
Large Scale Entity Resolution of Quiz Bowl Questions

Tim Destan
University of Maryland, College Park

destan@cs.umd.edu

Abstract

Entity resolution is the task of determining
which references in a data set refer to dis-
tinct real world entities. Many entity resolu-
tion techniques have been applied successfully
to resolve references with predictable struc-
ture. We present a framework for perform-
ing entity resolution on clues from a quiz bowl
competition to identify clues with the same an-
swer. The clues are natural language text and
have very little structure aside from being well
formed English sentences. We explore two
different blocking algorithms, canopies and it-
erative blocking, to facilitate scaling to large
datasets.

1 Introduction

Entity resolution is the task of resolving a set of ref-
erences to an underlying set of real-world entities.
Because data is noisy, the references will often be
ambiguous, with syntactically different references
that refer to the same entity, or syntactically identical
references in different contexts that refer to different
entities.

In this paper, we apply entity resolution tech-
niques to find ”duplicate” clues from a quiz bowl
setting. Each clue has an associated answer, which is
the name of some real-world entity (people, places,
events, etc.). If we assume that each answer is rel-
atively unambiguous, we can model this as an en-
tity resolution problem where the answers are the
entities, and the text of each clue (a short paragraph
of natural language) is a ”reference” to that entity.
We then formulate the problem as a clustering one,

to find and group together all clues that reference a
single answer (considering the answers to be unob-
served). Because the set of possible answers is too
large to practically enumerate (and no training data
can possibly contain all of the potential answers),
the clustering must be unsupervised as a matter of
practicality. The data set used is described in more
detail in Section 3.

The problem of entity resolution has been widely
studied, with early approaches framing the prob-
lem as a pairwise matching problem. In one early
paper (Fellegi and Sunter, 1969), the authors con-
sider the problem of merging the records from two
database files where there may be duplicates be-
tween the two files. They use a feature vector to rep-
resent each record and define a similarity function
that quantifies the differences between two records.
They then use these differences to classify each pair
of records as a match or a non-match.

A recurring problem encountered in entity reso-
lution is scaling the algorithms to handle large data
sets. For any sufficiently large set of references, the
problem of evaluating the pairwise distance func-
tion on every possible pair of references (which is
quadratic in the number of references) is problem-
atic.

Many previous approaches have made some effort
to reduce the number of comparisons made by ap-
plying a preprocessing step to partition the set of ref-
erences into subsets and then running their algorithm
on each subset. Ideally, we would like to know that
the quality of the results obtained by applying the
entity resolution technique to each subset should be
comparable to that of running the full pairwise entity

resolution. This is obviously the case if the prepro-
cessing step does not place matching references into
different subsets. If the subsets may overlap, then
the quality of solution may be preserved under less
restrictive conditions, discussed in more detail later.

A few researchers have proposed meta-algorithms
to formalize this preprocessing step. These meta-
algorithms view the base entity resolution technique
as a black box that takes as input a set of references
and produces as output a clustering of those refer-
ences into sets, where the references within each
set refer to the same entity (the exact constraints
placed on the underlying entity resolution technique
vary). We choose two such techniques to evaluate:
canopies and iterative blocking. The details of these
algorithms are described in Section 2.

The data sets that entity resolution algorithms are
typically evaluated on share many characteristics in
common. Namely, the references are either struc-
tured or semi-structured, and the textual components
of the references are quite short. Early approaches
focused on de-duplicating references distinguishing
a person, such as a customer database or census
data (Winkler, 2006). Data sets of bibliographic ci-
tations are also commonly used (Cohen et al., 2003).

The census-style data sets in which each refer-
ence identifies a person make for useful test cases
because the references are very structured. They
have specific field names (e.g., first name, last
name, address), and many common variations within
these fields often follow predictable patterns (e.g.
”Street” shortened to ”St.”). The bibliographic ci-
tation databases can be less structured, as the ref-
erences are textual strings. Conversely, the bibli-
ographic citations are interesting because there are
multiple related classes of entities (papers, authors,
venues), and many sophisticated entity resolution
techniques can take into account the relationships
between these entities to help decide which ref-
erences co-refer (Kalashnikov et al., 2005) (Bhat-
tacharya and Getoor, 2007).

