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Abstract

This paper describes the system we devel-
oped to improve German-English transla-
tion of News text for the shared task of
the Fifth Workshop on Statistical Machine
Translation. Working within cdec, an
open source modular framework for ma-
chine translation, we explore the benefits
of several modifications to our hierarchical
phrase-based model, including segmenta-
tion lattices, minimum Bayes Risk de-
coding, grammar extraction methods, and
varying language models. Furthermore,
we analyze decoder speed and memory
performance across our set of models and
show there is an important trade-off that
needs to be made.

1 Introduction

For the shared translation task of the Fifth Work-
shop on Machine Translation (WMT10), we par-
ticipated in German to English translation under
the constraint setting. We were especially inter-
ested in translating from German due to set of
challenges it poses for translation. Namely, Ger-
man possesses a rich inflectional morphology, pro-
ductive compounding, and significant word re-
ordering with respect to English. Therefore, we
directed our system design and experimentation
toward addressing these complications and mini-
mizing their negative impact on translation qual-
ity.

The rest of this paper is structured as follows.
After a brief description of the baseline system
in Section 2, we detail the steps taken to improve
upon it in Section 3, followed by experimental re-
sults and analysis of decoder performance metrics.

2 Baseline system

As our baseline system, we employ a hierarchical
phrase-based translation model, which is formally
based on the notion of a synchronous context-free
grammar (SCFG) (Chiang, 2007). These gram-
mars contain pairs of CFG rules with aligned non-
terminals, and by introducing these nonterminals
into the grammar, such a system is able to uti-
lize both word and phrase level reordering to cap-
ture the hierarchical structure of language. SCFG
translation models have been shown to be well
suited for German-English translation, as they are
able to both exploit lexical information for and ef-
ficiently compute all possible reorderings using a
CKY-based decoder (Dyer et al., 2009).

Our system is implemented within cdec, an ef-
ficient and modular open source framework for
aligning, training, and decoding with a num-
ber of different translation models, including
SCFGs (Dyer et al., 2010).1 cdec’s modular
framework facilitates seamless integration of a
translation model with different language models,
pruning strategies and inference algorithms. As
input, cdec expects a string, lattice, or context-free
forest, and uses it to generate a hypergraph repre-
sentation, which represents the full translation for-
est without any pruning. The forest can now be
rescored, by intersecting it with a language model
for instance, to obtain output translations. The
above capabilities of cdec allow us to perform the
experiments described below, which would other-
wise be quite cumbersome to carry out in another
system.

The set of features used in our model were the
rule translation relative frequency P (e|f), a target
n-gram language model P (e), a ‘pass-through’
penalty when passing a source language word
to the target side without translating it, lexical
translation probabilities Plex(e|f) and Plex(f |e),

1http://cdec-decoder.org



a count of the number of times that arity-0,1, or 2
SCFG rules were used, a count of the total num-
ber of rules used, a source word penalty, a target
word penalty, the segmentation model cost, and a
count of the number of times the glue rule is used.
The number of non-terminals allowed in a syn-
chronous grammar rule was restricted to two, and
the non-terminal span limit was 12 for non-glue
grammars. The hierarchical phrase-base transla-
tion grammar was extracted using a suffix array
rule extractor (Lopez, 2007).

2.1 Data preparation
In order to extract the translation grammar nec-
essary for our model, we used the provided Eu-
roparl and News Commentary parallel training
data. The lowercased and tokenized training data
was then filtered for length and aligned using the
GIZA++ implementation of IBM Model 4 (Och
and Ney, 2003) to obtain one-to-many alignments
in both directions and symmetrized by combining
both into a single alignment using the grow-diag-
final-and method (Koehn et al., 2003). We con-
structed a 5-gram language model using the SRI
language modeling toolkit (Stolcke, 2002) from
the provided English monolingual training data
and the non-Europarl portions of the parallel data
with modified Kneser-Ney smoothing (Chen and
Goodman, 1996). Since the beginnings and ends
of sentences often display unique characteristics
that are not easily captured within the context of
the model, we explicitly annotate beginning and
end of sentence markers as part of our translation
process. We used the 2525 sentences in news-
test2009 as our dev set on which we tuned the fea-
ture weights, and report results on the 2489 sen-
tences of the news-test2010 test set.

