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Abstract—The growing number of reports of aircraft incidents
that are sent to the Aircraft Safety Reporting System (ASRS)
makes it difficult to conduct prompt and efficient analysis.
Manual processing procedures that have been used traditionally
are labor-intensive and time-consuming, which frequently results
in delays in the identification of key safety hazards. The objective
of this research is to improve the efficiency of safety analyses by
automating the summarization of incident narratives through
the utilization of large language models (LLMs). Furthermore,
the study uses exploratory data analysis (EDA) to identify un-
derlying safety trends, including human variables and temporal
patterns, offering practical advice for enhancing airline safety
procedures. A transformer-based sequence-to-sequence model is
fine-tuned on 1107 incident narratives from 2018 to 2024, filtered
by passenger missions and air carriers, to generate concise
summaries evaluated using ROUGE scores and Sentence-BERT
embeddings for semantic similarity. The proposed fine-tuned
T5-Base model achieves the ROUGE-L score of 0.357 and a
cosine similarity score of 0.610. The findings demonstrate that
LLMs can streamline incident analysis, offering benefits such
as automated summarization for rapid processing, critical risk
identification through pattern analysis, and practical insights for
the development of safety protocols. However, challenges such as
token length truncation and computational resource constraints
highlight areas for future improvement. Thus, adopting this
research in real time can considerably improve aviation safety
management by automating the summarizing of incident reports,
allowing for the early identification of major safety issues, and
easing timely decision-making procedures.

Index Terms—Large Language Models, Aviation Safety, Text
Summarization, ASRS, BART, T5, Exploratory Data Analysis,
Natural Language Processing

I. INTRODUCTION

Aviation safety is paramount and relies heavily on the
analysis of incident reports to identify risks and prevent future
occurrences. The Aviation Safety Reporting System (ASRS),
maintained by NASA, provides a rich repository of detailed
incident narratives submitted by aviation personnel, including
pilots, air traffic controllers, and maintenance crews. These
narratives capture critical information about flight phases,
anomalies, human factors, and outcomes, providing a foun-
dation for safety improvements. However, manual review of
these reports by safety analysts is time consuming, often taking
up to five business days per report [1], and the increasing
volume of reports - driven by factors such as the integration
of Unmanned Aerial Systems (UAS) and increasing air travel
- exacerbates this challenge [2].

However, the fact that ASRS reports are not structured and
contain free text makes them very difficult to analyze on a
large scale [3]. Conventional manual review and keyword-
based extraction techniques are time-consuming and frequently
insufficient to capture the complex context that is woven
throughout the stories. Due to this limitation, the timely
detection of systemic hazards and the creation of ideas that
may be put into action are hampered [4].

Recent developments in Natural Language Processing
(NLP), namely the creation of large language models (LLMs),
have shown to enhance the ability to comprehend and summa-
rize human language remarkably. These algorithms can handle
huge amounts of textual data, identify critical incident features,
and produce concise summaries that maintain important infor-
mation while decreasing the analyst’s cognitive strain [5].

Large Language Models (LLMs), particularly transformer-
based models, have shown remarkable success in natural
language processing (NLP) tasks, including text summariza-
tion, classification, and generation [6], [8]. These models can
process large volumes of text efficiently, capturing contextual
nuances and generating human-like outputs, making them
promising tools for aviation safety analysis. In this study, the
application of LLMs, which is a bidirectional and autoregres-
sive transformer model, is investigated to summarize ASRS
incident reports in order to accelerate the analysis process
while maintaining accuracy and relevance. The study is com-
plemented with EDA to uncover safety trends in flight phases,
temporal patterns, anomalies, aircraft models, components,
outcomes, and human factors, providing a holistic view of
incident characteristics.