Where structure exists in data, it makes sense to
exploit it to improve the quality of the results. How-
ever, it is also interesting to consider data sets that
do not have an inherent structure, at least not the
same degree of structure. Unlike a census entry
or a bibliographic citation, the clues from the quiz
bowl dataset we are using will not all share the same

structure, other than being well-formed sentences
in English that perhaps share some common pat-
terns. Because of this, we will need to consider dif-
ferent feature representations than those commonly
used when evaluating entity resolution algorithms.
In Section 4, we formulate a feature representa-
tion and comparison mechanism for this dataset and
demonstrate how to apply the aforementioned pre-
partitioning schemes to references using this repre-
sentation. Finally, in Section 5, we will evaluate the
speed and effectiveness of the methods we have de-
veloped for this dataset.

2 Partitioning Methods Evaluated

We consider two methods of pre-partitioning the set
of input references, described below.

2.1 Canopies

The canopies method uses a cheap distance metric
to partition the set of input references into over-
lapping subsets called canopies (McCallum et al.,
2000). Another, more expensive distance metric,
namely the base entity resolution algorithm, is then
used to cluster the references within each canopy,
and transitive closure is performed on the results.

To make use of the canopies algorithm, two dis-
tance thresholds, T1 and T2 (T1 > T2), must be cho-
sen, either by the user or by cross-validation. The al-
gorithm begins with a list L containing all the refer-
ences. Until this list is empty, choose a point p ∈ L
and measure its distance (as computed by the cheap
distance metric) to every other point in L. Form a
new canopy that includes all points p′ ∈ L such
that dcheap(p′, p) ≤ T1. Then remove from L all
points p′ such that dcheap(p′, p) ≤ T2. This allows
overlap in the canopies because all points whose dis-
tance to p falls between T2 and T1 will be added to
the canopy formed around p, but will remain in the
list, eligible to be included in future canopies.

The authors show that under certain circum-
stances, the canopies method will perfectly preserve
the results of the underlying entity resolution tech-
nique. In particular, they show that for K-means,
Expectation-Maximization, and Greedy Agglomer-
ative Clustering, provided that for every cluster pro-
duced by the technique without canopies, there ex-
ists some canopy containing all the elements of that

cluster, then the clustering accuracy will be pre-
served. The authors do not, however, provide any
way to determine whether this precondition holds
for any given cheap distance function and data set.

Within each canopy, all references still must be
compared, but with a well chosen cheap distance
function, T1, and T2, the size of each individual
canopy will be much smaller than the total set of ref-
erences. Indeed, in the author’s experiments, their
canopies method improves the run time by an order
of magnitude, while impacting accuracy only very
slightly (and in some cases even improving it, unex-
pectedly).

2.2 Iterative Blocking
The second pre-processing method we consider is an
iterative blocking method (Whang et al., 2009). The
iterative blocking framework views the base entity
resolution technique as a black box that transforms
one partition of the references into another partition
of references. The initial input is represented as a
trivial partitioning where every reference is in its
own partition. The interpretation of a partition, sim-
ilar to the canopies approach, is that all references
within a set in the partition refer to the same real
world entity. To use the terminology of the paper,
each set of ”base records” within the partition be-
comes a ”composite record” that has been judged to
refer to the same entity.

Iterative blocking uses multiple blocking criteria
to partition the input references. Each individual
blocking criterion is some algorithm that (quickly)
partitions the set of input records into subsets called
blocks. The total set of blocks used by the algorithm
is the union of all the blocks created by all the block-
ing criteria. Note that because there is no necessary
relation between any of the various blocking criteria,
there may be substantial overlap in the blocks.

The key feature of iterative blocking is that en-
tity resolution results from one block are propagated
to all the other blocks. Because of this, if the first
block determines that references r1 and r3 refer to
the same entity, any subsequent blocks that contain
these records will learn of this and start with these
records pre-merged.

The algorithm uses a queue to track the blocks to
process. Until the queue is empty, it removes a block
from the queue and runs the base entity resolution

technique on that block. Each newly merged set of
records from the output is propagated to any other
blocks that contain any of the references that were
merged in that result. Also, any such block is rein-
serted into the queue if it is not there already. There
are many ways to choose the order in which blocks
in the queue are processed, but the authors found
that the best performing way is to track the number
of ”hits” each block receives and process the block
with the most hits first. A block is hit whenever
a base record contained in it is merged with other
records.

