, 2:

3: fort=1,..., Tdo 3: fort=1,..., Tdo

4 Update Preconditioners: 4: Update Preconditioners:

S: Li=B2Lt 5. K, = I CLET

6 +(1 - B2)GGY . 5 ats (I (= /52)X " 5(1— B2)* X )

7 Rt _ ﬂ2Rt_1 . t = Pg t—1 m 4ﬂ2 L 32ﬁ2 L

8 +(1 - B2)GY G: 7: Xgr=R{_,G{ G,

9 / /1\2

2 =5 (1-p3) 5(1—B3)" (2
8: Ry = (B2) * R (In— 2 XR + 2 X
L= () 3 AL

9:

10: Precondition Gradients: 10: Precondition Gradients:

I Ge=L7 GR 1 Gr= LGk

12: 12:

13: Update Weights: 13 Update Weights: ~

14: my = ﬂlmt,1 + (1 — ﬂl)Gt 14: me = 517’)7471 + (1 — ﬂl)Gt

15: 075 = Gt_l — MMt 15: at = et—l — MM

16: end for 16: end for

In Algorithm[2] we show the functioning of JorgeShampoo side-by-side with Shampoo for the same
2D m xn parameter matrix of a single layer. The core idea behind Jorge is to approximate the

computation of L, T and R75 in Shampoo (line 11 of Algonthm in a GPU-efficient manner. In
order to do this, we modify the computation in both lines 5-8 and line 11 of Algorithm [T} Just

like Shampoo, JorgeShampoo also maintains two preconditioners, which we refer to as L; and R;
in Algorithm 2] However, JorgeShampoo’s preconditioners are an approx1mat10n of the 1nverse

fourth root of Shampoo s preconditioners at every iteration, i.e. L ~ LtT and R, ~ Rt
show the remaining steps for the left preconditioner approximation, and the right precondmoner
approximation can be derived similarly.

A =1 N N
Since L; ~ L,* , we can say that L; ~ L;4, and L;_1 ~ L;_41. We substitute L; and L;_1 on both
sides of Equation[2] which gives us:

LY =Bl % + (1 - B2)G,GT 3)

=1
I

— IA/t = (ﬁzit_:ll + (1 - ﬁQ)GthT>

=1 . 1-— A K3
Li=B3" Li 4 (Im + WL?@G?) 4)

T /7L ,G¢GT (line 5, Algorithm 2) o)

Next, we get rid of the inverse computation in Equation [5] by employing the binomial series expan-
sion on the expression in parenthesis. The binomial theorem for negative exponents suggests that
for a square matrix A € R™*™ provided ||A|| < 1 and p > 0, where ||.|| is a valid matrix norm, the



following is true:

r=0 '

Substituting A = - ﬁ U=B2) X'/ "and p=7 1n Equatlon@ylelds

(L-B) N7 1(-B), 515 s
(1777,+B2XL> *Imf Z 62 XL+372 ﬂz XL+ (7)

Now, replacing the expression in parenthesis in Equation [5] with its binomial series expansion in
Equation[7} we remove the inverse calculation entirely as shown below:

_ g7 1(1—p5s) 5 (1=P2)° o

=y Lo (Im o Nty K (8)
Note that the binomial expansion is an infinite series and thus intractable. In practice, we have
found that ignoring the cubic and higher powers of this expansion does not degrade the sample
efficiency of JorgeShampoo in comparison to Shampoo (See Section[5). Hence we drop the higher-
order terms in Equation 8] which gives us line 6 of Algorithm [2] Notice how our preconditioner
update step is composed entirely of matrix-matrix multiplications and additions, which are highly
efficient to compute on GPUs, thereby making Jorge-based optimizers more compute-efficient than
other second-order optlmlzers After updating the preconditioners, we precondition the gradients by
multiplying them with Ly and R, on the left and right (line 11). Unlike Shampoo, we do not have
to invert our preconditioners because, by definition, they are an approximation of the inverse fourth
roots of Shampoo’s preconditioners. Finally, the weight update step in lines 14 and 15 is identical
to Shampoo.

Note that Equation@is only valid for || A|| < 1, and therefore for || %X |l < 1. To ensure this,

JorgeShampoo dynamically adjusts 82 (and 5 for the right preconditioner) in each iteration such
that the above constraint is met. We discuss this in detail in Appendix[A.2]

To improve performance, most second-order optimizers, including K-FAC and Shampoo, typically
compute their preconditioners at regular intervals, instead of every iteration. Following suit, we
also allow infrequent preconditioner updates for Jorge, with the interval kept as a user-configurable
hyperparameter. In the iterations where we do not update the preconditioners, we simply reuse the
preconditioners from the previous iteration.