This research addresses the following questions: (1) How
effectively can LLMs like BART and T5-Base summarize
ASRS incident narratives, and what are the limitations due to
token length constraints? (2) What safety trends can be iden-
tified through EDA, and how do they inform aviation safety
protocols? Based on research questions, the contributions of
the study are highlighted as the LLM models like T5-Base and
BART are fine-tuned on a customized data set of 1,077 ASRS
reports collected from 2018 to 2024, filtered by passenger
missions and air carriers, using a T4 GPU on Google Colab to
overcome computational challenges. The performance of the
model is evaluated using ROUGE scores [9] and Sentence-
BERT embeddings for semantic similarity [10].



II. RELATED WORK

A. Aviation Safety Analysis with NLP

Aviation safety analysis has increasingly leveraged NLP
to process incident reports and identify risks. Puranik et
al. [11] applied machine learning to flight data for risk
identification, focusing on anomaly detection in operational
parameters. Tan et al. [12] also used classification techniques
to categorize ASRS incidents, identifying patterns in event
types and outcomes. Same as the previous study, Tanguy et al.
[13] employed NLP for interactive analysis of aviation safety
reports, focusing on classification and trend identification,
achieving improved labeling accuracy over manual methods.

On the other hand, Pinon Fischer and Mavris [14] ex-
plored ChatGPT for ASRS analysis, generating synopses,
identifying human factors, and assessing accountability. They
used embeddings from aeroBERT, a domain-specific BERT
variant, to compute cosine similarity, achieving a precision of
0.61 in human factors identification. Their work highlighted
the potential of generative models as ”co-pilots” for safety
analysts, emphasizing a human-in-the-loop approach to ensure
reliability. However, their use of ChatGPT, a general-purpose
model, lacked fine-tuning on aviation-specific data, potentially
limiting its accuracy for nuanced safety insights.

Same as above, Chen et al. [15] suggested Claude-prompt,
a method for aircraft accident cause information extraction
that uses the Claude 3.5 large-scale pre-trained language
model. The prompt engineering, few-shot learning strategy,
and self-judgment process in this method make it possible for
accident-cause entities and their relationships to be automat-
ically mined. Fox et al. [16] introduce a promising method
that utilizes deep learning and LLMs to develop a system
capable of processing air-ground verbal transactions, identify-
ing anomalous situations, and notifying air traffic controllers,
thereby improving situational awareness for air traffic control
and flight crews based on anomalies detected in air traffic
communications. The results indicate that a text-based Varia-
tional Auto-Encoder that can effectively distinguish between
nominal and off-nominal (safety-critical) circumstances seen
in air traffic communication can be trained using reasonably
priced data obtained with LLMs.

B. Large Language Models for Summarization

LLMs, particularly transformer-based models, have revolu-
tionized NLP tasks like text summarization. The transformer
architecture [6], introduced with the self-attention mechanism,
enables models to capture long-range dependencies in text,
significantly improving performance over recurrent neural
networks (RNNs). The self-attention mechanism is defined as:

Attention(Q,K, V ) = softmax

✓
QK>
p
dk

◆
V, (1)

where Q, K, and V are query, key, and value matrices de-
rived from the input embeddings, and dk is the dimensionality
of the key vectors, scaling the dot product to prevent large
values that could destabilize the softmax.

BERT [17] introduced bidirectional pre-training with
Masked Language Modeling (MLM) and Next Sentence Pre-
diction (NSP), making it effective for understanding tasks but
less suited for generation due to its encoder-only architecture.
GPT models [18], with their decoder-only structure, excel in
generative tasks but lack bidirectional context, impacting sum-
marization quality. BART [8], a sequence-to-sequence model
combining a bidirectional encoder and autoregressive decoder,
bridges this gap, achieving state-of-the-art performance in
abstractive summarization by denoising corrupted text during
pre-training.

