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Fig. 1. We highlight the dynamic scenes with multiple moving objects that are used to evaluate our hybrid sound propagation algorithm. We compute the
acoustic scattered fields of each object using a neural network and couple them with interactive ray tracing to generate diffraction and occlusion effects. Our
approach can handle arbitrary dynamic scenes and takes few milliseconds (per frame) on a multi-core PC.

We present a novel hybrid sound propagation algorithm for interactive
applications. Our approach is designed for arbitrary dynamic scenes and
uses a neural network-based learned scattered field representation along
with ray tracing to generate specular, diffuse, diffraction, and occlusion
effects efficiently. To handle general objects, we exploit properties of the
acoustic scattering field and use geometric deep learning on differential
coordinates to approximate the field using spherical harmonics. We use a
large dataset for training, and compare its accuracy with the ground truth
generated using an accurate wave-based solver. The additional overhead of
computing the learned scattered field at runtime is small and we highlight
the interactive performance by generating plausible sound effects in dynamic
scenes.
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1 INTRODUCTION

Interactive sound propagation and rendering are increasingly used
to generate plausible sounds that can improve a user’s sense of
presence and immersion in virtual environments. Recent advances
in geometric and wave-based methods have lead to integration of
these methods into current games and VR applications like Microsoft
Project Acoustics [Mic 2019], Oculus Spatializer [Ocu 2019], and
Steam Audio [Ste 2018]. The underlying propagation algorithms
are based on using reverberation filters [Valimaki et al. 2012], ray
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tracing [Schissler and Manocha 2018; Schissler et al. 2014], or pre-
computed wave-based acoustics [Raghuvanshi and Snyder 2014].

A key challenge in interactive sound rendering is handling ar-
bitrary dynamic scenes that are frequently used in games and VR
applications. Not only can the objects undergo arbitrary motion or
deformation, but their topologies may also change. In addition to
specular and diffuse effects, it is also important to simulate complex
diffracted scattering, occlusions, and inter-reflections that are per-
ceptible [James et al. 2006; Pulkki and Svensson 2019; Raghuvanshi
and Snyder 2014]. Prior geometric methods are accurate in terms
of simulating high-frequency effects and can be augmented with
approximate edge diffraction methods that may work well in certain
cases [Schissler et al. 2014; Tsingos et al. 2001]. On the other hand,
wave-based precomputation methods can accurately simulate these
effects, but are limited to static scenes [Raghuvanshi and Snyder
2014, 2018]. Some hybrid methods are limited to dynamic scenes
with well-separated rigid objects [Rungta et al. 2018]. Overall, no
good interactive solutions are known for general dynamic scenes.

A recent trend is to use machine learning techniques for audio
processing, including recovering acoustic parameters of real-world
scenes from recordings [Eaton et al. 2016; Genovese et al. 2019;
Tsokaktsidis et al. 2019]. Furthermore, learning methods have been
used to approximate diffraction scattering and occlusion effects from
rectangular plate objects [Pulkki and Svensson 2019] and frequency-
dependent loudness fields for convex shapes [Fan et al. 2020]. These
results are promising and have motivated us to develop good learn-
ing based methods for arbitrary dynamic scenes.

Main Results: We present a novel approach to approximate the
acoustic scattering field of any geometric object using neural net-
works for interactive sound propagation of highly dynamic scenes.
Our approach is general and makes no assumption about the scene
or the motion or topology of the objects. We exploit properties of
the acoustic scattering field of objects for lower frequencies and use
neural networks to learn this field from geometric representations of
the objects. In particular, we compute a point cloud representation of
3D objects and use that to approximate the angular part of acoustic
wave propagation in the free field using spherical harmonics.
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Given any dynamic object, we use the neural network to estimate
the scattered field at runtime, which is used to compute the propa-
gation paths when sound waves interact with objects in the scene.
The radial part of the acoustic scattering field is estimated using
geometric ray tracing, along with specular and diffuse reflections.
Some of the novel components of our work include:

e Learning Acoustic Scattering Fields: We present novel
techniques based on geometric deep learning on differential
coordinates to approximate the angular component of acous-
tic wave propagation in the wave-field. Each point in the
point cloud representation is encoded in a high-dimensional
latent space. Moreover, the local surface shapes in the latent
space are encoded using implicit surfaces. This enables us
to handle arbitrary topology. We use a four-layer neural net-
work that takes the point cloud as an input and outputs the
spherical harmonic coefficients that represent the acoustic
scattering field. We perform an ablation study to highlight
the benefits of our approach.

¢ Interactive Wave-Geometric Sound Propagation: We
present a hybrid algorithm that uses a neural network-based
scattering field representation along with ray tracing to effi-
ciently generate specular, diffuse, diffraction, and occlusion
effects at interactive rates.

¢ Sound rendering of highly dynamic scenes: We present
the first interactive approach for plausible sound rendering
in arbitrary dynamic scenes. As the objects deform or come
in close proximity, we compute a new spherical harmonic
representation using the neural network. Compared with
prior interactive geometric or filter-based methods, we can
handle unseen objects in highly dynamic scenes at real-time,
without using any precomputed transfer functions.

We highlight the performance in dynamic scenes with multiple
moving objects. The additional runtime overhead of estimating the
scattering field from neural networks is less than 1ms per object
on a NVIDIA GeForce RTX 2080 Ti GPU. The overall running time
of sound propagation is governed by the underlying ray tracing
system and takes few milliseconds per frame on multi-core desktop
PC. We also compare the accuracy of acoustic scattering fields
approximated using a neural network with an accurate boundary-
element method (BEM) solver as shown in Figure 6 and Figure 7.
We evaluate the accuracy of our learning algorithm on a dataset
of thousands of objects that are not seen in the training dataset
and have varying size, orientation, convexity, and genus properties.
We highlight the exact and approximated acoustic scattering fields.
In practice, our approach generates plausible sound corresponding
to continuous and smooth sound fields, as the listener moves in
and out of occluded regions with respect to the sources. We plan to
release the source code and the dataset on github.

2 RELATED WORK
2.1 Sound Propagation

Wave-based techniques to model sound propagation solve the acous-
tic wave equation directly using numerical solvers such as the
finite-element method [Thompson 2006], the boundary-element
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method [Wrobel and Kassab 2003], the finite-difference time do-
main [Botteldooren 1995], adaptive rectangular decomposition [Raghu-
vanshi et al. 2009], etc. Their complexity increases linearly with the
size of the environment (surface area or volume) and as a third or
fourth power of frequencies. As a result, they are limited to lower
frequencies (e.g., below 1000Hz) [Mehra et al. 2013; Raghuvanshi
et al. 2010; Yeh et al. 2013].

