
Layoff Prediction Using Real and Forecasted Stock Data via Domain
Adaptation and Ensemble Learning

Michael Suehle
University of Maryland,

College Park

Alex Straub
University of Maryland,

College Park

Addison Waller
University of Maryland,

College Park

Abstract

The technology job market has changed dras-
tically over the last few years with major com-
panies doing multiple layoffs without warning.
As this trend continues we wanted to know if
there is a way to predict these layoffs using
alternate data, for example stock market data.
To do this we have created a modeling frame-
work utilizing transfer and ensemble learning
that takes in past stock data about a company
and is able to predict if a layoff has occurred or
not. Further, we attempt to use time-series pre-
diction to create future stock data to feed our
model for future layoff predictions. We provide
a framework that can be extended and modi-
fied to adapt to more diverse data and more
advanced time series prediction. Utilizing this
model, people will be able gain insight into how
stock price relates to layoffs, and it opens the
gate for more sophisticated models to be cre-
ated to extract more accuracy for percentages
and times of layoffs.

1 Introduction

Over the past couple years the technology sector has
experienced a large number of mass layoffs. While
the exact reason for this phenomenon is unclear, we
wanted to see if there is a way to predict when the next
big layoff for a company is coming. To do this we
created a modeling framework that is able to predict if
a company will have a layoff in a set time period. Due
to time constraints, we revised our objective to be a
classification problem: can we predict whether or not a
layoff occurs during a three month period based on the
stock data? Additionally, can forecasted stock prices
help predict whether or not a layoff occurs? We decided
to pursue these questions with domain adaptation and
ensemble learning. First, By utilizing historical stock
and layoff data, we assess if we can use time-series
prediction and multi layer neural networks to predict
whether or not a company will layoff people in a 90
day time frame. We test our framework with stock
data from known periods with and without layoffs, and
with artificially forecasted periods from our time-series
forcasting.

2 Related Work
2.1 Layoff Prediction
We were only able to identify one paper that attempts to
predict layoffs using machine learning. Prakash and Sak-
thivel use lasso regression to forecast layoffs (Prakash
and Sakthivel, 2024). They do not provide the model
nor results of the model’s performance, but they do pro-
vide some graphs produced from exploratory analysis
of the layoff data. Because of this, we could not use this
as a baseline to compare against.

2.2 Incorporating Additional Data for Stock
Market Forecasting

There has been some work on incorporating different
types of data to improve stock market forecasting. Liao
et al. incorporate company sentiment data from the news
(Liao et al., 2024) and Ayyappa and Kumar incorporate
political data in addition to news data to improve stock
market forecasting (Ayyappa and Kumar, 2024). These
studies inspired us to seek sentiment data to use for
stock market prediction, however we were unable to
find a suitable datasource in time for this report.

2.3 Domain Adaptation for Time Series Data
As a result of our inability to find suitable data, we
looked to use domain adaptation to improve stock mar-
ket predictions. We identified three different potential
domain adaptation methods for time series data. Jin et
al. attempt to do domain adaptation through attention
sharing (Jin et al., 2022). (Cai et al., 2020) attempt to
do domain adaptation with causal structure alignment
between target and source data that occurs at the same
time. He et al’s method, RAINCOAT, attempts to do
domain adaptation by training an encoder to extract fre-
quency and time features from the source and target
data and finally training a classifier on those features
(He et al., 2023). We decided to use RAINCOAT be-
cause it can be applied to our problem, it achieves high
performance, and its code is publicly available.

2.4 Data Transform Bagging
We also experiment with data transform bagging. Data
transform bagging is an alternate version of traditional
bagging where each model in the ensemble is trained on
a different transformation of the same data whereas in
traditional bagging, each model is trained on different
samples of the same data (Brownlee, 2021).