T5 [19] and PEGASUS [20] are other notable models
for summarization. T5 frames all NLP tasks as text-to-text
transformations, pre-trained with a span corruption objective,
while PEGASUS uses Gap Sentence Generation (GSG) to pre-
train for summarization, masking entire sentences to predict
them. These models have been applied to various domains,
but their use in aviation safety remains limited, presenting
an opportunity to explore their effectiveness alongside BART.
Other than T5 and Pegasus models,

C. NLP in Aviation Safety

NLP applications in aviation safety have focused on clas-
sification and risk identification. Andrade et al. [21] de-
veloped SafeAeroBERT, a BERT variant trained on ASRS
and NTSB reports, for classifying incidents by causative
factors, outperforming general-purpose BERT in some cat-
egories. Kierszbaum et al. [22] proposed ASRS-CMFS, a
RoBERTa-based model for anomaly classification, demonstrat-
ing competitive performance with domain-specific training.
These studies highlight the importance of domain-specific
fine-tuning, a gap in your work that can be addressed by
comparing BART with other models like T5 or PEGASUS, or
by exploring domain-specific embeddings like Sentence-BERT
for evaluation. Hilman et al. [23] uses the TF-IDF algorithm
for text summarization on the dataset of the KNKT final report
synopsis collection of aviation traffic accidents in Indonesia.

Moreover, Xiong et al. [24] use the ensemble model con-
sisting of Long Short-term Memory (LSTM) and BERT for
an Intelligent Aviation Safety Hazard Identification. Same as
above, Pan et al. [25] also recommended the use of the BART
pre-trained language model to develop a hybrid model by using
a deep reinforcement learning model improved by transfer
learning for air quality control automation.

From the literature review, it is identified that BERT, BART,
Pegasus, and T5 models are commonly used for text sum-
marization. Aviation safety report summaries have advanced
significantly with the use of transformer-based models such as
BART, BERT, and their derivatives. BART is great at abstrac-
tive summarization because it uses denoising autoencoding,
which means it can be used to summarize complicated flight
safety reports. Although it needs to be adjusted for summa-
rizing, BERT’s bidirectional context awareness makes it quite
effective in extractive summarization jobs. Transformer-based
models, which focus on contextual linkages within text, have
increased the accuracy and coherence of summarization jobs



in aviation safety, particularly when dealing with enormous
datasets. These models improve information retrieval, maintain
context, and eventually contribute to safer aviation operations
by facilitating more efficient report analysis. So, this paper is
actually focused on using the LLMs like T5-Base and BART
model to generate the summaries from the ASRS reports.

III. METHODOLOGY

The proposed approach recommends the use of the LLMs
for summarizing the ASRS reports. The proposed approach is
given in Figure 1.

Fig. 1: Proposed architecture for aviation report summarization
using LLMs

A. Dataset & Preprocessing

The dataset used for the experimentation comprises of
1107 ASRS incident reports from 2018 to 2024, filtered by
passenger missions and air carriers, ensuring relevance to
commercial aviation safety. Key fields include:

• Flight Phases: E.g., Cruise (40.7%), Climb (29.4%)
• Aircraft Models: B737 (49.9%), A320 series
• Incident Types: Aircraft equipment problems (90.5%),

human factors (7.2%)
• Narratives and Synopses: Detailed descriptions and

summaries
Preprocessing involved several steps to prepare the data for

fine-tuning and analysis:
1) Text Normalization: Lowercasing and removing special

characters using regular expressions to standardize text
input.

2) Token Length Calculation: Using BART’s tokenizer to
compute token lengths, identifying 47 narratives (4.2%)
exceeding 1024 tokens, necessitating truncation.

3) Handling Rare Flight Phases: Extracted primary flight
phases from the Aircraft 1_Flight Phase col-
umn, removing classes with fewer than 2 samples (e.g.,

“Parked”) to enable stratified splitting, resulting in 1106
samples.

4) Data Splitting: Split into 886 training, 110 validation,
and 111 test samples (80-10-10 ratio), stratified by
primary flight phase to balance distributions across sets.

5) Saving Splits: Saved as CSV files (train.csv,
validation.csv, test.csv) for loading into the
datasets library.