The paper presents two implementations of iter-
ative blocking: Lego, an algorithm that tracks the
references each base reference is clustered with us-
ing an in-memory hash table, and Duplo, a scalable
disk-based algorithm that tracks this same informa-
tion in a log file. Duplo uses the same principles as
Lego, but is intended for the use case in which the
data set is so large that a hash that tracks all of it
cannot be fit into main memory. For simplicity, we
use Lego for the purposes of this evaluation.

3 Quiz Bowl Dataset

The data set used for this evaluation is taken from
the context of a quiz bowl tournament. In such tour-
naments, two or more teams attempt to answer the
same clue. A clue (or question) in this context is a
short paragraph that gives a series of facts about the
desired answer. A team may ”buzz in” at any time,
which stops the reading of the clue. At this point, the
team that buzzed in must attempt to answer. If the
answer given is correct, the team is granted points. If
the answer is wrong, any opposing teams who have
not yet attempted an answer for the current clue may
listen as the remainder of the clue is read and attempt
to answer it.

Note that this setup is different from Jeopardy,
the TV quiz show that is the subject of IBM’s Wat-
son (Ferrucci et al., 2010). In Jeopardy, each clue
is read in full before all contestants are given the
chance to answer. In fact, buzzing in before the clue
is finished is penalized. There is another difference
that is more pertinent to our analysis. Jeopardy oc-
casionally has clues that are difficult or impossible
to answer without knowing their category (because
all the clues in the category follow a theme). An ex-

One version of this quantity represents the sum of
the predicted values of data. Other versions are
given by the Bekenstein-Hawking formula and
Sackur-Tetrode equation, which give this state
variable for black holes and ideal gasses. It is
proportional to a constant times the natural log
of the number of microstates, the constant of pro-
portionality being Boltzmann’s; that formula ap-
pears on his grave. Introduced by Clausius, it is
at a minimum when a system approaches abso-
lute zero. For ten points, name this measure of
disorder, that, for an isolated system, does not de-
crease with time according to the second law of
thermodynamics.

Figure 1: An example clue from the quiz bowl dataset
(Answer: Entropy).

ample could be a category called ”Literary Settings”
in which the clue only describes the work of litera-
ture, and only by knowing the name of the category
does the player know that they are expected to an-
swer with the setting. In contrast, each question in
this data set is made to be understandable without
any external information.

The answers to the clues in quiz bowl are well
known entities such as historic events, scientific
laws, literary characters, battles, etc. In particular,
there are no open-ended or subjective questions (e.g.
”What were the primary causes of the French Rev-
olution?”) that could have multiple correct answers.
There may be multiple ways to refer to the entity
designated by the answer, but there is never more
than one acceptable answer for any clue.

3.1 Entity resolution formulation

One way to formulate the entity resolution problem
for this dataset is to view the clues as references and
the answers as entities. The problem then becomes
one of finding the clues that refer to the same an-
swer. The dataset includes a canonical answer for
each clue, which we will not use in our cluster-
ing approach but will use to evaluate the accuracy
of our approach. A small subset of the canonical
answer labels were corrected manually because the
clues clearly referred to different entities of the same
name, so not correcting them would have penalized
the framework for correctly placing such clues in

different clusters. For example, there were clues that
referred to both entropy, the statistical property, and
”Entropy,” the 1960 short story by Thomas Pynchon,
and the labels for the canonical answers did not dis-
tinguish the two.

Although this is only one possible entity resolu-
tion formulation of many that could potentially be
studied for this dataset, there are reasons why this
particular one may be of interest. When selecting
clues from a dataset like this for a tournament, it is
important not to select the same clue twice. Also,
one could attempt to create a question answering
system that, given a new clue, constructs the feature
representation for that clue and attempts to find one
or more ”duplicate” clues in the dataset and return
the answer or answers from the duplicate(s).

These and other potential applications will not be
explored directly but are described to provide moti-
vation for why an efficient solution to this problem
would be useful.