As empirical evidence of the efficacy of our approximation we provide the per-iteration times of
SGD, JorgeShampoo and AdamW for training ResNet-50 (?) and DeepLabv3 (?) on the Imagenet
and MS-COCO datasets respectively in Table [I] For the ResNet-50 benchmark, we observe that
JorgeShampoo’s iteration times are only 1% slower than SGD, whereas it is 26% faster than Sham-
poo! For the DeepLabv3 benchmark, JorgeShampoo is only 10% slower than SGD, but a significant
21% faster than Shampoo.

Table 1: Comparison of wall-clock times per iteration (in seconds) for SGD, JorgeShampoo and
Shampoo. For JorgeShampoo and Shampoo, we compute the preconditioner inverses every 50 iter-
ations, in line with 2.

Neural Network  Batch Size #GPUs SGD Jorge Shampoo

ResNet-50 1024 16 009 0.09 0.12
DeepLabv3 64 4 033 037 0.47

4  APPROXIMATE PRECONDITIONING IN JORGEKFAC

The formulation for JorgeKFAC largely follows JorgeShampoo: there are left and right precondi-
tioners (named S and A here) for each linear or convolutional layer that we maintain and use to



precondition the gradients. K-FAC specifically uses the Kronecker product of S and A (covariance
matrices of gradients and activations of each layer, respectively) to estimate the Fisher information
matrix. Part of K-FAC’s formulation is the inverse Fisher matrix, which requires taking the inverse
of S and A. This simplifies the math a bit compared to JorgeShampoo, as we now have to use —1
instead of —1/4 as our exponent.

Algorithm 3 K-FAC Algorithm 4 JorgeKFAC compared to K-FAC

1: Initialize 0y, Ao, So = €I, el 1: Initialize 0o, Ao, So = I, In

2: forlin L 2: forlin L

3: 3:

4: fort=1,..., T do 4: fort=1,..,Tdo

5: Update Preconditioners: 5 Update Preconditioners:

6: aa; = (1 — B)af az 6 aa; = at a;

7 aa; = faai—1 + aay 7 Xa= At_l(aat * €l

8 A = aat 2 A

i (1-52) (1-52) 2) Ay
8: Ar= (I ——2Xa+ X
! < B2 4 B3 4) B

9: ss=(1—B)s; st 9: s8¢ = ST sy

10: ss; = PBssi—1 + s8¢ 10: Xs = Si_1(sss * el,)

11: St = SS¢ ( 2 &

& 1 —Bs) (1= p) 2> Si1
11: Si= I, — —*Xs+ X
t ( ,82 S ﬂ% S 62

12: Precondition Gradients: 12: Precondition Gradients:
13: ét = St_th_lAt_l 13: ét = tht—lAt
14: Update Weights: ~ 14: Update Weights: _
15: me = Prme—1 + (1 — B1)Gt 15: my = Bime—1 + (1 — B1)Gy

161 0t = 075_1 — MM 16: 075 = t‘)t_l — MM

17: end for 17: end for

On line 13, we again see that we calculate G; without having to invert any matrices! For JorgeKFAC,
we perform an ablation study for 3 optimizers: JorgeKFAC, SGD, and AdamW. We perform a grid
search over hyperparameter values for each optimizer to (1) find the optimal set of hyperparameters
for a given optimizer, (2) to ensure fairness between optimizers in future experiments by using that
optimal set of hyperparameters, and (3) to show that JorgeKFAC consistently performs better than
other SGD and AdamW on the task at hand. The task being training a ResNet-18 on the CIFAR-
10 dataset to do image classification. The gridsearch was done by running the experiment over all
combinations of the following learning rate and weight decay values: [0.1, 0.03, 0.01, 0.03, 0.001].

LR = 0.001 LR = 0.003 LR =0.1

SGD

- 8503 8780 9085 9050 8431 ERERNOEEN 772 2020 9108 8812 5887 1655 10.00

- 8960 9020 9029 9100 NOEE

DRUN o183 9219 | 9173

9092 [OEFY 9026 8127 28.50

9034 9083 | 9136 SEEREREN ) 5539 8645 -905

JorgeKFAC ~ AdamW

0001 0003 001 003 01 0001 0003 001 003 01

0001 0003 001 003
Weight Decay

0001 0003 001

Figure 1: Accuracies of SGD, AdamW, and JorgeKFAC on the image classification task. Each
heatmap has a fixed learning rate value, and each subcolumn is a fixed weight decay value.