B. Proposed LLMs Details

Google Research created the Text-to-Text Transfer Trans-
former (T5) model [7], a very flexible deep learning architec-
ture that can manage a variety of NLP tasks in a single text-
to-text framework. For text summarization, T5 reframes the
challenge as translating an input text string to a short output
string. Approximately 220 million parameters comprise the
T5-Base variant, which is one of the model’s intermediate
sizes. It has 12 layers, or ”transformer blocks,” with 12
attention heads, a feed-forward network with 3072 dimensions,
and 12 layers with 768-dimensional secret states each. The
equilibrium between model size and computing performance
renders T5-Base a pragmatic option for numerous real-world
summarization applications, particularly where resource limi-
tations are a factor.

BART (Bidirectional and Auto-Regressive Transformer) [8]
is a sequence-to-sequence model designed for text generation
tasks like summarization. It combines a bidirectional encoder
(like BERT) and an autoregressive decoder (like GPT), pre-
trained with a denoising objective where text is corrupted (e.g.,
by masking tokens) and the model reconstructs the original.
This makes BART particularly effective for abstractive sum-
marization, as it learns to understand context bidirectionally
while generating coherent outputs.

The architecture of LLMs consists of an encoder-decoder
framework with multiple transformer layers. The encoder
processes the input bidirectionally, while the decoder gen-
erates the output autoregressively, attending to the encoder’s
outputs and previous tokens. The self-attention mechanism in
each layer is defined as in Equation 1, where Q = WQX ,
K = WKX , V = WV X , and X is the input embedding
matrix, with WQ,WK ,WV as learnable weight matrices.

The loss function for fine-tuning LLM is the cross-entropy
loss for sequence generation:

L = �
TX

t=1

logP (yt | y1:t�1, x; ✓), (2)

where yt is the target token at position t, y1:t�1 are previous
tokens, x is the input narrative, and ✓ represents model
parameters. During fine-tuning, gradients are computed as:

r✓L = �
TX

t=1

r✓ logP (yt | y1:t�1, x; ✓), (3)

and parameters are updated using the AdamW optimizer
with a learning rate of 3⇥ 10

�5.



Figure 2 illustrates LLM’s architecture, highlighting the
encoder-decoder structure and the flow from corrupted input
to reconstructed output.

Corrupted Input Encoder Decoder Reconstructed Output
Bidirectional Attention Autoregressive

Multi-Layer Transformer

Fig. 2: LLM Architecture: The bidirectional encoder processes
the corrupted input, passing hidden states to the autoregressive
decoder, which generates the reconstructed output.

Algorithm 1 Fine-Tune LLM on ASRS Narratives
1: Initialize LLM

(facebook/bart-large and T5-Base)
2: for epoch = 1 to 5 do
3: Train on 886 samples (batch size 8)
4: Validate on 110 samples
5: Compute validation loss
6: end for
7: Save best model based on validation loss

Hyperparameters of both the proposed models, T5-Base
and BART, include a learning rate of 3 ⇥ 10

�5, batch size
of 8,500 warmup steps, and weight decay of 0.01, with
evaluation and saving every 110 steps to align strategies for
load_best_model_at_end=True. The Batch size for
T5-Base is 1, while for BART it is 8. Training on a T4 GPU
takes approximately 2–4 hours for both the models, compared
to 10–20 hours on a CPU, demonstrating the efficiency of
GPU resources.

C. Evaluation Metrics

Summaries are evaluated using Recall-Oriented Understudy
for Gisting Evaluation (ROUGE) scores [9], which measure
overlap between generated and ground-truth summaries. The
Equation of Rouge 1 is given in (4), Rouge 2 Equation is
given in (5) and Rouge L Equation is given in (6).

ROUGE-1 =
(1 + �2

)R1P1

R1 + �2P1
, (4)

where R1 is the recall based on unigram overlap and P1 is
the precision based on unigram overlap.