4 Implementation

To implement a system to cluster the quiz bowl data
set, we first need to select a base entity resolution
technique that will partition a set of clues into sub-
sets, where the clues within each subset refer to the
same entity. The algorithm must be unsupervised,
as we do not assume that we have access to labeled
training data. Additionally, the number of clusters is
unknown, since we do not know the number of un-
derlying entities. To clarify, the set of potential en-
tities may be enumerable but is very large (This set
would contain all well-known people, places, events,
concepts, etc.). However, the subset of these entities
actually referred to in our data will be quite small by
comparison, and impossible to determine a priori.

We choose to use a greedy agglomerative cluster-
ing algorithm. Greedy agglomerative clustering be-
gins with each reference in its own cluster. At each
step, the algorithm greedily merges the two ”clos-
est” clues, as determined by some distance or sim-
ilarity function. This continues until all clues have
been merged into a single cluster or until some other
stopping condition is reached. Obviously the former
is not desirable, We will therefore need to provide
such an alternative stopping criterion.

4.1 Feature representation

The choice of features used to represent each clue in
the data set is of prime importance, as is the choice
of the function used to compare these features. As
the clues contain a large amount of text, it makes
sense to have features for each of the words present
in the clue, with stopwords removed. A natural way
of comparing two clues using these features would
be to construct an inverted index using the TF-IDF
cosine similarity measure, treating each clue as a
separate ”document.”

It is also possible to extract named entities from
the clues using shallow parsing techniques. Named
entities are useful, because clues referring to the
same entity are likely to refer to the same named
entities. For example, two clues whose answer is
”Abraham Lincoln” are likely to both refer to the
Emancipation Proclamation, the Civil War, John
Wilkes Booth, etc. Conversely, if two clues have
similar named entities, this could be evidence that
the two clues refer to the same entity.

An observation about the clues leads to another
potentially useful comparison. Clues frequently
must refer to their underlying entities, but cannot do
so by name. There are a number of ways they may
do this, but one of the most common is via a noun
phrase beginning with the word ”this” (e.g. ”this
Italian painter”). Regular expression-based shal-
low parsing can be used to efficiently extract noun
phrases from the clues, and from there, it is possi-
ble to collect the base nouns from those phrases that
begin with ”this.”

This collection of nouns, which we call referers,
is typically quite small for a given clue. A naive
way to compare two clues using these referers may
be to look for matching referers. But this coarse ap-
proximation could easily miss related words. For
example, one clue could refer to Bertrand Russell
as a ”thinker,” another calling him a ”philosopher,”
and another calling him a ”logician.” We would like
to score these clues as similar because, although the
referers are not exact matches, they are highly re-
lated.

We can use the Jiang-Conrath similarity measure
to quantify the semantic similarity between a single
pair of nouns (Jiang and Conrath, 1997). This mea-
sure requires a semantic taxonomy of word senses,

for which we use Wordnet (Miller, 1995). It also re-
quires information content values, which were com-
puted using the British National Corpus. Since the
number of referers in each clue is small, we can
simply compute the similarity measure between all
possible senses of all the referers in the two clues,
and choose the maximum similarity to represent the
score.

Our score function is then a weighted combina-
tion of these three factors, and represents the simi-
larity, rather than the distance, between two clues.

4.2 Canopies Implementation

To use the canopies method, we must choose our
cheap distance metric, as well as our two thresholds.
A TF-IDF cosine measure seems like the best choice
for the cheap metric, since with it, we can measure
the similarity from one clue to all other clues without
having to spend time linear in the number of clues.
A TF-IDF using all the words from the clues per-
formed abysmally, so a TF-IDF using just the named
entities was used instead.

Note that since the cosine scores from the TF-IDF
measure similarity, not distance, the loose threshold
T1 actually must be less than T2, since the descrip-
tion of these thresholds in Section 2 assumes a func-
tion that measures distances.

Our implementation sets T1 equal to 0 and scales
T2 based on the size of the dataset. We experiment
with various formulas for T2.