We see in Figure[I]that across the tested hyperparameter values, JorgeKFAC not only has the highest
overall accuracy, but tends to have a higher accuracy than SGD and AdamW at many of the given
learning rate and weight decay combinations.

5 EXPERIMENTAL RESULTS

In this section, we discuss the empirical experiments conducted to evaluate the efficacy of Jorge-
Shampoo against other state-of-the-art optimizers used in deep learning.

5.1 SETUP: BENCHMARKS AND METRICS

Table [2] lists the training benchmarks used in our experiments, all of which are sourced from the
torchvision repository (?). For each benchmark, we consider two types of training runs — one where
we let a given optimizer train for the maximum number of epochs specified in the repository, and
the other where we only train up to the validation metrics specified in Table 2] The former helps us
measure the generalization of each optimizer, whereas the latter helps us measure the sample effi-
ciencies and total wall-clock times for training. Mask-RCNN (?) and DeepLabv3 (?) use ResNet-50
as their backbone. We use SGD as our baseline and also compare with AdamW, Shampoo, and a
recently proposed parallel implementation of Shampoo (?),

Table 2: List of benchmarks used to evaluate Jorge against other optimizers. The validation targets
for the first two tasks are the same as those used in MLPerf. For the image segmentation task, it is
the same as specified in the torchvision repository.

Training Task Neural Network  Dataset Batch Size(s) Targelt/[Val}datlon

etric
Image Classification  ResNet-50 ImageNet 256/1024 75.9% Accuracy
Object Detection Mask-RCNN MS-COCO 2017 32 37.7 Bbox mAP
Image Segmentation DeepLabv3 MS-COCO 2017 64 66.4 IoU

Choice of Hyperparameters: For direct comparisons with SGD and AdamW, we use the default
small batch sizes specified by torchvision, which are 256, 32 and 64 respectively for ResNet-50,
Mask-RCNN, and DeepLabv3. To the best of our knowledge, most evaluations of second-order
optimizers have been conducted at batch sizes much larger than these values. Thus, to facilitate a
direct comparison with Shampoo, we also ran the ResNet-50 benchmark with a larger batch size of
1024. By doing this, we could directly borrow the hyperparameters from ?, who evaluated Shampoo
in a similar setting.

All the benchmarks from torchvision used in our experiments employ an SGD optimizer, pre-
optimized with a well-calibrated set of hyperparameters. Accordingly, for our evaluations with
SGD, we adhere to these pre-set values. For our proposed optimizer, Jorge, we adopt the single-shot
hyperparameter configuration outlined in Section ??, which is derived directly from SGD’s parame-
ters. We borrow AdamW hyperparameters for the ImageNet benchmarks from ?. The complete list
of all hyperparameters used in this study can be found in Appendix [A.6]

Evaluation Metrics: In our evaluation of each benchmark, we record validation accuracy/loU/mAP
with respect to both number of epochs and wall-clock time. While the epoch-based measurements
provide insights into the sample efficiencies of different optimizers, wall-clock time offers an un-
derstanding of their computational speed and efficiency on GPU platforms. Together, these metrics
offer a comprehensive assessment of each optimizer’s practical efficacy.

5.2 COMPARATIVE EVALUATION

Rapid convergence toward a target validation accuracy is not the only goal of an optimizer. The
balance between quick initial convergence and eventual generalization can dictate an optimizer’s
selection. For example, SGD remains the optimizer of choice in computer vision due to its better
final validation accuracy, even though Adam converges faster initially. We evaluate JorgeShampoo’s
peak validation accuracy against SGD and AdamW across benchmarks, and detail the results in



Table 3] In these experiments, we let each optimizer train for the maximum number of epochs
specified in the repository. Notably, for ResNet-50 benchmarks, JorgeShampoo exceeds SGD’s best
validation accuracy —76.02% vs 76.70% (large batch size), and 75.97% — 76.85% (small batch size).
For the Mask-RCNN benchmark, JorgeShampoo’s IoU of 38.92% represents a notable improvement
over SGD’s 38.3%. It’s worth highlighting that these results were achieved using the single-shot
tuning strategy described in Section ??. Though DeepLabv3’s performance with JorgeShampoo is
marginally worse than that with SGD, the difference is within SGD’s standard deviation, suggesting
that small hyperparameter tweaks could bridge the gap. Notably, AdamW falls short of SGD’s
generalization in three out of four benchmarks but JorgeShampoo does better than SGD in three out
of four benchmarks. Note that this gap in AdamW’s generalization compared to SGD has been a
focal point in several prior studies (?2?27?).