Geometric techniques model the acoustic effects based on ray
theory and typically work well for high-frequency sounds to model
specular and diffuse reflections [Funkhouser et al. 1998; Krokstad
et al. 1968; Lauterbach et al. 2007; Savioja and Svensson 2015]. These
techniques can be enhanced to simulate low-frequency diffraction ef-
fects. This includes the accurate time-domain Biot-Tolstoy-Medwin
(BTM) model, which can be expensive and is limited to offline com-
putations [Svensson et al. 1999]. For interactive applications, com-
monly used techniques are based on the uniform theory of diffrac-
tion (UTD), which is a less accurate frequency-domain model that
can generate plausible results in some cases [Schissler et al. 2014;
Taylor et al. 2012; Tsingos et al. 2001]. Moreover, the complexity of
edge-based diffraction algorithms can increase exponentially with
the maximum diffraction order.

2.2 Interactive Sound Rendering in Dynamic Scenes

At a broad level, techniques for dynamic scenes can be classified into
reverberation filters, geometric and wave-based methods, and hybrid
combinations. The simplest and lowest-cost algorithms are based
on artificial reverberators [Valimaki et al. 2012], which simulate
the decay of sound in rooms. These filters are designed based on
different parameters and are either specified by an artist or computed
using scene characteristics [Tsingos 2009]. They can handle dynamic
scenes but assume that the reverberant sound field is diffuse, making
them unable to generate accurate directional reverberation or time-
varying effects.

Many interactive techniques based on geometric acoustics and
ray tracing have been proposed for dynamic scenes [Schissler and
Manocha 2017; Taylor et al. 2012; Vorlander 1989]. They use spatial
data structures along with multiple cores on commodity proces-
sors and caching techniques to achieve higher performance. Fur-
thermore, hybrid combinations of ray tracing and reverberation
filters [Schissler and Manocha 2018] have been proposed for low-
power, mobile devices. In practice, these methods can handle scenes
with a large number of moving objects, along with sources and the
listener, but can’t model diffraction or occlusion effects accurately.

Many precomputation-based wave based techniques tend to com-
pute a global representation of the acoustic pressure field. They
are limited to static scenes, but can handle real-time movement
of both sources and the listener [Mehra et al. 2015; Raghuvanshi
et al. 2010]. These representations are computed based on uniform
or adaptive sampling techniques [Chaitanya et al. 2019]. Overall,
the acoustic wave field is a complex high-dimensional function
and many eflicient techniques have been designed to encode this
field [Raghuvanshi and Snyder 2014, 2018] within 100MB and with
a small runtime overhead. A hybrid combination of BEM and ray
tracing has been presented for dynamic scenes with well-separated
rigid objects [Rungta et al. 2018].
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2.3 Machine Learning and Acoustic Processing

Machine learning techniques are increasingly used for acoustic pro-
cessing applications. These include isolating the source locations
in multipath environments [Ferguson et al. 2018] and recovering
the room acoustic parameters corresponding to reverberation time,
direct-to-reverberant ratio, room volume, equalization, etc. from
recorded signals [Eaton et al. 2016; Genovese et al. 2019; Tang et al.
2020; Tsokaktsidis et al. 2019]. These parameters are used for speech
processing or audio rendering in real-world scenes. Neural networks
have also been used to replace the expensive convolution opera-
tions for fast auralization [Tenenbaum et al. 2019], to render the
acoustic effects of scattering from rectangular plate objects for VR
applications [Pulkki and Svensson 2019], or to learn the mapping
from convex shapes to the frequency dependent loudness field [Fan
et al. 2020]. The last method formulates the scattering function
computation as a high-dimension image-to-image regression and
is mainly limited to convex objects that are isomorphic to spheres.
In contrast, our learning method exploits deep learning on differ-
ential coordinates and can compute a good approximation of the
acoustic scattering field of arbitrary objects (e.g. non-convex or
non-manifold).

3 BACKGROUND AND OVERVIEW

TRAINING | RUNTIME
T~ | CNN PREDICTED
- ~ | PRESSURE FIELD
Ve N |
/ N\ | P T T TN N
/ \
/ N | // \\
/ vy, \
i [t i
) | | )
\ | : \ )
\ / \ /
SOUND \ TN ,
SOURCE \ , | N ,
N\ / | S R
AN P I FAR-FIELD
S~ 7 I GEOMETRIC
SIMULATED PRESSURE FIELD : PROPAGATION
i WALL

Fig. 2. Overview: Our algorithm consists of the training stage and the
runtime stage. The training stage uses a large dataset of 3D objects and their
associated acoustic pressure fields computed using a far-field source to train
the network. The runtime stage uses the trained neural network to predict
the sound pressure field from a point cloud approximation of different
objects at interactive rates (about 1ms). The learned acoustic pressure field
is used with geometric sound propagation techniques.

In this section, we provide some background on wave-based
acoustics, pressure fields, point cloud representations and give an
overview of our learning method. We highlight the notation and
symbols in Table 1.

3.1  Wave Acoustics and the Helmholtz Equation

Our approach is designed for synthetic scenes and we assume a
geometric representation (e.g., a triangle mesh) is given to us. A
scalar acoustic pressure field, P(x,t), satisfies the homogeneous
wave equation
1 0°P
vip- =y, 1)

c2 or?

Table 1. Notation and symbols used throughout the paper.

X 3D Cartesian coordinates.

(r,0,9) Spherical coordinates.

c Speed of sound, taken as constant 343m/s.
2] Frequency of sound.

k Acoustic wavenumber.

P(x,t) Time domain acoustic pressure field.

p(x, 0) Frequency domain acoustic pressure field.

m,l Order and degree of spherical harmonics.
Ylm (6,9) Spherical harmonics basis.
c;” (w) Spherical harmonics coefficients.

hl(l) (kr), hl(z) (kr) Hankel function of the first/second kind.