4.3 Iterative Blocking Implementation

Like in the original paper, we will use minhash sig-
natures on the sets of named entities extracted from
the clues to determine the blocks. Some hash func-
tion h is computed for each element in the set, and
the block for that set is chosen based on the mini-
mum hash value among the elements in the set:

minhash(A) = min
a∈A

h(a)

With a minhash signature, the probability that sets
A and B share a block is proportional to the Jaccard
similarity of the two sets:

similarityJaccard(A,B) =
|A ∩B|
|A ∪B|

Using a family of related hashes, we can generate
as many hash functions, and thus as many blocking
criteria, as we want.

It is possible to vary the approximate average size
of the blocks generated by varying the length of the
minhash signature used. If you only use a certain
number of bits from the hash to determine which
block to assign a clue to. The average block size
will be inversely proportional to the number of bits
used in the minhash signature. This should be fairly
intuitive, if we assume that the hash function does a
good job of separating the clues. One bit allows for
at most two possible blocks per criterion, two bits
allows up to four possible blocks, and so on.

In practice, it was necessary to add an additional
blocking criterion using the categories from the data
set. For each category, the iterative blocker looks
at the named entities for each clue in that category
and blocks as it normally would, but uses a smaller
number of bits from the hash function to compute
the minhash signature, since the fact that they are re-
stricted to a single category already reduces the size
of the blocks that will be generated.

5 Evaluation

The code discussed in Section 4 was written in the
Python programming language using the Natural
Language Toolkit1. All experiments were run on a
desktop computer with a Intel Core 2 Quad Q6600
2.4 GHz processor with 8 gigabytes of RAM run-
ning 64 bit Windows 7. The Python 2.7 interpreter
(CPython) was used to run the code, and the NLTK
version used was 2.01.

For each method (the full pair-wise entity reso-
lution solution, the canopies blocking, and the it-
erative blocking solution), we are interested in two
things: the quality of the solution and the time taken.
To measure the quality of the solution, we compare
the clustering to the clustering created by grouping
all clues with the same canonical answer together,
called the ”Gold Standard” clustering.

Given a Gold Standard clustering G and an ex-
perimentally generated clustering E, there are many
competing metrics for evaluating the results (Men-
estrina et al., 2010). We choose to report the pair-
wise precision (the fraction of pairs present in E

1http://nltk.org/

that are also in G) and pairwise recall (the fraction
of pairs present in G that are also in E). Using
these quantities, we can also calculate the pairwise
F1 measure:

F1,pairwise =
2 · Ppairwise ·Rpairwise

Ppairwise +Rpairwise

Arguably, this measure captures the information we
are interested in, and is easily interpretable. There
are competing precision and recall measures that
count the number of clusters in E present in G and
vice versa, respectively. However, these seem in-
appropriate for this context. It is not so much the
groups of clues themselves we care about so much as
the fact that two given clues are related, so it seems
incorrect to give no credit to a cluster that, for exam-
ple, correctly groups 10 out of 11 related clues but
misses the last one.

5.1 Clustering results
For greedy agglomerative clustering, we must select
the method to use to measure the similarity between
two clusters C1 and C2. Three choices could be:

• The distance between the closest 2 points in
the 2 clusters:

max
c1∈C1,c2∈C2

similarity(c1, c2)

• The distance between the furthest 2 points in
the 2 clusters:

min
c1∈C1,c2∈C2

similarity(c1, c2)

• The average distance between all pairs of
points in the 2 clusters:∑

c1∈C1,c2∈C2
similarity(c1, c2)

|C1 × C2|
where C1 × C2 is the Cartesian product of the
two sets.

To evaluate these methods, we tested all three meth-
ods (using the full entity resolution with no block-
ing) on a subset of the clues of size 250. The results
are shown in Table 1. The average distance method
achieves high precision and recall values at a feature
similarity threshold of 2.0. Accordingly, throughout
the other experiments, we use average distance and
a feature similarity threshold of 2.0.

Method Threshold F1 Prec. Rec.
Closest 1.0 0.106 0.056 1.000
Closest 1.5 0.106 0.056 0.992
Closest 2.0 0.106 0.056 0.992
Closest 2.5 0.172 0.094 0.959
Closest 3.0 0.232 0.132 0.951
Closest 3.5 0.648 0.522 0.854
Average 1.0 0.106 0.056 1.000
Average 1.5 0.577 0.413 0.959
Average 2.0 0.954 0.990 0.921
Average 2.5 0.904 0.999 0.825
Average 3.0 0.808 0.998 0.678
Average 3.5 0.712 1.000 0.553
Furthest 1.0 0.106 0.056 1.000
Furthest 1.5 0.786 0.964 0.664
Furthest 2.0 0.786 0.964 0.664
Furthest 2.5 0.506 0.998 0.339
Furthest 3.0 0.506 0.998 0.339
Furthest 3.5 0.325 1.000 0.194

Table 1: Clustering method results for various thresholds.