ROUGE-2 =
(1 + �2

)R2P2

R2 + �2P2
, (5)

where R2 is the recall based on bigram overlap, and P2 is
the precision based on bigram overlap.

ROUGE-L =
(1 + �2

)RlcsPlcs

Rlcs + �2Plcs
, (6)

where Rlcs and Plcs are recall and precision of the longest
common subsequence, and � balances precision and recall (set

to 1). Additionally, cosine similarity using Sentence-BERT
embeddings [10] is calculated to assess semantic similarity:

CosineSimilarity(u, v) =
u · v

kukkvk , (7)

where u and v are embeddings of generated and ground-
truth summaries, respectively.

IV. RESULTS

The experiments are performed using Python in Google
Colab using the T4 Graphical Processing Units (GPUs). The
pre-trained model BRAT is fine-tuned on the collected and
pre-processed dataset.

A. Training Dynamics

The training process over 5 epochs (555 steps) showed
effective convergence, as detailed in Table I. The training
loss decreased from 7.0416 to 0.3829, and the validation loss
dropped from 5.9048 to 0.4316, indicating that the model
learned to capture patterns in the ASRS narratives with mini-
mal overfitting.

TABLE I: Training and Validation Loss Over Steps

Step Training Loss Validation Loss

110 7.0416 5.9048
220 3.9736 3.3889
330 0.7488 0.5931
440 0.4810 0.4724
550 0.3829 0.4316

B. Data Analysis

The dataset comprises 1107 ASRS incident reports from
2018 to 2024, with narratives providing detailed accounts
of aviation safety events. These narratives vary in length,
averaging approximately 300 words, with some exceeding
1000 words, reflecting their comprehensive nature. Due to
the BART model’s 1024-token limit (approximately 700–800
words), longer narratives were truncated, which may affect the
completeness of generated summaries, as seen in Sample 13
(Table VIII).

EDA reveals critical safety trends across multiple dimen-
sions. Figure 3 shows the distribution of incidents by flight
phase, with Cruise (40.7%) and Climb (29.4%) being the most
frequent, indicating higher risk during these phases.

Table II highlights temporal trends, showing a decline in
incidents during 2020–2021 due to COVID-19-related flight
reductions, with a rebound in 2022–2024.

Table III lists the top 10 anomalies, with ”Aircraft Equip-
ment Problem Critical” dominating at 856 incidents, indicating
a focus on mechanical issues in safety reports. Table IV
shows turbine engines (172 incidents) as the most common
component involved, suggesting a focus for maintenance im-
provements. Table V combines aircraft model data, showing
the B737 family as the most involved (49.9% of incidents),
likely due to its widespread use. Table VI details narrative and
synopsis lengths, with 47 narratives (4.2%) exceeding 1024
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Fig. 3: Distribution of incidents across the top 5 flight phases.

TABLE II: Total Incidents and Primary Problem by Year

Year Total Aircraft Human Factors Ambiguous

2018 117 91 16 10
2019 192 163 20 9
2020 87 76 10 1
2021 93 87 5 1
2022 241 226 10 5
2023 168 159 7 2
2024 209 200 7 2

tokens, requiring truncation, potentially impacting summary
quality.

TABLE III: Top 10 Most Common Anomalies

Anomaly Type # Incidents

Aircraft Equipment Problem Critical 856
Deviation / Discrepancy – Procedural Published Material /
Policy

442

Deviation / Discrepancy – Procedural Clearance 312
Flight Deck / Cabin / Aircraft Event Smoke / Fire / Fumes /
Odor

234

Aircraft Equipment Problem Less Severe 134
Deviation / Discrepancy – Procedural Weight And Balance 122
Flight Deck / Cabin / Aircraft Event Illness / Injury 109
Inflight Event / Encounter Weather / Turbulence 62
Inflight Event / Encounter Fuel Issue 62
Deviation / Discrepancy – Procedural FAR 42