Q(x, )
Pr(6,¢)

Frequency domain sound sources.
Probability of sampling a ray direction.

where c is the speed of sound. We can analyze the pressure field in
the frequency domain using Fourier transform

p(x ) =F{P(x,t)} = [ mP(x, e J@tdt. )

At each frequency w the pressure field satisfies the homogeneous
Helmbholtz wave equation
(V2 +E5)p(x,0) =0, ®)
w

where k = ¢ is the wavenumber. We can expand the Laplacian

operator in terms of spherical coordinates (r, 0, ¢) as

92+2a+ L0 (o pgd), 1 82+k2 o
—+t-= — |sinf— — =0.
or2 rar r2sinf 90 30  r2sin?0 9g? P

4

The general free-field solution of (4) can be formulated as

00 +1
px0) =3 3 |Amh(" (k) + Brh(? ()] Y (0.9), (9)

1=0 m=-1
where hl(l) and hl(z) are Hankel functions of the first and the second
kind, respectively. A, and By, are arbitrary constants, Almhl(l) (kr)+

Blmhl(z) (kr) together represents the radial part of the solution and
the spherical harmonics term Y;" (6, ¢) represents the angular part
of the solution. In this work, we propose modeling the angular
part using our learning based pressure field inference. The radial
part is approximated using interactive geometric sound propagation
combined with localized pressure fields.

3.2 Global and Localized Sound Fields

Sound fields typically refer to the sound energy/pressure distri-
bution over a bounded space as generated by one or more sound
sources. The global sound field in an acoustic environment depends
on each sound source location, the propagating medium, and any
reflections from boundary surfaces and objects. This requires solv-
ing the wave equation in the free-field condition and evaluating
inter-boundary interactions of sound energy using a global numeric
solver. In this case, the position of all scene objects/boundaries and
sound sources needs to be specified beforehand, and any change in
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these conditions changes the sound field. The exact computation
of the global pressure field is very expensive and can takes tens of
hours on a cluster [Mehra et al. 2013; Raghuvanshi and Snyder 2014;
Raghuvanshi et al. 2010].

Our goal is to generate plausible sounds in indoor scenes with
dynamic objects. Therefore, it is important to model the acoustic
scattering field (ASF) of each object. The ASFs of different objects
are used to represent the localized pressure field (e.g., the near-field),
which is needed for diffraction and inter-reflection effects [James
et al. 2006; Mehra et al. 2013]. At the same time, the sound field
in the free space (e.g., the far-field) between two distant objects is
approximated using ray tracing, and we do not compute that pres-
sure field accurately using a wave-solver. In practice, computing the
sound field in a localized space for each object in the scene is much
simpler and easier to represent than using a global solver [Mehra
et al. 2013; Rungta et al. 2018].

3.3 Overview

We present a learning method to approximate the ASFs of any static
or dynamic object. It turns out that the acoustic pressure field due to
scattering in a low-frequency sound source scattering exhibits fewer
variations than in high-frequency sound scattering. As a result, it is
more likely that a learning method will more accurately model the
low-frequency sound effects. In terms of correlation between the ob-
ject shape and its scattering field, the volume of the scatterer closely
relates to its low-order shape characteristics that can be represented
by coarse triangle faces, which dominate the low-frequency scatter-
ing behaviors; while at high frequencies, this relationship shifts to
high-order shape characteristics (i.e., geometrical details). Given the
powerfulness of deep learning inference, we hypothesize the scat-
tering sound distribution can be directly learned from the scatterer
geometry, without solving the complicated wave equations. The
inference speed on a modern GPU far exceeds conventional wave
solvers, making deep neural networks suitable for interactive sound
rendering applications. Therefore, we propose using appropriate 3D
representation of objects to feed a neural network that can learn
its corresponding scattered acoustic pressure field. We build and
evaluate our method mainly on low frequency sounds and leverage
state-of-the-art geometric ray-tracing techniques to handle high
frequency sounds. For each object, we consider a spherical grid of
incoming directions and model the plane-waves from each direc-
tion of this grid. For each plane wave, our goal is to compute the
scattered field for the object on an offset surface of the object. Our
geometric deep learning method is used to compute the angular
portion of the scattered field (Equation 5), which is expressed using
a spherical harmonic basis. This scattered field approximation is
computed at interactive rates at runtime using a pre-trained net-
work. If two objects move and are in a touching configuration, our
learning algorithm treats them as a one large object and estimates
its scattered field. Similarly, we can recompute the scattered field
for a deforming object.

An overview of our approach is illustrated in Figure 2. The pre-
computation phase consists of a large training module, and we com-
pute a neural network-based representation to compute the acoustic
scattering fields of objects. We use a large synthetic database and
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compute the ground truth scattering fields using an accurate BEM
solver. At runtime, we use an interactive geometric propagation
algorithm that uses ray and path tracing to generate specular and
diffuse reflections and combine them with the scattered fields to
simulate localized wave effects.

3.4 Point Cloud Representations

Our goal is to use an appropriate geometric representation for the
underlying objects in the scene so that we can apply geometric
deep learning methods to compute the sound scattering field. It
is important that our approach should be able handle highly dy-
namic scenes with arbitrary moving objects or changing topology.
It can be difficult to handle such scenarios with mesh-based repre-
sentations [Hanocka et al. 2019; Tan et al. 2018; Zheng et al. 2017].
For example, [Hanocka et al. 2019] calculates intrinsic geodesic dis-
tances for convolution operations, which cannot be applied when
one big object breaks into two. Furthermore, we would like to repre-
sent the ASFs using spherical harmonics, so that they can be easily
integrated with ray-tracing based sound rendering engines. Our
approach uses a point cloud representation of the objects in the
scene as an input. We represent each point and its local surface by a
higher dimension implicit surfaces in the latent space formed by an
implicit surface encoder as shown in the top of Figure 5 to estimate
the spherical harmonics term ¢/ in (Equation 5). It turns out that
we can easily handle dynamic or deforming objects with changing
topologies with point cloud representations as shown in Figure 7.