5.2 Feature evaluation

In order to evaluate our choice of feature similar-
ity function, we ran the full entity resolution us-
ing greedy agglomerative clustering, allowing it to
run to completion, creating the entire dendrogram.
Then, for each possible cutoff point, we took the re-
sulting clusters and computed the pairwise F1 score
for that clustering, and report the maximum such
score. This shows a kind of theoretical maximum
F1 for a greedy agglomerative clustering algorithm
using the feature set being evaluated, assuming the
algorithm had an oracle to tell it the best possible
place to stop.

Table 2 shows the results of this experiment.
Again, this was run on a subset of 250 clues. In
the table, ”TF-IDF” denotes the cosine similarity be-
tween words in the clues, ”Named Entities” denotes
the overlap in the sets of named entities, and ”Ref-
erers” denotes the semantic similarity between the
nouns in noun phrases beginning with ”this” from
the clues (see Section 4.1 for more details). We also
include a simple baseline using the categories from
the dataset that compares two clues only by deter-
mining whether or not they share the same category.

As expected, the category baseline did extremely
poorly. Even alone, the named entities criterion
achieves an impressive 0.9104 F1 score. This ap-
preciably outperformed the TF-IDF measure, which
suggests that filtering down the words being con-
sidered to just named entities does provide a more
precise criterion for comparison. The semantic sim-
ilarity of referers performed the worst individually,
which makes intuitive sense. Even if two clues refer
to ”this inventor,” there could be many inventors, so
we would expect this feature to identify many false
matches without help from other features. The com-
bination of all three criteria nets us an F1 score of
97.31 for all three combined 2.

The most interesting result of this experiment is
how the ”referers” feature interacts with the ”TF-
IDF” feature. The combination of these two features
actually results in a lower F1 score than the ”TF-
IDF” feature alone. If we looked at each combina-
tion of two features in isolation, this could lead us to
believe that the ”referers” feature is always harmful
to the overall result, but the F1 score for the algo-
rithm that incorporates all three actually does im-
prove upon the one that only incorporates the other
two features. Hence, all three features do contribute
(although the comparison of named entities con-
tributes the most), so all three are used throughout
the other experiments.

Features Used Maximum F1

TF-IDF, Referers, Named entities 0.9731
TF-IDF, Named entities 0.9695
Referers, Named entities 0.9325

Named entities 0.9104
TF-IDF 0.6790

TF-IDF, Referers 0.4756
Referers 0.3831

Categories (baseline) 0.1057

Table 2: Maximum F1 values for various feature combi-
nations.

2It is worth mentioning that adding in the ”shares a cate-
gory” feature from the baseline to this combination of the other
three results in no additional improvement in F1 measure.

5.3 Runtime Results

To test the scalability of each of the three algorithms
(the full resolution, canopies, and iterative block-
ing), we ran each one on subsets of the full dataset
of clues. The subsets were of sizes 10, 40, 100, 250,
and 500. Each algorithm was run 4 times to obtain
an average runtime. Only one blocking criterion was
used for iterative blocking on top of the blocking by
category. The results are shown in Figure 2.

Figure 2: Runtime results.

The first thing to notice is how quickly the
canopies clustering process runs. The total runtime
is shown by the green line that is barely visible, and
is always less than 10 seconds, even on 500 refer-
ences.

The full resolution shows a quadratic increase in
runtime with the size of the data set, as expected,
but it is easy to miss this next to how poorly iter-
ative blocking scales. Iterative blocking should be
slower than canopies, as whenever two references
are merged, any blocks that originally contained any
of those references are reinserted into the queue to
be processed again in light of the new information.
This process is guaranteed to converge eventually,
but this convergence can be somewhat slow.