3 Methods
Our original objective was to create a model that could
predict the number of layoffs a company would have
in a future time-period. To do this we attempted to
do Domain Adaptation to Transform Stock Data to the
domain of the layoff data. Then we wanted to input this
transformed data into a forecasting model to predict the
layoffs. As seen in Figure 1, the transformer mapped all
the stock prices to 0. We believe this was unsuccessful
due to the sparsity of our data.

Figure 1: Stock data (target data) the transformer was
supposed to be able to predict compared to the actual
data the transformer predicted (source data)

Due to time constraints, we revised our objective to
be a classification problem: can we predict whether or
not a layoff occurs during a three month period based
on the stock data? Additionally, can forecasted stock
prices help predict whether or not a layoff occurs? To
achieve this new objective we created four different sets
of data for each company that spanned three months:
real stock data that contained no layoffs, real stock data
that contained layoffs, chronos generated stock data
with no layoffs, chronos generated stock data with lay-
offs. Chronos is a zero-shot time series data forecaster
(Ansari et al., 2024). We used the RAINCOAT algo-
rithm to train an encoder to extract the features of both
the chronos generated data (source data) and real stock
data (target data) and a classifier to predict whether a
layoff occurs or not based on the extracted features. This
is visualized in 2. For a baseline classifier we used the
basic binary classifier and trained it on the real stock
data. The classifiers would produce a 1 or 0 depending
on whether there was a layoff (1) or not (0).

The next classifier we built was an ensemble of three
different classifiers using a bagging method. Each of
these classifiers was trained on the real stock data but
the data was normalized in different ways. The first
classifier was trained on z-score normalization, the sec-
ond was trained on proportion to average price across
periods, and the third was trained on min-max scaling.
These classifiers then output a probability which repre-
sents the percentage at which they predict a layoff will
happen in the set timeframe. We use this probability to
create a binary classification, where when probability is
greater than 0.5, it indicates there is a layoff, and less
than, no layoff. Each of these classifiers performed well,

Figure 2: The architecture of RAINCOAT is as follows.
A frequency feature extractor and a time features extrac-
tor are trained to produce encodings of both the target
and source data. Those encodings are decoded and the
reconstruction loss is back propagated through the ex-
tractors. Simultaneously, a classifier is trained on the
encoding of the source data.

but to further improve performance, we implemented
two different ensemble strategies. The first was to pro-
duce a confidence score by taking all the probabilities
produced by the classifiers, adding them together, and
dividing them by three to get an average. If that average
is over 0.5, then the model predicted there was going to
be a layoff, if the average is under 0.5 then the model
predicted that there was not going to be a layoff. The
second way to further improve performance was to take
the binary conversion of the probability produced by the
classifiers and perform majority voting. For example,
if two classifiers output a 1 (yes layoff) and the third
output a 0 (no layoff), the overall classifier would pre-
dict that there was going to be a layoff. The structure
can be seen in Figure 3. Both of these bagging methods
perform well, results of which will be talked about in
later sections of the paper.

Figure 3: Flowchart of bagging ensemble classification
method

4 Experiment
4.1 Datasets
For this project we got our layoff data from the dataset:
Tech layoffs 2020 - 2024 from Kaggle (Herold, 2024).
This dataset has the number of people laid off, percent-
age of company laid off, company size before and after
layoffs, industry, and date of layoff for 1287 unique
companies. It is 1672 rows total. The information in
this dataset we prioritized is: Company name, Number
of people laid off, Industry, and Date of layoffs. After
these columns had been extracted the company names



were used to compare them to companies that exist in
the Nasdaq. If they are listed then they are public com-
panies that have stock information. Because we wanted
to base our layoff predictions off stock data it is impor-
tant that each company we use is public. The next step
was to collect the stock information for the set of com-
panies. Using the yfinance python library we collected
each company’s stock information from 03/10/2020 to
04/18/2024 which consisted of open, high, low, close,
and volume. All of these data points will allow us to
begin to predict the possibility of a company layoff.
We used chronos to generate our forecasted stock mar-
ket data. For every layoff date in the Tech layoffs 2020-
2024 dataset, we took a window of stocks one year
before 45 days before the date and generated 90 days of
forecasted stocks after the year of data. For our stock
data to be labeled “no layoffs”, we programmatically
found 90 day periods of time that did not have layoffs
for each company in the Tech layoffs 2020-2024 dataset
and used yfinance to pull real stocks and chronos to
generate forecasted stock based on the real stocks for
a year 45 days before the start date of the period. For
layoff stock data, we test with 260 real 90-day stock
price datasets, and matching time period and stock 260
Chronos generated datasets. For no-layoffs testing we
have 228 datasets for real, and 228 matching chronos
generated datasets.