3.5 Geometric Deep Learning and Shape Representations

There is considerable recent work on generating plausible shape rep-
resentations for 3D data, including voxel-based [Meng et al. 2019;
Sindagi et al. 2019; Wu et al. 2015; Zhou and Tuzel 2018], point-
based [Charles et al. 2017; Li et al. 2018b,a; Monti et al. 2017; Qi et al.
2017; Wang et al. 2019; Yi et al. 2017] and mesh-based [Hanocka et al.
2019] geometric representations. This includes work on shape rep-
resentation by learning implicit surfaces on point clouds [Smirnov
et al. 2019], designing a mesh Laplacian for convolution [Tan et al.
2018], hierarchical graph convolution on meshes [Mo et al. 2019],
encoding signed distance functions for surface reconstruction [Park
et al. 2019], etc. However, previous methods on point cloud shape
representations learn by designing loss functions to constrain sur-
face smoothness on global Cartesian coordinates. Such functions
only provide spatial information of each point and lack information
about local shape of the surface compared to explicit discretization
of the continuous Laplace-Beltrami operator and curvilinear inte-
gral [Do Carmo 2016]. Instead, we use point-cloud based learning
algorithms, which do not require mesh Laplacians for graph neural
networks. This makes our approach applicable to all kind of dy-
namic objects, including changing topologies. We extend these prior
methods to compute a good representation of the ASFs based on
point cloud representations, as described in Section 4.2.

4 LEARNING-BASED SOUND SCATTERING

In this section, we present our learning based sound scattering
algorithm. Our goal is to design an efficient approach that can
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Fig. 3. Simulated sound pressure fall-off and inverse-distance law
fitted curves: We calculate the sound pressure around a sound scatterer
in our dataset using the BEM solver as reference. We examine the sound
pressure from 1m to 10m scattered along 5 directions (0°,72°, 144°, 216°,
and 288°). We regard the sound pressure value at 10m to correspond to
far-field condition, and inversely fit the pressure values for distance within
10m according to Equation 8. We observe that starting from 5m, all fitted
curves closely match with the simulated values. Therefore 1.y = 5m is
used for generating ASFs for neural network training.

handle any object without assumptions regarding its shape (e.g.,
convexity) or topology.

4.1 Wave Propagation Modeling

4.1.1  Acoustic Wave Scattering. Equation (3) describes the behavior
of acoustic waves in free-field conditions. When a propagating
acoustic wave generated by a sound source interacts with an obstacle
(the scatterer), a scattered field is generated outside the scatterer.
The Helmholtz equation can be used to describe this scenario:

(V2 +E)p(x,0) = -Q(x ),

where E is the space that is exterior to the scatterer and Q(x, w)
represents the acoustic sources in the frequency domain. Common
types of sound sources include monopole sources, dipole sources,
and plane wave sources. To obtain an exact solution to (6), the
boundary conditions on the scatterer surface S need to be specified.
In this work, we assume all the scattering objects are sound-hard
(i.e. all energy is scattered, not absorbed) and therefore use the zero
Neumann boundary condition for all S:

P __o vxes, @)
on(x)
where n(x) is the normal vector at x. Alternatively, other condi-
tions including the sound-soft Dirichlet boundary condition and the
mixed Robin boundary condition [Pierce and Beyer 1990] can be
used to model different acoustic scattering problems.

Vx € E, 6)

4.1.2  Data Generation and Augmentation. We aim to train neural
networks that can learn the ASF from an object’s shape represented
as 3D point clouds. The main challenge in getting the training data
is that we need to have a large number of commonly used 3D objects
of moderate sizes for our networks to generalize well. To generate
our learning examples, we choose to use the ABC Dataset [Koch et al.
2019]. This dataset is a collection of one million general Computer-
Aided Design (CAD) models and is widely used for evaluation of
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Fig. 4. Our dataset generation pipeline for neural network training:
Given a set of CAD models, we apply random rotations with respect to
their center of mass to generate a larger augmented dataset. We use a BEM
solver to calculate the acoustic scattering field of each object assuming a
plane wave incident from one direction. The computed fields are compactly
represented as spherical harmonics coefficients, as the label for training.

geometric deep learning methods and applications. In particular,
this dataset has been used to estimate of differential quantities (e.g.,
normals) and sharp features, which makes it attractive for learning
ASFs as well.

We sample 100,000 models from the ABC Dataset and process
them by scaling objects such that their longest dimension is in the
range of [1m, 2m]. The choice of such an object size limit is arbi-
trary and could depend on the specific problem domain (e.g., size of
objects used in applications like games or VR). Because the scattered
pressure field is orientation-dependent, we augment our models
by applying random 3D rotations to the original dataset to create
an equal-sized rotation augmented dataset. To generate accurate
labeled data, we use an accurate BEM wave solver, placing a plane
wave source with unit strength propagating to the —x direction. The
solver outputs the ASF for each object, which becomes our learning
target. The dataset pipeline is also illustrated in Figure 4.

4.1.3 Radial Decoupling. Our goal is to determine the scattering
field over the exterior space E using a wave-solver. This field needs
to be compactly encoded for efficient training. As shown in Equa-
tion (5), acoustic wave propagation in the free-field can be decom-
posed into radial and angular components. Furthermore, the radial
sound pressure in the far-field follows the inverse-distance law [Be-
ranek and Mellow 2012]: p ~ 1/r, as shown in Figure 3. We utilize
this property to extrapolate the full ASF from one of its far-field
“snapshots” at a fixed radius, so that the full ASF does not need to
be stored. Following the inverse-distance law, the sound pressure at
any far-field location (r, 8, ¢) can be computed as

Tre
P(r, 0, ¢’ a)) = Tfp(rrefs 0, ¢’ w), (8)

where . is the reference distance and only p(ryf, -, -, ) needs to
be computed and stored. For brevity, we will omit r in following
sections.

4.1.4  Angular Pressure Field Encoding. A spherical field consisting
of a fixed number of points (e.g., 642 points evenly distributed on
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a sphere surface) is obtained by generating an icosphere with 4
subdivisions. Real valued scattered sound pressures are evaluated
at these field points during wave-based simulation. Spherical har-
monics (SH) can represent a spherical scalar field compactly using
a set of SH coeflicients; they have been widely used for 3D sound
field recording and reproduction [Poletti 2005]. SH function up to
order Iax has M = (Lnax + 1)2 coefficients. The angular pressure
at the outgoing direction (0, ¢) can be evaluated as

Inax  +l

p6.p0) = Y > YO.H (o), ©)

1=0 m=-1

where c;" (w) are the SH coefficients that encode our angular pres-
sure fields. Increasing the number of coefficients can lead to a more
challenging learning problem because the dimension of our learning
target is raised.

4.2 Learning Spherical Pressure Field

In this section, we present our geometric learning algorithm to
learn the angular pressure fields corresponding to ASFs. Our algo-
rithm aims to estimate the SH coeflicients for a given point cloud
representation of an object.