Table 3: Maximum validation accuracy (i) for SGD, AdamW, and JorgeShampoo across bench-
marks.

Neural Network  Batch Size  # Trials  # Epochs SGD AdamW JorgeShampoo
ResNet-50 1024 3 90 76.0240.05 71.85+0.11 76.700.07
ResNet-50 256 3 90 75971011 76.5610.09 76.8540.12
DeepLabv3 64 5 30 67.19410.16 66.2640.20 67.1240.12
Mask-RCNN 32 5 26 38.30+0.13  36.5810.11 38.92.10.10

Next, we compare the sample efficiency of JorgeShampoo to other optimizers. In this case, we
only train up to the target validation metrics specified in Table [2] Figure [2] (left) showcases the
progression of validation accuracy over training epochs for ResNet-50 on ImageNet with the larger
batch size of 1024. For other benchmarks, we depict this progression in Figure[3] It is evident that in
the context of sample efficiency, JorgeShampoo outperforms the first-order optimizers we compare
with — SGD and AdamW. Across both the small (256) and large (1024) batch size training scenarios
for ResNet-50, JorgeShampoo outperforms SGD by requiring around 27% fewer iterations to reach
the target validation accuracy of 75.9%. The improvements in sample efficiency over SGD across
other benchmarks are markedly higher — 40% for DeepLabv3, and 41% for Mask-RCNN. Again,
we achieve these results by simply bootstrapping JorgeShampoo’s hyperparameters from SGD, only
making the changes outlined in Section ??. The improvements in sample efficiency over AdamW
are similar to those over SGD. Also, AdamW falls short of achieving the target validation metric in
two out of four experiments.

Validation accuracy v/s Epochs for ResNet50 on Imagenet Validation accuracy v/s Time for ResNet50 on Imagenet
80 80+
75 oo S 75 ’_-_._-_._._._._-_._-__._-_._-_._-_MAE::::_'
& 701 &7 = Jorge
| >
365 Jorge & 651 Shampoo :
I+ — SGD 3 Shampoo (Dist)
v
< 601 Shampoo < 60 —— AdamW
55+ — AdamW 55 — SGD
————— Target === Target
50 T T T T 50 T T T
20 40 60 80 0 100 200 300
Epoch # Time (min)

Figure 2: Validation accuracy [u & o] v/s epochs (left) and time (right) for the large batch size
training (1024) of ResNet-50 on the ImageNet dataset (experiments run on 16 A100 GPUs).

As discussed in Section 3] we have designed JorgeShampoo to approximate Shampoo with a focus
on GPU efficiency. Figure [2| (Ieft) demonstrates that JorgeShampoo achieves the target validation
accuracy in almost the same number of epochs as Shampoo (62 vs. 63). This observation strongly
validates our approach and confirms that JorgeShampoo’s approximations do not degrade its statis-
tical efficiency.



Let us now turn our attention to an equally crucial metric: wall-clock time required for training.
Figure |2| (right) demonstrates the progression of validation accuracy over time for the large batch
size training of ResNet-50. We observe that JorgeShampoo achieves the target validation accuracy
in 25% less time compared to SGD, which is a significant improvement. If we consider the serial
implementation of Shampoo (pink line), it takes more total time to converge than SGD despite
requiring 27% fewer epochs. This observation demonstrates the prowess of JorgeShampoo as a
GPU-efficient adaptation of Shampoo: it’s significantly faster than Shampoo’s wall-clock time for
convergence (239 minutes vs. 325 minutes), despite requiring a similar number of epochs. As noted
in Section[I.2] the prevailing approach for mitigating the large overhead of preconditioning has been
to develop distributed implementations of these optimizers. Within this context, Figure [2] (right)
also presents the wall-clock time of a state-of-the-art parallel implementation of Shampoo (yellow
line) (?). Notably, even though JorgeShampoo executes locally on each GPU, it still manages to
yield a 4% speedup over the parallel version of Shampoo.

Validation accuracy v/s Epochs for Validation loU v/s Epochs for Validation mAP v/s Epochs for
ResNet-50 on ImageNet Deeplabv3 on MS-COCO Mask RCNN on MS-COCO

o ~
o o

Accuracy (%)

[
o

0 20 40 60 80 0 10 20
Epoch # Epoch # Epoch #

Figure 3: Validation accuracy, IoU, and mAP [ + o] v/s epochs for ResNet-50 on ImageNet (left)
(batch size of 256), DeepLabv3 on MS-COCO (center), and Mask-RCNN on MS-COCO (right).