2.2 Viterbi envelope semiring training
To optimize the feature weights for our model,
we use Viterbi envelope semiring training (VEST),
which is an implementation of the minimum er-
ror rate training (MERT) algorithm (Dyer et al.,
2010; Och, 2003) for training with an arbitrary
loss function. VEST reinterprets MERT within
a semiring framework, which is a useful mathe-
matical abstraction for defining two general oper-
ations, addition (⊕) and multiplication (⊗) over
a set of values. Formally, a semiring is a 5-tuple
(K,⊕,⊗, 0, 1), where addition must be commu-
nicative and associative, multiplication must be as-
sociative and must distribute over addition, and an

identity element exists for both. For VEST, hav-
ing K be the set of line segments, ⊕ be the union
of them, and⊗ be Minkowski addition of the lines
represented as points in the dual plane, allows us
to compute the necessary MERT line search with
the INSIDE algorithm.2 The error function we use
is BLEU (Papineni et al., 2002), and the decoder is
configured to use cube pruning (Huang and Chi-
ang, 2007) with a limit of 100 candidates at each
node. During decoding of the test set, we raise
the cube pruning limit to 1000 candidates at each
node.

2.3 Compound segmentation lattices

To deal with the aforementioned problem in Ger-
man of productive compounding, where words
are formed by the concatenation of several mor-
phemes and the orthography does not delineate the
morpheme boundaries, we utilize word segmen-
tation lattices. These lattices serve to encode al-
ternative ways of segmenting compound words,
and as such, when presented as the input to the
system allow the decoder to automatically choose
which segmentation is best for translation, leading
to markedly improved results (Chris Dyer, 2009).

In order to construct diverse and accurate seg-
mentation lattices, we built a maximum entropy
model of compound word splitting which makes
use of a small number of dense features, such
as frequency of hypothesized morphemes as sep-
arate units in a monolingual corpus, number of
predicted morphemes, and number of letters in
a predicted morpheme. The feature weights are
tuned to maximize conditional log-likelihood us-
ing a small amount of manually created reference
lattices which encode linguistically plausible seg-
mentations for a selected set of compound words.3

To create lattices for the dev and test sets, a lat-
tice consisting of all possible segmentations for
every word consisting of more than 6 letters was
created, and the paths were weighted by the pos-
terior probability assigned by the segmentation
model. Then, max-marginals were computed us-
ing the forward-backward algorithm and used to
prune out paths that were greater than a factor of
2.3 from the best path, as recommended by Chris
Dyer (2009). To create the translation model for
lattice input, we segmented the training data us-

2This algorithm is equivalent to the hypergraph MERT al-
gorithm described by Kumar et al. (2009).

3The reference segmentation lattices used for training are
available in the cdec distribution.



ing the 1-best segmentation predicted by the seg-
mentation model, and word aligned this with the
English side. This version of the parallel corpus
was concatenated with the original training paral-
lel corpus.

3 Experimental variation

This section describes the experiments we per-
formed in attempting to assess the challenges
posed by current methods and our exploration of
new ones.

3.1 Bloom filter language model

Language models play a crucial role in transla-
tion performance, both in terms of quality, and in
terms of practical aspects such as decoder memory
usage and speed. Unfortunately, these two con-
cerns tend to trade-off one another, as increasing
to a higher-order more complex language model
improves performance, but comes at the cost of
increased size and difficulty in deployment. Ide-
ally, the language model will be loaded into mem-
ory locally by the decoder, but given memory con-
straints, it is entirely possible that the only option
is to resort to a remote language model server that
needs to be queried, thus introducing significant
decoding speed delays.

One possible alternative is a randomized lan-
guage model (RandLM) (Talbot and Osborne,
2007). Using Bloom filters, which are a ran-
domized data structure for set representation, we
can construct language models which signifi-
cantly decrease space requirements, thus becom-
ing amenable to being stored locally in memory,
while only introducing a quantifiable number of
false positives. In order to assess what the im-
pact on translation quality would be, we trained
a system identical to the one described above, ex-
cept using a RandLM. Conveniently, it is possi-
ble to construct a RandLM directly from an ex-
isting SRILM, which is the route we followed in
using the SRILM described in Section 2.1 to cre-
ate our RandLM. Table 1 shows the comparison of
SRILM and RandLM with respect to performance
on BLEU and TER (Snover et al., 2006) on the test
set.

3.2 Minimum Bayes risk decoding

During minimum error rate training, the decoder
employs a maximum derivation decision rule.
However, upon exploration of alternative strate-

Language Model BLEU TER

RandLM 22.4 69
SRILM 23.1 68

Table 1: Impact of language model on translation

gies, we have found benefits to using a mini-
mum risk decision rule (Kumar and Byrne, 2004),
wherein we want the translation E of the input F
that has the least expected loss, again as measured
by some loss function L:

Ê = arg min
E′

EP (E|F )[L(E,E′)]

= arg min
E′

∑
E

P (E|F )L(E,E′)

Using our system, we generate a unique 500-
best list of translations to approximate the poste-
rior distribution P (E|F ) and the set of possible
translations. Assuming H(E,F ) is the weight of
the decoder’s current path, this can be written as:

P (E|F ) ∝ expαH(E,F )

where α is a free parameter which depends on
the models feature functions and weights as well
as pruning method employed, and thus needs to
be separately empirically optimized on a held out
development set. For this submission, we used
α = 0.5 and BLEU as the loss function. Table 2
shows the results on the test set for MBR decod-
ing.