4.2.1  Local Surface Shape and Implicit Surface Encoder. Previous
works on point cloud learning algorithms mostly focus on designing
per-point operations [Charles et al. 2017], encoding per-point fea-
tures to estimate continuous shape functions [Park et al. 2019; Xu
etal. 2019], or minimizing loss between a point normal vector and its
connected vertices [Liu et al. 2019]. However, high frequency ASFs
are affected by fine-grained geometric details. These point-based
methods lack a good discretization of the curvilinear integral around
a given point and thereby lack sufficient shape details to correctly
approximate the ASFs and may not scale well as the simulation
frequency increases.

For each point in the input cloud and its neighborhood in the
Euclidean space, we assume that it can form a piecewise smooth
surface around the point and each point is encoded by the shared
multi-layer perceptron (MLP) [Rumelhart et al. 1985] and can be
represented by a vector in the higher dimensional latent space (see
Figure 5). Thus, a piecewise-linear approximation of the surface
around a given point can be used to estimate the local surface shape,
where differential coordinates [Do Carmo 2016; Sorkine 2006] (i.e.
J— coordinates) of each vertex v; can be expressed as:

— 1
6 = EzjeN(i)(vi -7;). (10)
1

Here §; encapsulates the local surface shape, N (i) represents the k
nearest neighbors of vertex v; in the Euclidean space, and d; = [N (i)|
is the number of immediate neighbors of v;. To estimate the mean
curvature of the local surfaces formed by each point and its spa-
tial neighbors, we use the radial basis function ¢(-) = exp_”'||2 to
weight each vector, rather than using the uniform weight shown
in Equation 10. Since there are N! permutations for a point cloud
with N vertices, every operation on point clouds should be permu-
tation invariant (i.e. input permutation of points should not change
the output of our network). Our weight function is designed to be
positive definite and symmetric for any choice of data coordinates.
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4.2.2 Implicit Surfaces and Discrete Laplacian. To encapsulate the
local surface shape, each point v; is projected onto higher dimension
space using MLPs, and the implicit surface is defined on the latent
space z as shown on the top of Figure 5 . For one layer MLP, this is
zi = relu(W -0} +b), where W and b are learnable parameters in our
network. To calculate the — coordinates, the closed simple surface
curve around v; and its immediate neighbors in the Euclidean space
(illustrated as green circles with blue outline in Figure 5) is used to
evaluate the Equation 11. In the latent space, the local surface shape
is encoded as an implicit surface. The direction of the differential
coordinate vector, as defined in Equation (11), approximates the local
normal direction. Following [Taubin 1995], the discrete Laplacian
of implicit surface signal z given by the weighted average over the
neighborhoods is represented as:

_ - = —
gimeleit s exp (-1 - T G -2
i - jENEuclideun(i) 5 - =
jENEuclidean(i) exp(_Hvl - UJ”)

(11)

To compare the two §— coordinate representations, we highlight the
dB error between the pressure fields reconstructed from groundtruth
spherical harmonics term and the predicted ones using different
neural networks in Table 3. We observe that §7™PLi¢it _ coordinates
result in lower loss. This signals that our formulation provides a
good approximation of ASFs.

4.2.3 Neural Network Design. Our neural network takes the point
cloud as an N X 3 input where N represent the number of points in
the point cloud. The output is the Spherical Harmonic coefficients
with length 16. For each point marked as red circle with blue outline
in Figure 5, four layers of shared-MLP are applied to encode the
implicit surface as demonstrated in the top left of Figure 5. More-
over, its k neighbors in the Euclidean space, marked as green circle
with blue outline, together with the center point, marked as red
circle, are fed into the implicit surface encoder and forming a higher
dimensional representation of the center point in the latent space.

Next, the discrete Laplacian defined in Equation (12) is evaluated
to estimate the implicit surface in the closed simple surface curve
around the given point in the latent space, marked yellow in Figure 5.
The final representation of the center point, illustrated in the left
bottom of Figure 5, for point z; (marked as a red circle with yellow
outline), is defined as:

T

>

feature(v;) = (ZT 0(% - %) (@ - %)

i - —
2 jeNpuctidean (i) €XP(=10i = 15[

T
0(@ - )(F - 2) o@-E-7
- T ) (1
jENEuclidean(i)(p(Ul - UJ) jENEuclidean(i)(p(Ul - UJ)
T
¢(zi - %) (7 - %) ¢(zi - zn) (Zi = Zn)
% jeNigrens (0 (7 = Z7) % jeNyatens (07 = Z7)

The shape of the final per-point feature representation for point v;
is (1 + 2k, 128), where k = 5 is the number of the nearest neighbors
and 128 is the dimension of the latent space. The implicit surface
representation, as in Equation (12), is further fed into the MLP,
forming the differential coordinates in Equation (11), and global
pooling is applied to extract the global features. The global features
regress the predicted spherical harmonic term ¢ (Equation 5) using
fully connected layers.
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Fig. 5. Architecture of our point cloud regression network : The input of our neural network is a N X 3 point cloud and the output of our network is the

spherical harmonic coefficients as a vector of length 16. For each point, marked as red circle with blue outline, we incorporate §— coordinates to learn the
local shape around the point through a encoder. Next, we continue to find the local shape around the point, marked as red circle with yellow outline. Finally

we incorporate the §— coordinates both in the latent space and in the Euclidean space to represent the point feature of the given point. By applying 2 MLP
layers, we leverage the geometric details and output the predicted SH coefficients.

5 INTERACTIVE SOUND PROPAGATION WITH
WAVE-RAY COUPLING

In this section, we describe how our learning-based method can be
combined with geometric sound propagation techniques to compute
the impulse responses for given source and listener positions. Then,
we render them.

Hybrid Sound Propagation. We use a hybrid sound propagation
algorithm that combines wave-based and ray acoustics. Each of
them handles different parts of wave acoustics phenomena, but they
are coupled in terms of incoming and outgoing energies at multiple
localized scattering fields. Specifically, our trained neural network
estimates the scattering field and is used to compute propagation
paths when sound interacts with obstacles in the scene. On the other
hand, modeling sound propagation in the air along with specular
and diffuse reflections at large boundary surfaces (e.g., walls, floors)
is computed using ray and path tracing methods [Schissler et al.
2014].