TABLE V: Top 5 Aircraft Models Involved in Incidents

Aircraft Model # Incidents

B737 (All Models) 552
A320 159
A319 128
A321 128
B767 (All Models) 66

TABLE IV: Top 10 Aircraft Components Involved in Incidents

Aircraft Component Count

Turbine Engine 172
Hydraulic Main System 44
Engine 39
Hydraulic System 36
Pressurization System 30
Cockpit Window 28
Air Conditioning and Pressurization Pack 24
Trailing Edge Flap 20
Pressurization Control System 19
Powerplant Lubrication System 17

TABLE VI: Narrative and Synopsis Length Statistics for
Incident Reports

Metric Narrative (words) Synopsis (words)

Maximum Length 2345 83
Average Length 295.56 23.45

C. Model Performance

The ROUGE scores for the BART model on the test set
are presented in Table VII, showing moderate performance in
summarization. Qualitative analysis of generated summaries
(pending in Table VIII) will provide further insights into the
model’s capabilities. In terms of ROUGE-1, which evaluates
unigram (single word) overlap, T5-Base outperforms BART,
with a score of 0.408. When looking at bigram (two words
that follow each other), BART scores 0.152 for ROUGE-
2 while T5-Base scores 0.185. T5-Base outperforms BART
with a score of 0.357 on ROUGE-L, which uses the longest
common subsequence to assess sentence-level structure and
fluency. Cosine Similarity, a measure of how similar two
created summaries are to a reference summary in terms of
meaning, also shows that T5-Base did better than BART, with
a score of 0.610 compared to 0.602 for BART.

TABLE VII: ROUGE Scores and Cosine Similarity Compar-
ison

Model R-1 R-2 R-L Cos. Sim.

BART (Proposed) 0.344 0.152 0.300 0.602
T5-Base 0.408 0.185 0.357 0.610

V. QUALITATIVE ANALYSIS

Table VIII provides qualitative examples of generated sum-
maries compared to ground-truth summaries. Cosine similar-
ity between the generated and true synopsis vectors is also
included.



TABLE VIII: Example Summaries with Qualitative Insights

ID Narrative and Summary Comparison

2025171 Narrative: During cruise, the flight crew noticed a low oil quan-
tity indication, decided to divert immediately, and eventually shut
down the engine due to decreasing oil levels, landing uneventfully.
True: B737700 pilot reported a decreasing oil quantity indication
while in cruise flight. Crew elected to divert and eventually shut
the engine down as the quantity continued to decrease.
T5-Base: B737-700 flight crew reported a low oil quantity in the
engine and a shutdown of the engine.
Similarity: 0.842
BART: B737800 flight crew reported a loss of oil quantity during
cruise, resulting in a shutdown of the 2 engine.
Similarity: 0.865

2076330 Narrative: On approach, the crew encountered a ”flt cntl slats
fault” message, with flaps failing to extend beyond the initial
position, prompting a go-around, troubleshooting, and diversion
to another airport for a no-flap/no-slat landing.
True: A321 pilot reported the flaps failed to extend during arrival.
Flight crew diverted and landed safely.
T5-Base: B737-800 flight crew reported a flt cntl slats fault mes-
sage during arrival phase of landing. The flight crew performed
an air turn back and precautionary landing at destination airport.
Similarity: 0.396
BART: B737800 flight crew reported a flt cntl slats fault ecam
message during arrival. Flight crew diverted and landed unevent-
fully.
Similarity: 0.369

1781908 Narrative: During climbout, the crew lost flight instruments and
navigation capability due to improperly aligned IRUs, a mistake
the captain attributed to distractions and fatigue. The captain
took control, requested priority handling, and landed safely using
standby instruments.
True: B737300 captain reported they lost flight instruments on
both sides and navigation capability during climbout resulting in
a diversion. Captain stated the IRUs were not properly aligned
and cited multiple distractions and fatigue as contributing factors.
T5-Base: B737800 captain reported a loss of flight instruments
adi hsi both sides and navigation capability during climbout. The
flight crew requested priority handling and landed uneventfully.
Similarity: 0.794
BART: B737-800 flight crew reported a loss of flight instruments
on both sides and navigation capability during climbout.
Similarity: 0.786