Another potential reason why iterative blocking
is so slow may be that we implemented the code as-
suming that the clusterer used by iterative blocking
(or canopies) is a black box that merely provides
the clustering. The iterative blocker may waste a
substantial amount of computation time recomput-

ing similarities between clusters that it could already
know. If the greedy agglomerative clustering al-
gorithms used on each block used globally unique
identifiers to track their clusters, we could imple-
ment a caching mechanism to prevent some redun-
dant recomputation.

5.4 Canopies Results
We evaluated three different plausible formulas for
T2. In each of them, T2 is proportional to some
function of the size of the data set, N . In all cases,
T2 is smaller for larger datasets. We tested one in
which T2 = 1

N , designated ”Inverse.” Another has
T2 =

1
log(N) , labeled as ”Inverse Log.” The third, la-

beled ”Inverse Sqrt,” has T2 = 1
sqrt(N) . The results

are shown in Table 3.

Type N F1 Precision Recall
Inverse 10 1.000 1.000 1.000

Inverse Log 10 1.000 1.000 1.000
Inverse Sqrt 10 1.000 1.000 1.000

Inverse 40 1.000 1.000 1.000
Inverse Log 40 1.000 1.000 1.000
Inverse Sqrt 40 1.000 1.000 1.000

Inverse 100 0.903 1.000 0.824
Inverse Log 100 0.801 0.711 0.917
Inverse Sqrt 100 0.800 0.720 0.899

Inverse 250 0.782 0.939 0.670
Inverse Log 250 0.150 0.082 0.942
Inverse Sqrt 250 0.284 0.168 0.930

Inverse 500 0.681 0.748 0.624
Inverse Log 500 0.053 0.027 0.955
Inverse Sqrt 500 0.089 0.047 0.904

Table 3: Results for various threshold types for canopies
clusterer.

For small datasets, the value for T2 is inconse-
quential. However, we see that F1 is maximized
generally for the inverse relationship 1

N . Hence, we
use this value for T2 in other experiments in which
we test the canopies clusterer.

5.5 Iterative Blocking Results
The parameters that need to be tweaked for the Lego
iterative blocking algorithm are the number of crite-
ria and the number of bits used in the minhash signa-
ture. A larger minhash signature provides more but

smaller blocks. A larger number of criteria increases
the total number of blocks considered.

The results are shown in Table 4. These results
used a subset of 250 clues. Since the hash functions
used to create the blocks are randomly generated,
each precision, recall, and F1 value in the table is an
average across 4 runs with the given number of crite-
ria and minhash size. Each minhash was computed
using the low order bits of a hash function, with the
number of bits shown. Adding one bit should ap-
proximately double the number of blocks per cri-
terion and approximately halve the average size of
such blocks.

Criteria Size (bits) F1 Precision Recall
1 2 0.944 0.977 0.912
3 2 0.937 0.954 0.923
5 2 0.917 0.922 0.914
1 3 0.891 0.862 0.921
3 3 0.920 0.925 0.916
5 3 0.909 0.912 0.908
1 4 0.873 0.843 0.908
3 4 0.888 0.864 0.913
5 4 0.903 0.904 0.903

Table 4: Iterative blocking results, varying minhash sig-
nature size and number of criteria

Increasing the number of criteria tends to increase
recall up to a point, then past that point degrades re-
call. 3 criteria maximizes the recall for every min-
hash signature length tested. Increasing the size of
the minhash signature while holding the number of
criteria constant generally degrades the recall, in all
but one case (going from 2 bits to 3 in the case
of 1 criterion). This makes perfect sense, because
increasing the signature length makes for smaller
blocks, which should increase the probability that
pairs of clues that should be matched do not end up
in a block together.

Increasing the number of criteria while holding
the signature length constant decreases the precision
for small minhash signatures, but increases the pre-
cision as the signatures grow larger. A plausible
explanation for this could be that the precision is
already maximized when the blocks are large, but
as they get smaller, adding additional criteria can
improve precision. Increasing the size of the min-

hash signature also degrades precision. The reason
that smaller blocks result in more mistakes is not
immediately obvious. However, recall that smaller
blocks force the greedy agglomerative clusterer to
make much more local decisions (it can only merge
the closest clusters within the block, instead of glob-
ally). The falling off of precision could be seen as
the penalty for making more bad local decisions.