Ray Tracing with Localized Fields. Our localized ASFs are repre-
sented using SH coefficients. Given the most general ray tracing
formulation at a scattering surface, the sound intensity I,y; of an
outgoing direction (6, ¢o) from a scattering surface is given by the
integral of the incoming intensity from all directions:

Tout (8, o, ) = /S Iin (85, 412 0) f (61, 41, Oos o 0)dS,  (13)

where S represents the directions on a spherical surface around
the ray hit point, I;, (0;, $i, @) is the incoming sound intensity from

direction (6;, ¢;), and f(6;, ¢i, 6o, Po, ) is the bi-directional scatter-
ing distribution function (BSDF) that is commonly used in visual
rendering [Pharr et al. 2016]. Our problem of acoustic wave scat-
tering is different from visual rendering in two aspects: (1) sound
wave scatters around objects, whereas light mostly transmits to
visible directions or propagates through transparent materials; (2)
BSDFs are point-based functions that depend on both incoming
and outgoing directions, whereas our localized scattered fields are
region-based functions, as shown in Figure 8. Therefore, we replace
BSDFs in Equation (13) with our localized scattered field p (0, ¢, w)
representation from Equation (9). Our choice of a spherical offset
surface to model the scattered field also enables us to perform in-
tegration over the whole spherical surface in a straightforward
manner, since evaluating spherical coordinates is efficient with SH
functions. Although p(0, $, w) encodes only the outgoing directions
and assumes incoming plane waves to —x direction, one can easily
rotate the point cloud to align any other incoming direction to the
—x direction and then use our network to infer p(6, ¢, w) for that
direction. We update Equation (13) to

Tout (B0, 0. ) = [5 IO, 61, 0)0> (O dro )dS. (1)

We use the Monte Carlo integration to numerically evaluate the
outgoing scattered intensity:

1 i lin(0), $), 0)p*(0), $)> )
N Pr(Gj,¢j) ’

where N is the number of samples and Pr(0;, ¢;) is the probability of
generating a sample for direction (6}, $#;). A uniform sampling over

Tout (6o, $o, ) =

(15)

=
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Fig. 6. Comparing Acoustic Scattering Fields: We illustrate the acoustic scattering fields for different objects (shown in separate rows) and four different
simulation frequencies (shown in separate columns). These objects are not seen during training and their shape varies based on convexity and topology (e.g.,
genus, connected components) characteristics, as shown on the left. For each image block, the left column shows two different views of an object; the top
row (target) is the groundtruth ASF computed using a BEM solver on the original mesh (takes about a few minutes); the middle row (predict) represents the
ASF computed using our neural network based on point-cloud representation (takes ~ 1ms on a GPU). The bottom row (difference) highlights the difference
between the groundtruth and our prediction, using a separate colorbar. We see a close match for most cases and these results demonstrate that our learned
scattering fields are a good approximation of those computed using an accurate wave-solver. More visualization results are shown in the supplementary file.

the sphere surface gives Pr(6;, ¢;) = é. In theory any probability
distribution can be used. As N increases, the approximation becomes

more accurate.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2025.

IMPLEMENTATION AND RESULTS

In this section, we describe our implementation and highlight the
performance on many dynamic benchmarks.
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Fig. 7. Moving and Deforming Objects: The left column represents two objects moving close to each other. When the objects are very close, our approach
treats them as one unified object and computes its point cloud representation. The right column shows different frames of a deforming sphere. The training
dataset (from ABC Dataset) does not contain deforming objects nor moving objects. Our algorithm generates good approximations to ASFs for such dynamic

objects, as we compare with the exact BEM solver.
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Fig. 8. Hybrid Sound Propagation: When a far-field wave intersects a
scattering object, we construct a point cloud containing surrounding objects
within a pre-defined search radius (shown as a circle). The outgoing sound
direction is sampled over the whole spherical surface and the scattered en-
ergy in each direction is computed by the acoustic scattered field generated
by our trained neural network. This can handle diffraction and occlusion
effects, while the ray tracer also computes specular and diffuse reflections.

6.1 Parameters

Our algorithm involves various parameters. In this section, we ex-
plain the choice of those parameters and their impacts on our im-
plementation.

Mesh Pre-processing. The original meshes from the ABC Dataset
have high levels of details with fine edges of length shorter than 1cm.
Dense point cloud inputs could also be modeled or collected from
the real-world scenes with granularity similar to this dataset. How-
ever, a high number of triangle elements in a mesh will significantly
increase the simulation time of BEM solvers. For wave-based solver,
our highest simulation frequency is 1000Hz, which converts to a
wavelength of 34cm. Therefore, we use a combination of mesh sim-
plification and mesh clustering algorithm to ensure that our meshes
have a minimum edge length of 1.7cm, which is 1/20 of our short-
est target wavelength. This is sufficient according to the standard
techniques used in BEM simulators [Marburg 2002]. Most meshes
after pre-processing have fewer than 20% number of elements than
the original and the BEM simulation for dataset generation gains
over 10X speedup.

Reference Field Distance. Since the inverse-distance law does not
hold in the near-field of objects, we need to find a suitable distance
for computing our reference field. We experimentally simulate the
sound pressure fall-off with respect to distance and observe that

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2025.
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Fig. 9. Spherical harmonics approximation of sound pressure fields:
We evaluate different orders of SH functions to fit our pressure fields at 4
frequencies and calculate the relative average fitting errors. We observe that
high-frequency pressure fields result in larger fitting errors, as compared
low-frequency pressure fields. Therefore, we use learned scattered fields for
lower frequencies (i.e., < 1000Hz) during our training phase. We can handle
higher frequencies by increasing the SH order, though that would increase
the training time.

sound pressure that is 5m or further away from the scatterer closely
agrees with this far-field approximation (see Figure 3). Therefore,
we choose to calculate the pressure field on an offset surface 5m
away from the scatterer’s center using a BEM solver (i.e., setting
Tref = 5m in Equation 8). Note that this choice of 5m is not strict
or fixed. If higher accuracy along the radial line is desired, multiple
locations (especially in the near field) can be sampled during the
simulation to interpolate the curve at a higher accuracy. The pre-
computation time and memory overhead will increase linearly w.r.t
the number of sampled distance fields.