VI. DISCUSSION

The fine-tuned T5-Base model outperforms the BART
model in summarizing Aviation Safety Reporting Sys-
tem (ASRS) incident reports, achieving superior ROUGE-
1, ROUGE-2, and ROUGE-L scores of 0.408, 0.185, and
0.357, respectively, compared to BART’s 0.344, 0.152, and
0.300. Additionally, T5 demonstrates a slightly higher average
Cosine Similarity of 0.610 versus BART’s 0.602, indicating
better semantic alignment with ground-truth synopsis. These
metrics suggest that T5 captures more key terms and maintains
greater structural similarity, making it a more effective tool for
automated summarization of complex aviation narratives.

A significant factor in T5’s superior performance is its
tokenization strategy. T5 employs a SentencePiece tokenizer,
a subword method designed for language-agnostic text pro-
cessing, which effectively handles the technical jargon and
special characters prevalent in ASRS narratives, such as “IRU,”
“ECAM,” or “flt cntl slats fault.” This tokenizer’s flexibility

likely contributes to T5’s ability to represent aviation-specific
terms accurately, as seen in Sample 2025171, in detailed
comparison of selected samples (Table VIII) T5 accurately
identifies the aircraft type as B737-700, correctly summarizing
the low oil quantity issue and engine shutdown with a Cosine
Similarity of 0.842. T5’s precision in aircraft identification re-
flects its ability to extract critical technical details, contributing
to its higher ROUGE-1 score.

In contrast, BART mislabels the aircraft as B737800, though
it achieves a slightly higher similarity of 0.865 by including
additional details like ”2 engine,” which aligns closely with
the narrative but introduces potential ambiguity not present
in the ground truth. BART, using a byte-pair encoding (BPE)
tokenizer inherited from GPT-2, appears less adept at process-
ing such domain-specific vocabulary. Community discussions,
such as those on Hugging Face forums, suggest that BART’s
tokenizer struggles with special characters or rare terms, re-
quiring manual vocabulary adjustments to match performance
on specialized tasks. In the ASRS context, BART’s summaries,
like in Sample 2076330, often omit critical details or introduce
errors (e.g., aircraft misidentification), possibly due to less
effective tokenization of truncated inputs.

However, both models struggle with capturing human fac-
tors, a critical aspect of aviation safety analysis. In Sample
1781908 (Incident ID: 1781908), the ground-truth synopsis
notes that the loss of flight instruments resulted from improp-
erly aligned Inertial Reference Units (IRUs) due to distractions
and fatigue. Neither T5 nor BART includes these human
factors, focusing instead on the technical outcome (loss of
instruments and navigation capability). T5’s summary, with
a Cosine Similarity of 0.794, slightly outperforms BART’s
0.786, but both omit the causal human elements, highlighting
a significant limitation in their contextual understanding. This
omission is particularly concerning, as human factors like
fatigue and distractions are essential for identifying root causes
and preventing future incidents.

Narrative truncation poses another challenge. During train-
ing, narratives were limited to 512 tokens, and during inference
to 256 tokens, potentially truncating longer reports. Approxi-
mately 4.2% of the dataset (47 reports) exceeded 1024 tokens
in their original form, and with a reduced limit of 512 tokens,
more reports likely lost critical details. For example, Sample
13 (Incident ID: 1985858) involves a complex sequence of
landing gear issues, a go-around, diversion, and flyby, which
may have been truncated, affecting summary comprehen-
siveness. T5’s higher ROUGE-L score (0.357 vs. BART’s
0.300) suggests it better preserves structural elements despite
truncation, but both models’ performance is constrained by
this limitation.