4.2 Evaluation
4.2.1 Baseline Classifier and RAINCOAT
We trained a baseline classifier on the real stock data
and evaluated it on real stock data. To evaluate how well
RAINCOAT adapts the domain of the chronos gener-
ated data to the real data, we trained another classifier
using RAINCOAT and evaluated it on real stock data.
To get a comparison to see if RAINCOAT improves
performance using chronos generated training data, we
trained a baseline classifier on the chronos generated
data and evaluated it on the real stock data. We also
wanted to test two more practical scenarios where we
train a classifier on real data and evaluate it on chronos
generated data, emulating a method for predicting if a
layoff is going to occur in the future by using the classi-
fier on projected stock prices, and training a classifier
on both real and chronos generated data in the scenario
where there is not enough real data, so generated data is
used to increase the number of samples.

4.2.2 Ensemble Classification
We evaluate our bagging ensemble classification model
across layoff and no-layoff stock datasets for both real,
and chronos generated stock prices. We record each
accuracy score for each of the classification models,
as well as accuracy for both of our bagging ensemble
methods for both real and chronos data. We also obtain
’matching’ ratios, displaying how often the classifier
output for the Chronos generated data agrees with the
classifier output for the matching real stock data.
For an ablation study on the ensemble, we also test per-

formance degradation when leaving one of the three
classifiers out in the ensemble for our confidence strat-
egy.

5 Results

5.1 RAINCOAT Dokmain Adaptation

Table 1: Accuracy scores testing the classifiers on gen-
erated and real stock data

Table 1 shows the results of our experiment. The base-
line model, the classifier trained on real data and tested
on real data, performed somewhat poorly, achieving an
accuracy of 0.65, slightly better than random guess of
0.5. The baseline model expectedly performed signifi-
cantly worse on the chronos generated data. The classi-
fier trained on chronos generated data and evaluated on
real data performed worse than the baseline model as
expected, achieving an accuracy of 0.59. Performance
degraded substantially when the classifier was trained
on both the real and the chronos generated data. This is
expected since the classifier trained on the chronos data
performed poorly, but it is surprising that performance
degraded as much as it did. Finally, the classifier trained
with the RAINCOAT domain adaptation method per-
formed similarly to the classifier trained on chronos data.
This implies that the RAINCOAT domain adaptation
did not improve the performance of the classifier.

5.2 Ensemble Classification (trained on real data)

Table 2: Accuracy scores testing the classifier(s) on
generated and real stock data

For both layoff and no-layoff stock price periods, we
find both the individual classifiers and the ensemble
bagging output perform substantially better when using
real stock data compared to the Chronos generated data
(Table 2). On real data, we achieve high accuracy in all
of the classifiers trained, with the Open In Proportion
to Average normalization and Z-score normalization
models leading the individual classifiers. Both of our
ensemble methods performed better than any of the
individual classifiers on real data, with >90% accuracy.



The confidence ensemble method performed the best at
around 93% accuracy.

Table 3: Classification matching ratios by method be-
tween Chronos generated and real data

We find the matching ratio (the ratio of which the
Chronos generated data and the matched real data pre-
dict the same label when fed into the classifier) to be
quite poor. Ideally we would see a high matching ratio,
since that would indicate strong model performance on
future-generated Chronos data. Therefore we can not
confidently say that we have created a model pipeline to
predict future layoffs, since we can not rely on Chronos
generated data to be representative of real data.