The best overall F1 scores are achieved with only
one criterion and a low number of bits. However,
using a low number of bits results in large blocks,
which is at odds with our overall goal of scaling to
large datasets. Note however, that the F1 measure
does not drop off dramatically even for large min-
hash sizes.

6 Future Work

There is still a large amount of work to do related to
this problem. The quality of the solutions (as mea-
sured by F1 scores) is promising, but not so great
that there is no room for improvement in the algo-
rithm used. The feature representation and similarity
function could still be customized further, possibly
yielding better results.

Improving the runtime performance of iterative
blocking is an obvious avenue of further research.
The quality of its solutions was consistently better
than those obtained using canopies, but the current
run time is entirely too expensive a cost to pay. It
is still unclear whether the iterative nature of the al-
gorithm, some quirk of the implementation, or some
unusual feature of this data set is responsible for its
slow performance.

Conversely, while canopies has excellent runtime,
the quality of the solutions it returns could be im-
proved. Perhaps the strengths of both algorithms
could be combined to somehow get the best of both
worlds.

Assuming that these problems could be corrected,
there are still usability improvements that could be
made to our framework. The various parameters
need to be finely tuned to produce good results.
Finding a way to learn good values for these param-
eters in an unsupervised fashion would be quite use-
ful (or more trivially and less ideally, using a small
amount of labeled held-out data).

7 Conclusion

We have presented a framework for scaling entity
resolution on datasets of quiz bowl clues, using
canopies and iterative blocking as possible block-
ing algorithms. Much improvement can be made
to the quality of the solutions from canopies and
the runtime of iterative blocking, but the initial re-
sults are encouraging. Although we have not ar-
rived at a definitive solution for a scalable entity
resolution technique for large datasets that resemble
this one, we have formulated a feature representa-
tion that results in quality solutions for the full res-
olution problem without blocking. Much progress
was made even after the presentation, at the time of
which, for example, neither iterative blocking nor
canopies achieved even 0.50 F1 for a data set of any
size. Hopefully, the techniques outlined in this paper
could provide a starting point for future exploration
on entity resolution with more diverse datasets.

References
Indrajit Bhattacharya and Lise Getoor. 2007. Collective

entity resolution in relational data. ACM Transactions
on Knowledge Discovery in Data.

William W. Cohen, Pradeep Ravikumar, and Stephen E.
Fienberg. 2003. A comparison of string distance met-
rics for matching names and records. International
Joint Conferences on Artificial Intelligence.

Ivax P. Fellegi and Alan B. Sunter. 1969. A theory for
record linkage. Journal of the American Statistical So-
ciety, 64:1183–1210.

David Ferrucci, Eric Brown, Jennifer Chu-Carroll, James
Fan, David Gondek, Aditya A. Kalyanpur, Adam
Lally, J. William Murdock, Eric Nyberg, John Prager,
Nico Schlaefer, and Chris Welty. 2010. Building wat-
son: An overview of the deepqa project. AI Magazine.

Jay J. Jiang and David W. Conrath. 1997. Semantic sim-
ilarity based on corpus statistics and lexical taxonomy.
Proceedings of International Conference Research on
Computational Linguistics.

Dmitri V. Kalashnikov, Sharad Mehrotra, and Zhaoqi
Chen. 2005. Exploiting relationships for domain-
independent data cleaning. SDM.

Andrew McCallum, Kamal Nigam, and Kyle Ungar.
2000. Efficient clustering of high-dimensional data
sets with application to reference matching. KDD.

David Menestrina, Steven Euijong Whang, and Hector
Garcia-Molina. 2010. Evaluating entity resolution re-
sults. Proceedings of the VLDB Endowment.

George A. Miller. 1995. Wordnet: A lexical database for
english. Communications of the ACM, 38:39–41.

Steven Euijong Whang, David Menestrina, Georgia
Koutrika, Martin Theobald, and Hector Garcia-
Molina. 2009. Entity resolution with iterative block-
ing. SIGMOD.

William E. Winkler. 2006. Automatically estimating
record linkage false match rates. Proceedings of the
Section on Survey Research Methods, American Sta-
tistical Association.