Max Spherical Harmonics Order. We experiment with the number
of SH coefficients by projecting our scattered sound pressure fields
to SH functions with different orders, as shown in Figure 9. Based
on this analysis, we choose to use up to a 3rd order SH projection,
which yields sufficiently small fitting errors (relative error smaller
than 2%) with 16 SH coefficients. This also sets the output of our
neural network (Section 4.2.3) to be a vector of length 16.

6.2 Wave-Solver and Training

We use the FastBEM Acoustics software ! as our wave-based solver.
Simulations are run on a Windows 10 workstation that has 32 In-
tel(R) Xeon(R) Gold 5218 CPUs with multi-threading. In order to
accelerate the overall computation, we use two different versions of
BEM solvers. First we use the adaptive cross approximation (ACA)
BEM [Kurz et al. 2002] to compute the ASF since it can achieve near
O(N) computational performance for small to medium sized models
(e.g., element count N < 100, 000). If this solver fails to converge
within some fixed number of iterations, we use the conventional and
accurate BEM solver. Overall, it takes about 12 days to compute the
ASF up to 1000Hz frequency of about 100,000 objects from the ABC
Dataset. The sound pressure field is evaluated at 642 field points that
are evenly distributed on the spherical field surface. Next, we use the
pyshtools % software [Wieczorek and Meschede 2018] to compute

Uhttps://www.fastbem.com/
Zhttps://shtools.oca.eu/shtools/public/index.html
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the spherical harmonics coefficients from the pressure field using
least squares inversion.

Training Settings. Each network model is trained on a GeForce
RTX 2080 Ti GPU using the Tensorflow framework [Abadi et al.
2016]. The dataset is split into training set and test set using the
ratio 9 : 1. In the training stage, we use Adam optimizer to minimize
Ly norm loss between predicted spherical harmonic coefficients and
the groundtruth. In practice, the learning rate is set to 1 X 1073 and
decays exponentially. The batch size is set to 128 and typically our
network converges after 100 epochs. The number of our trainable
parameters is 267k, and the number of parameters in PointNet is
about 0.8M.

6.3 Runtime System and Benchmarks

We use the geometric sound propagation and rendering algorithm
described in [Schissler et al. 2014]. Our sound rendering system
traces sound rays at octave frequency bands at 125Hz, 250Hz, 500Hz,
1000Hz, 2000Hz, 4000Hz, and 8000Hz. The direct output from ray
tracing for each frequency band is the energy histogram with re-
spect to propagation delays. We take square root of these responses
to compute the frequency dependent pressure response envelopes.
Broadband frequency responses are interpolated from our traced
frequency bands, and the inverse Fourier transform is used to re-con-
struct the broadband impulse response. Our method does not pre-
serve phase information, so a random phase spectrum is used during
the inverse Fourier transform. In practice, this random phase spec-
trum does not introduce noticeable sound difference [Kuttruff 1993].

We require that the wall boundaries are explicitly marked in our
scenes. As a result, when a ray hits the wall, only conventional
sound reflections occur for all frequencies. During audio-visual ren-
dering, when a ray hits a scattering object, we first extend the hit
point along its ray direction by 0.5m and use it as the scattering
region center. We include all the points within a search radius of
1m from the region center to generate a point cloud approximation
of the scatterer. This point cloud is resampled using furthest point
sampling and fed into our neural networks. Our network predicts
the ASFs for sound frequencies corresponding to 125Hz, 250Hz,
500Hz and 1000Hz. The higher frequencies (i.e., 2000Hz, 4000Hz,
and 8000Hz) are handled by conventional geometric ray-tracing
with specular and diffuse reflections and it does not use ASFs. Our
neural network implementation is light-weight with only four layers
and has small prediction overhead of less than 1ms per view on an
NVIDIA GeForce RTX 2080 Ti GPU. The interactive runtime propa-
gation system is illustrated in Figure 8. Our ray-tracer performs 200
orders of reflections to generate late reverberation effects.

We evaluate the performance of our hybrid sound propagation
and rendering algorithms on the following benchmark scenes. They
have with varying levels of dynamism in terms of moving objects
and are highlighted in the supplemental video. The runtime perfor-
mance of audio rendering is highlighted in Table 2.

Floor: The floor scene demonstrates the validity of our sound ren-
dering in a simplest scenario containing only one static sound
scatterer and a static sound source above an infinitely large
floor. The listener moves horizontally so that the sound source
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visibility changes periodically. We use this benchmark to eval-
uate the correctness of our approach as the listener enters
or leaves the occluded region, and compare our results with
groundtruth BEM simulation.

Sibenik: This scene consists of two moving disjoint objects, con-
sidered as scatterers. The two scatterers revolve around each
other in close proximity such that there are complicated near-
field interactions of sound waves. Prior techniques for dy-
namic scenes [Rungta et al. 2018] cannot handle such scenar-
ios as the objects are not well-separated and their near-fields
overlaps. In our approach, when two objects are in close prox-
imity or touching, we treat them as one large object or a
composite scatterer and compute its point cloud approxima-
tion. We use our neural network to compute the ASF for this
composite scatterer.

Trinity: This benchmark showcases the ability of our method to
handle scenarios with a large number of moving objects. In
this scenario, many objects fly across the room and dynami-
cally generate new composite scatterers or decompose them
into separate scatterers. As a result, the total number of dis-
joint objects in the scene change. Moreover, the occluded
regions in the scene also change dynamically and create
challenging scenarios in terms of sound propagation. Our
approach can still generate smooth audios despite highly
dynamic nature of the scene.

Havana: This benchmark includes two moving walls that are gen-
erally larger than scatterers in previous benchmarks. We use
this benchmark to show that our approach can also handle
large static objects, in addition to a large number of dynamic
objects.

Scene #Vert  #Scatterers Frame time

Floor 2037 1 10.65ms
Sibenik 46880 2 6.87ms
Trinity 138916 6 12.95ms
Havana 28542 2 6.78ms

Table 2. Runtime performance on our benchmarks. The computation of
ASFs takes < 1ms per view and most of the time is spent in ray tracing.