5.3 Ensemble Ablation

Table 4: Accuracy scores testing from leaving one clas-
sifier out

To bolster our results, we assess the confidence pre-
diction when we leave a classifier out of the ensemble.
For testing on real data, when leaving out MinMax, we
see slightly degraded performance when compared to
the complete ensemble. Omitting either the Z-score nor-
malization model or open in proportion to the average
model yielded significantly degraded performance, of
around 18%. In testing on Chronos generated data, we
see little or no change in confidence prediction, likely
due to overall poor model performance of each of the
classifiers in the ensemble for generated data.

6 Conclusion

Our results show two main conclusions. The first is
that stock data generated by chronos is not sufficient
for predicting whether or not a layoff occurs during
the time period the data is generated for. The second
is that data transformation bagging greatly improves
the performance of the layoff predicting classifier when
trained on real data. Although this experiment was not
successful at demonstrating viability of forecasted data,
it does shed light on a less common version of bagging,
transform bagging. Since we achieved high accuracy
on our ensemble classifier, it still may be useful for
predicting a notion of layoff risk when used with recent

stock data, as a positive output could indicate a layoff
in the near future.

7 Future Work

Work progressing from this study can be directed in a
number of ways. Utilizing more, and different types of
data for ensemble classifiers to be built upon, such as
industry sentiment, company sentiment, revenue, and
earnings, as well as stock indicators may yield more
insight into what factors contribute to layoffs. Further,
utilizing a more advanced, or specified, time-series
forecasting model for predicting stock price may yield
significantly better performance in our classification
model, enabling the use of the model to predict
future layoffs. Another area of work is modifying our
ensemble classification model to predict the percentage
of people being laid off (vs. company size), enabling
the notion of ’severity’ in layoff prediction. Future work
could also include modifying our model framework
to predict for different time periods, including by
week, or by day predictions. As layoffs continue to
happen in the tech-sector, more data will become avail-
able for models like ours to use, allowing for overall
better analysis and forecasting of future layoff scenarios.

Our code is available at this repo.

References
Abdul Fatir Ansari, Lorenzo Stella, Caner Turk-

men, Xiyuan Zhang, Pedro Mercado, Huibin
Shen, Oleksandr Shchur, Syama Sundar Rangapu-
ram, Sebastian Pineda Arango, Shubham Kapoor,
Jasper Zschiegner, Danielle C. Maddix, Hao Wang,
Michael W. Mahoney, Kari Torkkola, Andrew Gor-
don Wilson, Michael Bohlke-Schneider, and Yuyang
Wang. 2024. Chronos: Learning the language of time
series.

Yalanati Ayyappa and A.P. Siva Kumar. 2024. Stock
market prediction with political data analysis (sp-pda)
model for handling big data. Springer.

Jason Brownlee. 2021. Develop a bagging ensemble
with different data transformations.

Ruichu Cai, Jiawei Chen, Zijian Li, Wei Chen, Keli
Zhang, Junjian Ye, Zhuozhang Li, Xiaoyan Yang, and
Zhenjie Zhang. 2020. Time series domain adaptation
via sparse associative structure alignment.

Huan He, Owen Queen, Teddy Koker, Consuelo Cuevas,
Theodoros Tsiligkaridis, and Marinka Zitnik. 2023.
Domain adaptation for time series under feature and
label shifts.

Ulrike Herold. 2024. Tech layoffs 2020-2024.

Xiaoyong Jin, Youngsuk Park, Danielle C. Maddix, Hao
Wang, and Yuyang Wang. 2022. Domain adaptation
for time series forecasting via attention sharing.



Honglin Liao, Jiacheng Huang, and Yong Tang. 2024.
Leet: stock market forecast with long-term emotional
change enhanced temporal model. PeerJ Computer
Science.

P. Prakash and V. Sakthivel. 2024. Layoffs analysis
and prediction using machine learning algorithms.
Springer.