The training process for T5 was effective, with the model
converging over five epochs, as evidenced by decreasing
training and validation losses, similar to patterns observed
in prior work [19]. The use of a T4 GPU with 14.74 GiB
capacity enabled efficient training within approximately 41.6
minutes, underscoring the advantage of GPU acceleration over
CPU-based training, which could take 10–20 hours. The small



dataset size of 1107 reports, with only 886 training samples,
may limit generalization across diverse incident types and
narrative styles. Similar to BART, which is typically fine-
tuned on large datasets such as CNN/DailyMail with over
287,000 examples [8], T5 is also commonly fine-tuned on such
datasets for summarization tasks. In the original T5 paper by
Raffel et al., the model was evaluated on the CNN/DailyMail
dataset for abstractive summarization, achieving competitive
ROUGE scores [19]. However, in this study, both models
were fine-tuned on the smaller ASRS dataset, which likely
constrained their ability to generalize, contributing to the
moderate performance observed.

ASRS narratives are rich in technical aviation jargon and
complex structures, posing challenges for models pre-trained
on general text. In Sample 2076330 (Incident ID: 2076330),
both T5 and BART misidentify the aircraft as B737-800
instead of A321, possibly due to the dataset’s bias toward B737
incidents (209 B737-800 cases). T5’s summary, with a Cosine
Similarity of 0.396, outperforms BART’s 0.369, but both fail
to capture the flap failure’s severity, reflecting difficulties in
prioritizing key events. T5’s higher ROUGE-2 score (0.185 vs.
0.152) indicates better bigram overlap, suggesting improved
handling of technical phrases.

Technical challenges during inference, such as memory
constraints on the T4 GPU, necessitated a reduced batch
size and sequence lengths (256 tokens for inputs, 64 for
outputs), as discussed in Section III. These constraints may
have impacted summary quality, particularly for longer nar-
ratives. The generation parameters used default settings (e.g.,
num_beams=2, no_repeat_ngram_size=3) to manage
memory, but tuning these (e.g., increasing num_beams or
adjusting length_penalty) could enhance performance,
as suggested by prior work [8].

To address these limitations, future research could explore
several avenues. Expanding the dataset with additional ASRS
reports or data augmentation techniques could improve gen-
eralization. Models designed for longer contexts, such as
Longformer [5], could mitigate truncation issues, particularly
for narratives exceeding 500 words. Implementing a human-
in-the-loop approach, where safety analysts refine summaries,
could ensure reliability in safety-critical applications, as pro-
posed by Pinon Fischer and Mavris [14]. Domain-specific
fine-tuning on aviation texts, such as FAA manuals, might
enhance understanding of technical jargon and human factors,
aligning with approaches like aeroBERT [21]. Finally, incor-
porating knowledge graphs to explicitly model human factors,
as explored by Chen et al. [15], could address the models’
contextual shortcomings.

VII. CONCLUSION

This study demonstrates that LLMs like T5-Base and BART
can effectively summarize ASRS incident reports, with EDA
yielding actionable safety insights. While the fine-tuned BART
model shows promise for summarizing ASRS incident reports,
challenges related to narrative length, dataset size, and domain
specificity must be addressed to achieve higher performance

and reliability in aviation safety analysis, particularly given the
detailed and often lengthy nature of the narratives by achieving
the ROUGE-L score of 0.357 and cosine similarity score of
0.61 for the fine-tuned T5-Base model. At the same time, EDA
reveals critical patterns, such as the prevalence of incidents
during cruise phases (40. 7%) and the impact of COVID-
19 on incident reporting. The findings suggest that LLMs
can significantly enhance incident analysis efficiency, offering
automated summarization, risk identification, and practical
safety insights. However, challenges like narrative truncation
and reporting biases highlight areas for future work. Also,
this research can be extended to explore larger models like
Longformer to handle longer contexts and implement human-
in-the-loop systems for enhanced reliability.
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