While a 4% improvement might seem modest, its implications are more far-reaching. Often times,
Al practitioners do not have access to large numbers of GPU resources. In such resource-constrained
settings, JorgeShampoo might be an ideal optimizer when parallelizing across GPUs is not an option.
This also applies to environments with limited interconnect bandwidth.

Finally, we focus on the small batch size benchmarks to evaluate how JorgeShampoo’s training wall-
clock times compare with other first-order optimizers. We present these results in Table 4§} Once
again, JorgeShampoo makes significant improvements in the total training wall-clock times. Com-
pared to SGD, JorgeShampoo improves the time to convergence by 23%, 34%, and 45% for ResNet-
50, DeepLabv3, and Mask-RCNN respectively. The corresponding improvements over AdamW are
even higher — 26%, 41%, and 58% (the last number is much higher since AdamW did not converge
on that run). The wall-clock time improvements in these experiments highlight JorgeShampoo’s
applicability to small batch size training scenarios, where the overheads of a second-order optimizer
cannot be masked behind network computation, making it more challenging for JorgeShampoo to
beat first-order optimizers.

Table 4: Comparison of the total training time (in minutes) of JorgeShampoo with SGD and AdamW
for the small batch size benchmarks (experiments run on four A100 GPUs).

Neural Network  Batch Size  # Trials SGD  AdamW  JorgeShampoo
ResNet-50 256 3 1005440 1052436 781144
DeepLabv3 64 5 217412 244401 144 50
Mask-RCNN 32 5 332147 438114 182411

Now we look at results for JorgeKFAC. In Figure 4] we show the accuracy curves for each opti-
mizer’s best performing run in our grid search in Figure[I] Note that in Figure ] JorgeKFAC tends
to have a higher training and testing accuracy than SGD and AdamW for at least half, if not most,
of the standard 100 epochs of training. Importantly too, JorgeKFAC maintains KFAC’s statistical
advantages over first-order optimizers like SDG and AdamW by having the better final train and test
accuracies. One explanation for why JorgeKFAC’s training accuracy is closer to SGD’s in the ear-
lier epochs of training vs. AdamW'’s is because JorgeKFAC is essentially SGD with an exponential



moving average (EMA) of second-order information applied to its gradients. That EMA is stored as
a variable in our code, and begins as the identity matrix, effectively doing very little to the gradients
in the earlier epochs, thus JorgeKFAC acting as mostly SGD. Once the second-order information
has saturated that variable, we see training accuracy increasingly diverge from that of SGD.

o Best hyperparameter configurations (testing accuracy) 166 Best hyperparameter configurations (training accuracy)
—— s5gd=92.43 —— sgd=97.32
—— adamw=92.59 —— adamw=98.13

—— jorgekfac=92.87 —— jorgekfac=99.18
95 A
90 A

90

=)
vl

854

Accuracy (%)
Accuracy (%)

©
S

80

754
754

70

T T T T T T 70 T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Epoch Epoch

Figure 4: Test and train accuracy curves of the best hyperparameter combination for each optimizer.

6 CONCLUSION AND FUTURE WORK

In this work, we introduced Jorge, a method to make efficient, adaptive, second-order optimizers tai-
lored to GPU platforms - as well as two optimizers that use Jorge, JorgeKFAC and JorgeShampoo.
We eliminated the primary computational bottleneck of computing matrix inverses in second-order
optimizers by proposing a novel approximation of the preconditioner computation in Shampoo,
which sidesteps the need to explicitly compute matrix inverses. We evaluated our optimizers against
state-of-the-art first-order optimizers — SGD and AdamW, as well as Shampoo, and we demonstrated
improvements in generalization, sample efficiencies, and training wall-clock times. As future work,
we plan to develop a distributed implementation of Jorge to reduce its per-GPU memory consump-
tion, which currently stands at 1.5-2x that of Adam (see Appendix[A.7).

Reproducibility Statement: We are committed to enabling reproducibility of our work, as it en-
sures correct and transparent results. We plan to open source the code for JorgeShampoo and
JorgeKFAC, as well as the benchmarks evaluated in this paper. Additionally, we provide a com-
prehensive list of all hyperparameters used in this study for each optimizer and each benchmark
in Appendix [A.6] The hyperparameters can be directly substituted as the arguments of SGD and
AdamW shipped with PyTorch 2.0 in the “torch.optim” package. Similarly, the hyperparameters
listed for Jorge will be compatible with our open source codebase.