Language Model Decoder BLEU TER

RandLM
Max-D 22.4 69
MBR 22.7 68.8

SRILM
Max-D 23.1 68
MBR 23.4 67.7

Table 2: Comparison of maximum derivation ver-
sus MBR decoding

3.3 Grammar extraction
Although the grammars employed in a SCFG
model allow increased expressivity and translation
quality, they do so at the cost of having a large
number of rules, thus efficiently storing and ac-
cessing grammar rules can become a major prob-
lem. Since a grammar consists of the set of rules
extracted from a parallel corpus containing tens of



Language Model Grammar Decoder Memory (GB) Decoder time (Sec/Sentence)
Local SRILM corpus 14.293 ± 1.228 5.254 ± 3.768
Local SRILM sentence 10.964 ± .964 5.517 ± 3.884

Remote SRILM corpus 3.771 ± .235 15.252 ± 10.878
Remote SRILM sentence .443 ± .235 14.751 ± 10.370

RandLM corpus 7.901 ± .721 9.398 ± 6.965
RandLM sentence 4.612 ± .699 9.561 ± 7.149

Table 3: Decoding memory and speed requirements for language model and grammar extraction varia-
tions

millions of words, the resulting number of rules
can be in the millions. Besides storing the whole
grammar locally in memory, other approaches
have been developed, such as suffix arrays, which
lookup and extract rules on the fly from the phrase
table (Lopez, 2007). Thus, the memory require-
ments for decoding have either been for the gram-
mar, when extracted beforehand, or the corpus, for
suffix arrays. In cdec, however, loading grammars
for single sentences from a disk is very fast relative
to decoding time, thus we explore the additional
possibility of having sentence-specific grammars
extracted and loaded on an as-needed basis by the
decoder. This strategy is shown to massively re-
duce the memory footprint of the decoder, while
having no observable impact on decoding speed,
introducing the possibility of more computational
resources for translation. Thus, in addition to the
large corpus grammar extracted in Section 2.1,
we extract sentence-specific grammars for each of
the test sentences. We measure the performance
across using both grammar extraction mechanisms
and the three different language model configu-
rations: local SRILM, remote SRILM, and Ran-
dLM.

As Table 3 shows, there is a marked trade-
off between memory usage and decoding speed.
Using a local SRILM regardless of grammar in-
creases decoding speed by a factor of 3 compared
to the remote SRILM, and approximately a fac-
tor of 2 against the RandLM. However, this speed
comes at the cost of its memory footprint. With a
corpus grammar, the memory footprint of the lo-
cal SRILM is twice as large as the RandLM, and
almost 4 times as large as the remote SRILM. Us-
ing sentence-specific grammars, the difference be-
comes increasingly glaring, as the remote SRILM
memory footprint drops to ≈450MB, a factor of
nearly 24 compared to the local SRILM and a fac-
tor of 10 compared to the process size with the

RandLM. Thus, using the remote SRILM reduces
the memory footprint substantially but at the cost
of significantly slower decoding speed, and con-
versely, using the local SRILM produces increased
decoder speed but introduces a substantial mem-
ory overhead. The RandLM provides a median
between the two extremes: reduced memory and
(relatively) fast decoding at the price of somewhat
decreased translation quality.

We also tried one other grammar extraction
configuration, which was with so-called ‘loose’
phrase extraction heuristics, which permit un-
aligned words at the edges of phrases (Ayan and
Dorr, 2006). When decoded using the SRILM and
MBR, this achieved the best performance for our
system, with a BLEU score of 23.6 and TER of
67.7.

4 Conclusion

We presented the University of Maryland hier-
archical phrase-based system for the WMT2010
shared translation task. Using cdec, we experi-
mented with a number of methods that are shown
above to lead to improved German-to-English
translation quality over our baseline according to
BLEU and TER evaluation. These include meth-
ods to directly address German morphological
complexity, such as appropriate feature functions,
segementation lattices, and a model for automati-
cally construcing the lattices, as well as alternative
decoding strategies, such as MBR. We also pre-
sented several language model configuration alter-
natives, as well as grammar extraction methods,
and emphasized the trade-off that must be made
between decoding time, memory overhead, and
translation quality in current statistical machine
translation systems.
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