6.4 Analysis

Ablation Study and Comparisons. We perform ablation stud-
ies with our network design and summarize the results in Table 3.
We justify the design of our network with this ablation study, includ-
ing the use of §— coordinates, RBF-weighted function as well as the
implicit surface encoder, as highlighted in Figure 5. We use Point-
Net [Charles et al. 2017] as the baseline, where only per-point MLP
layers are applied on each point in the point cloud. RBF-weighted
d— coordinates (as described in Equation 11), uniform-weighted
d— coordinates (described in Equation 10), implicit surface encoder
shown in the top of Figure 5 are considered as subjects of ablation
studies. We observe that our fine-grained geometric feature rep-
resentation in Equation 12 results in larger reduction in dB error
as compared to PointNet [Charles et al. 2017]. In general, the first
four experiments on the 125Hz test dataset do not show significant
differences. However, for {500Hz, 1000Hz} test cases, our implicit
surface encoder improves the performance by approx. 0.4 dB.

{RBF-weighted §-coord | implicit surface} | dB Error { 125Hz , 250Hz , 500Hz , 1000Hz }
XXy 349 | 3.56 | 3.71 | 4.23
IS 338 | 341 | 357 | 447
KV} 328 | 3.38 | 352 | 3.85
(/1 } (ours) 3.23 | 344 | 3.47 | 3.80
PointNet [Charles et al. 2017] 3.96 | 4.42 | 3.89 | 4.43

Table 3. Ablation study: In this evaluation, we compare the performance
on uniform §— coordinate in Eq. (10), weighted §— coordinates in Eq. (11)
and implicit surface estimation in Eq. (12) on our test dataset( including 10k
objects ) at frequency bands {125Hz, 250Hz, 500Hz, 1000Hz}. The best result
for each frequency is highlighted in bold (lower error is better). We alter
between choosing Eq. (10) and Eq. (11) that results in four different combi-
nations: Row 1and 2, 3 an 4. Next, we experiment the use of implicit surface
encoder (Row 3 and 4). Our proposed network design (Row 4) highlights
superior performance in terms of ASF approximation for most frequencies.
A lower value indicates a better result.

Evaluation. Our goal is to approximate the acoustic scattering
fields of general 3D objects. While there is a preliminary 2D scat-
tering dataset [Fan et al. 2020], there are no general or well-known
datasets or benchmarks for evaluating such ASFs or related com-
putations. Therefore, we use 10k objects from our test dataset to
evaluate the performance of our trained network in terms of accu-
racy. Compared with the original ABC Dataset, our test dataset has
been augmented in terms of scale and using different orientations to
evaluate the performance of our learning method. We analyze the
numerical accuracy of our method by comparing our neural network
predictions with groundtruth ASFs generated by the BEM solver.
All objects used to evaluate the accuracy have not been seen in the
training set. We highlight the acoustic pressure fields computed
using the accurate BEM solver (i.e., the groundtruth) along with the
ones estimated using our network for different objects in Figure 6.
We also highlight many configurations of objects in close proximity,
such that their near fields overlap. Our approach treats such almost
touching objects as one composite object, computes its point cloud
approximation, and estimates the ASF using the neural network.
Even for such challenging scenarios, our learned scattering fields
closely matches the ones computed using the BEM solver. These
example highlights that our learning approach can generalize to
unseen objects and approximate the ASFs with good accuracy.

Frequency Growth. In theory, our learning-based framework
and runtime system can also incorporate wave frequencies beyond
1000Hz. However, two important factors need to be considered
when extending our setup: 1) the wave simulation time increases
with the simulation frequency (e.g., between a square and cubic
function for an accurate BEM solver); and 2) the ASF becomes more
complicated at higher frequencies, which makes it more difficult
to be learned or approximated using the same neural network. We
highlight these observations quantitatively in Figure 10. Note that
the simulation time is governed much by the choice of the wave
solver, as well as the relevant parameters/strategies used. We pre-
processed our meshes according to the highest simulation frequency
(i.e., the one with the shortest wavelength) and used that mesh rep-
resentation for all frequencies. When a higher frequency needs to
be added, the meshes need to have finer details, meaning more
boundary elements will be involved (e.g., at least four times more
elements when the simulation frequency doubles). A frequency-
adaptive mesh simplification strategy [Li et al. 2015] can be used to
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Fig. 10. Simulation time and network prediction errors w.r.t fre-
quency growth: We highlight the cost of adding higher frequencies to our
pipeline. Left y-axis and bar plot: the average simulation time for each object
when parallelized with 8 threads; Right y-axis and line plot: our average
network prediction error of ASFs.

reduce the simulation time at low frequencies. Our network pre-
diction error also grows with the target frequency, but not at a
prohibitive rate. We can reduce this error by using more training
examples and more sophisticated neural network designs.

7 CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

We present a new learning-based approach to approximate the acous-
tic scattering fields of objects for interactive sound propagation. We
exploit properties of the acoustic scattering field and present a novel
geometric learning algorithm that uses a point-based approximation
and the local shapes are encoded using implicit surfaces. We use a
four-layer neural network that computes a field representation us-
ing 3rd order spherical harmonics. We use a large training database
of 100,000 objects, along with random 3D orientations and scaling
of each object, and generate the accurate labeled data with a BEM
solver. We evaluated the accuracy of our method on a large number
of objects not present in the training dataset and the initial results
are promising. Furthermore, we combine with a ray-tracing based
sound propagation algorithm for sound rendering in highly dynamic
scenes. Our approach is general, has low additional runtime over-
head on top of ray tracing, and can handle diffraction effects and
occluded regions for interactive applications.

Our approach has several limitations. These include all the chal-
lenges of geometric deep learning in terms of choosing an appro-
priate training dataset and large training time. Furthermore, we
assume that objects in the scene are sound-hard and do not take
into account various material properties. Our four-layer network
has been tested for frequencies up to 1000Hz, and we may need to
design better learning methods for higher frequencies. The overall
accuracy of our hybrid propagation algorithm lies between a pure
geometric (ray-tracing) method and a global numeric solver. There
is a linear scaling of training time with the number of frequencies
and the number of scattering objects, while the simulation time
could scale as a cubic function of the frequency. As a result, the pre-
computation overhead can be high. One way to overcome is to limit
the training to the kind or class of objects that are frequently used
in an interactive application (e.g., a game or VR scenario). This is
equivalent to performing customized training for a specific scenario.
There are many avenues for future work. In addition to overcoming

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2025.

these limitations, we need to evaluate its performance in other sce-
narios and integrate with different applications. It would be useful to
take into account the material properties by considering them as an
additional object characteristic in our training database. We would
also like to use other techniques from geometric processing and geo-
metric deep learning to improve the performance of our approach,
e.g., using mean curvature vectors over linear approximations.
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