REFERENCES

10



A APPENDIX

A.1 BOOTSTRAPPING JORGE’S HYPERPARAMETERS FROM SGD

A new optimizer such as Jorge would be useful in practice only if it does not require rigorous hy-
perparameter tuning to achieve a desired level of generalization on a given training task. Arguably,
an important reason behind the popularity of SGD is the existence of various heuristics for deciding
hyperparameters configurations quickly that can achieve decent generalization. In this section, we
demonstrate Jorge’s ability to be an effective drop-in for SGD. We propose rules to deterministically
bootstrap Jorge’s hyperparameters from those of a well-tuned SGD baseline. We call this process
“single-shot tuning”. There are two implications of being able to single-shot tune Jorge’s hyperpa-
rameters from a well-tuned SGD. First, it eliminates the need to explore the expensive, combinatorial
search space of Jorge’s hyperparameters. Second, the heuristics used to tune SGD’s hyperparameters
can also be transferred to Jorge.

Note that we focus on SGD over other adaptive optimizers such as Adam because prior research
has demonstrated that SGD often outperforms adaptive methods in terms of generalization (????).
Below, we propose some rules for transferring SGD’s hyperparameters to Jorge.

Learning Rate: ? propose grafting, a technique for bootstrapping the learning rate and schedule
of a new optimizer from another well-tuned optimizer. Grafting calculates the magnitude of the
weight update by running a step of the well-tuned optimizer, and the direction of the weight update
by running a step of the new optimizer. Using this approach, we employ grafting to directly use the
learning rate of a well-tuned SGD baseline in Jorge. Integrating grafting in Jorge involves a small
tweak to the weight update step in Algorithm [2] (lines 13-15), which we show in Appendix
However, note that unlike ?, we exploit grafting to adopt only the learning rate from SGD, but not
the learning rate schedule (more details below).

Weight Decay Penalty: For regularization, in Jorge, we implement the decoupled weight decay
scheme proposed by ?, as it has been shown to generalize better than L2 regularization for adaptive
optimizers. We now explain how the weight decay penalty for Jorge, Ajorge, can be bootstrapped
from SGD. Let 8sgp and Aggp be the momentum factor and the weight decay penalty, respectively,
of a well-tuned SGD optimizer. We propose deterministically setting Ajorge as follows:

1
AJorge = ————A
Jorge = T 5o —ASGD €))

Using the almost universal value of 0.9 for Ssap, we set Jorge’s weight decay to 10x that of SGD
for our experiments. While surprisingly simple, we have found this heuristic to work well across
several benchmarks. In Appendix [A.4] we describe the intuition behind Equation [0]in more detail.

Learning Rate Schedule As per ?, grafting should allow us to borrow not only the learning rate, but
also the learning rate schedule of a well-tuned SGD baseline. However, we find that certain learning
rate schedules are not suitable for Jorge. In Figure [5] we plot the progression of validation metrics
for training ResNet-18 (?) on CIFAR-10 (?) (left plot) and DeepLabv3 (?) on MS COCO (?)
(right plot). Note that using the default learning rate schedules of SGD, which are the cosine (?)
and polynomial rate schedules, respectively, leads to barely any improvements in sample efficiency
over SGD. Interestingly, simply switching to the step decay schedule with 2 decay steps (reducing
the learning rate by 10x at each step) at one-third and two-thirds of the total training epochs (total
epochs same as that of the tuned SGD baseline) resolves this issue. We observe sample efficiency
gains of nearly 1.4—1.8x over SGD. Therefore, across all training tasks, we opt for the step decay
learning rate schedule with the aforementioned configuration. Interestingly, in certain scenarios
using the default learning rate schedule of a given well-tuned SGD baseline also leads to overfitting
with Jorge. We discuss this in Appendix

Preconditioner Update Frequency: As mentioned in Section [3] Jorge has a user-configurable
hyperparameter to control the frequency at which the preconditioners are updated. We suggest using
a value for this hyperparameter that brings the iteration wall-clock times within 10% of SGD.

11



Validation Accuracy v/s Epochs for Validation loU v/s Epochs for

ResNet-18 on CIFAR-10 Deeplabv3 on MS-COCO
100+ 801
* 0 =
S
z 801 2 —— StepD
Q —— Step Decay 2 40 tep Decay
§ 70{ —— Cosine Decay (Default) — Polynomial Decay (Default)
< 0l Target 201 Target
---------- Convergence Epoch for SGD = Convergence Epoch for SGD
50 w ‘ ‘ 0 ’ :
0 50 100 150 0 10 20
Epoch # Epoch #

Figure 5: Comparing various learning rate schedules for Jorge. The left and right plots demon-
strate the progression of validation accuracy for ResNet-18 on CIFAR-10, and validation IoU for
DeepLabv3 on MS-COCO respectively.

A.2 ENSURING VALIDITY OF THE BINOMIAL EXPANSION BY DYNAMICALLY ADJUSTING (35

In Section [3] we mentioned that for the binomial expansion in Equation [§]to be valid, we must also
ensure that ‘

(1;375"’)X L H < 1. To ensure this condition is met at every iteration, Jorge dynamically

updates the EMA update parameters 3 and (5 (for the right preconditioner) at each iteration. We
start with the condition we want to ensure and derive a lower bound on f5.

(1—52) H [ Xl
——X|| <1 = B2 > o—— (10)
H B " FT XL+ 1
Therefore, we need to set 3, to a value higher than % to ensure the validity of the binomial

expansion. In practice, we have seen that setting S5 equal to this quantity works well, provided we
are using the Frobenius norm as our matrix norm function of choice.

Substituting the value of o from Equation [I0] in Equation [§] and ignoring the cubic and higher
powers, gives us the complete left preconditioner update step:

1

. |XL|+1>4A ( 1 X 5 X2 )

Lt:< Ly |\ Iy — = + = (11)
XLl TooaXpl o 32X ,]?

The corresponding formulation of /35 for the right preconditioners can be derived in a similar manner.

A.3 JORGE WITH GRAFTING

In Section ??, we mentioned adding grafting to Jorge, which adds a step in the weight update step
of Algorithm Grafting maintains the direction of the current step (an“—:”), but uses the magnitude
of the step of a well-tuned optimizer (||mggp | in this case). In Algorithm [5|below, we see m;

becomes ||mscp.l k-

Algorithm 5 Jorge’s modified weight update rule with SGD grafting
1: Update Weights:

2: my = Brmy—1 + (1 — ﬁl)ét > Jorge weight update
3: mggp,t = B1msep,i—1 + Gt > SGD (with heavy ball momentum) weight update
4:

5: 0, = 6, — n|lmscp.l| ﬁ > Grafted weight update

12



Train loss v/s Epochs for
Deeplabv3 on MS-COCO

Train Loss v/s Epochs for
Faster RCNN on MS-COCO

1.04
—— Step Decay (Default) 0.7 —— Step Decay
0.8 —— Cosine Decay 06. —— Polynomial Decay (Default)
3 0.61
0.4
0.2 w w . : ’
0 10 20 0 10 20
Epoch # Epoch #
Validation loU v/s Epochs for
Validation mAP v/s Epochs for Deeplabv3 on MS-COCO
Faster RCNN on MS-COCO 80-
0.40
0.351
< 030- 3 40-
& —— Step Decay (Default) Step Decay
0.25 —— Cosine Deca)/ 20— S P0|ynomia| Decay (Default)
e Target mm Target
. : 0 . !
0'200 10 20 0 10 20
Epoch # Epoch #

Figure 6: Comparison of different learning rate schedules with Jorge on two training tasks - Object
Detection with Faster RCNN (?), and Image Segmentation with DeepLabv3 (?), both on the MS-
COCO dataset (?). Both training tasks use a batch size of 64.

A.4 INTUITION BEHIND JORGE’S WEIGHT DECAY HEURISTIC

As mentioned in Section ??, we created a simple heuristic for setting Jorge’s weight decay. Let the
parameters at time step ¢ be ;. SGD will first calculate the weight decay update as Asgp#; and then
update its running estimate of the momentum using the gradients from the loss and Aggpf;. Since
the weight decay is a part of the running momentum estimates, the weight decay calculated at time
step ¢ will influence the parameter updates at time step ¢ + 7, albeit attenuated by 33 ,. Therefore,
the effective contribution of a weight decay update calculated at time step ¢ is:

T—t
> BiapAsapts ~

7=0

Asapt; (12)

1
1 - Bsap

Since we use a decoupled weight decay scheme for Jorge, the weight decay calculated at time step
t does not contribute to future weight updates. Therefore, to match the effective contribution of the
weight decay updates in SGD, we set the weight decay penalty for Jorge to —2i— x that of SGD,

. . 1—Bscp
as shown in Equation 9]

A.5 EXPERIMENTS WITH LEARNING RATE SCHEDULES

Here we discuss the phenomenon of certain learning rate schedules leading to overfitting with Jorge,
that we briefly alluded to in Section ??. Figure[6] (left) demonstrates the training loss and validation
mAP curves for Faster-RCNN on MS-COCO. Notice that while the cosine schedule never reaches
the target validation mAP, this is not because it sufficiently fails to minimize the training loss. In-
fact, it leads to a training loss significantly lower than the step decay schedule, thereby indicating
overfitting.

13



Similarly, Figure 6] (right) demonstrates the training loss and validation IoUs for the image segmen-
tation task with DeepLabv3. Here, the polynomial-scheduled Jorge must reach a lower training loss
(loss of 0.32) than the stepwise-scheduled Jorge (0.37) to reach the same validation accuracy, once
again symbolizing overfitting.

Our hypothesis for the phenomenon is that Jorge requires a high learning rate in the initial phases
of training to escape sharp local minima. Due to its more accurate updates it is more prone towards
falling into sharp minima compared to SGD, which might escape these because of its noisy updates.
We plan to explore this phenomenon in more detail in future work.

A.6 LIST OF HYPERPARAMETERS FOR SECTION[3]

We list the hyperparameters used in this study for SGD, Jorge, and AdamW in Tables[5] [6] and
respectively. For Shampoo, we have used the same learning rate, weight decay and learning rate
schedule as SGD, as per the recommendation of ? and enabled SGD grafting.

Table 5: Hyperparameters used in this study for SGD. These are the defaults in torchvision.

Resnet-50 ResNet-50
Hyperparameter (batch size 1024) (batch size 256) DeepLab-v3 Mask RCNN
Learning Rate 0.4 0.1 0.02 0.02
Weight Decay le—4 le—4 le—4 le—4
Linear warmup over
Learning Rate 5 epochs. Then step  Step decay at Polynomial decay  Step decay at
Schedule decay at epochs 30 epochs 30 and 60  with 0.9 power epochs 16 and 22
and 60
Momentum 0.9 0.9 0.9 0.9
Nesterov False False False False
Table 6: Hyperparameters used in this study for Jorge.
Resnet-50 ResNet-50
Hyperparameter (batch size 1024) (batch size 256) DeepLab-v3 Mask RCNN
Learning Rate 0.4 0.1 0.02 0.02
Weight Decay le—3 le—3 le—3 le—3
Linear warmup over
Learning Rate 5 epochs. Then step  Step decay at Step decay at Step decay at
Schedule decay at epochs 30 epochs 30 and 60  epochs 10 and 20  epochs 8 and 16
and 60
Momentum 0.9 0.9 0.9 0.9
Preconditioner
Update Freq. >0 2 4 8

A.7 ANALYSIS OF MEMORY CONSUMPTION

We mentioned in Section [¢] that Jorge consumes 1.5 — 2x the memory of Adam. This is because
Adam uses 2 32-bit floating point optimizer states per parameter. In contrast, Jorge uses 3 (hence
1.5x), one each for the left preconditioner, right preconditioner, and momentum (see Algorithm 2).
It becomes 4 once grafting is introduced (hence 2x), due to the fact that we now need to maintain
the momentum for SGD as well. This is a major limitation of our method, and one which we plan
to fix with a distributed implementation.

14



Table 7: Hyperparameters used in this study for AdamW.

Resnet-50 ResNet-50
Hyperparameter (batch size 1024)  (batch size 256) DeepLab-v3  Mask RCNN
Learning Rate 0.004 0.001 0.0002 0.0002
Weight Decay 0.1 0.1 le—2 le—2
Learning Rate Cosine Cosine Cosine Cosine
Schedule
Momentum 0.9 0.9 0.9 0.9
Bs (0.9, 0.999) (0.9, 0.999) (0.9,0.999) (0.9, 0.999)
€ le—8 le—8 le—8 le—8
amsgrad False False False False

15



	Introduction
	Contributions
	Related work

	Background
	Approximate Preconditioning in JorgeShampoo
	Approximate Preconditioning in JorgeKFAC
	Experimental Results
	Setup: Benchmarks and Metrics
	Comparative Evaluation

	Conclusion and Future Work
	Appendix
	Bootstrapping Jorge's Hyperparameters from SGD
	Ensuring validity of the binomial expansion by dynamically adjusting 2
	Jorge with grafting
	Intuition behind Jorge's weight decay heuristic
	Experiments with learning rate schedules
	List of Hyperparameters for Section 5
	Analysis of memory consumption


