
Learning a Reversi Board Evaluator with Minimax

Kevin T. Engel
University of Maryland, College Park, MD 20782

A board position evaluator is a crucial component for strong computer play in many games such
as checkers, chess, and Reversi. The board evaluator is typically trained using pre-existing game
data, an approach which is generally non-optimal, especially in the early stages of a game. Instead,
we propose a new method which relies on Minimax search to train a series of models backwards from
the endgame, propagating information about endgame scoring backwards to earlier positions. In the
limit of perfect models, our method is optimal, converging to the full Minimax board evaluation. We
test our method experimentally by training a simple Reversi model using both our Minimax method
and high-level tournament game data. When played against each other, our model outperforms the
game data model, averaging 5 more stones per game, and winning approximately 60% of the matches.

I. INTRODUCTION

The Minimax algorithm has become a standard feature
of computer game players. Minimax is used to identify
the best moves in a game tree generated by each player’s
legal actions. Terminal nodes represent finished games;
these are scored according to the game rules. Scores can
then be propagated backwards through the game tree by
assuming that each player plays perfectly, always choos-
ing the action which maximizes their eventual endgame
score. For short games this algorithm can be used ex-
actly, essentially solving the game. For longer games
however, the full search is infeasible, and the tree search
is usually halted at some fixed depth. Because these no
longer correspond to finished games, a method for scor-
ing intermediate states is required. For board games like
checkers, chess, and Reversi, the number of intermediate
states is immense, one for each unique board state, and
a model for evaluating board positions is required.

In this work our focus is not on the models, but on
the methods used to train the models. The simplest and
most commonly used method is to train a board evalu-
ator on previous game data. For this training data, a
board’s score is given by the game’s outcome. Although
this produces reasonable results, there is no guarantee
that the model is learning the optimal strategy, espe-
cially for early boards where the connection between the
current position and end game score can be quite ten-
uous. Instead, we propose a new method which lever-
ages the perfect play of Minimax in order to propagate
endgame information backwards to earlier game stages.
In our method, models are trained in stages, starting near
the end game. Training data is provided by generating
random boards which are scored using Minimax and the
previous model. We give more details about our method
in Section IV, but first we present some background in-
formation and related work in Sections II and III. In
Section V we present a simple Reversi model and discuss
the various options and parameters which should be ex-
plored to give the best results. These are experimentally
determined in Section VI which culminates in a series of
Reversi matches between a Minimax trained model and
a game data trained model.

II. BACKGROUND

Reversi is a two player game in which opponents take
turns placing stones of their color (white/black) onto the
board, traditionally an 8 × 8 square grid. A legal move
consists of a stone placement to an empty square which
traps a continuous sequence (either horizonally, verti-
cally, or diagonally) of your opponent’s pieces between
two stones of your color. All pieces which have become
trapped in this manner are then flipped to the opposing
color. If a player has no legal moves, they must pass,
allowing their opponent to play again. The game be-
gins with a board configuration consisting of 4 stones, 2
of each color placed diagonally, forming a square at the
center of the board. Players then alternate turns until
the board is full or neither player has a legal move. At
this point, the player with the most stones of their color
on the board is the winner.

(a) (b) (c) (d)

FIG. 1: An example of beginning Reversi gameplay. Red stars
indicate legal moves for the active player.

Developing a computer Reversi player requires a
method for identifying the best move from any board
position. Given unlimited computational resources, the
ideal approach would be to exhaustively search the en-
tire game tree, assuming both players play perfectly.
The leaf nodes of the game tree represent endgame
boards and can be scored for the white player as
white stones− black stones. Non-terminal nodes repre-
sent boards where the active player has one or more legal
moves. The assumption of perfect play implies that these
nodes can be scored as the maximum (minimum) score
of their child nodes for white (black) active player. By
propagating the scores back to the starting position, the
computer player can then choose the move which gives
the best score. This is known as the Minimax algorithm

2

and it has become a standard approach to game AI.

For short games such as tic-tac-toe, the Minimax al-
gorithm can be used exactly as described, but for longer
games like Reversi, chess, Go, etc, such a calculation is
only feasible for board positions near the endgame. Be-
cause the computational cost is exponential in the search
depth, a full search is impractical for most board posi-
tions. The runtime of the Minimax algorithm can be
improved using alpha-beta pruning [1], but the overall
exponential dependence on the search depth cannot be
avoided. Because of this, Minimax is usually run with
a fixed search depth, resulting in leaf nodes which are
not endgame boards. The exact score for these boards is
therefore unknown, and a board position evaluator must
be used to predict the score. Much of the work in game
AI centers on creating a good position evaluator - finding
important features and designing or training a model to
predict the quality of intermediate board positions.

III. PREVIOUS WORK

One of the first world-class Reversi programs was cre-
ated by Paul Rosenbloom in 1982 [2]. Iago used a linear
combination of mobility-based features as well as edge
feature weights which were drawn from a precomputed
table. The table holds values for each of the 6561 (38)
possible edges, and is computed using an iterative algo-
rithm. Each edge is assigned an initial value given by
the sum of hand generated weights for each square which
attempt to measure the importance of position and sta-
bility. The edge values are then updated by allowing for
legal moves which can turn one edge configuration into
another. If the transformation results in a higher edge
weight, the original edge weight is replaced by the higher
one. This process is repeated for several iterations until
the edge weights have converged. Instead of training a
board evaluator, Iago designed one - all of the weights
were chosen by hand. A limited set of weight variations
were considered, and the best set was chosen by playing
the different versions of Iago against themselves.

A similar program known as Bill was designed in 1986
by Lee and Mahajan [3]. The basic structure was the
same, including the table-based evaluation scheme, but
Bill introduced efficiencies in evaluating board positions
and game tree search which gave it roughly a 2-ply advan-
tage over Iago. The edge weights were initialized as be-
fore, but a more complicated scheme involving Minimax
search and fabricated probabilities was used to generate
the final edge weight table.

In 1988, Bill was substantially improved by replacing
some of the old hand-tuned weights with ones which were
trained using game data [4]. 3000 games were generated
by self-play using the old version of Bill. Boards were
then labeled as win/loss depending on the game outcome.
These examples are used to learn the parameters of a
two class multivariate normal distribution in the relevant

board features (x):

p(x|c) =
1

2π−N/2 |Σc|1/2
e−

1
2 (x−µc)T Σ−1

C (x−µc) . (1)

New boards can then be evaluated using the scoring func-
tion:

g(x) = log(p(x|win))− log(p(x|loss)) . (2)

From evenly matched starting positions, this new version
of Bill defeated the old one by a ratio of 2:1.

The final Reversi computer player which we will con-
sider is Logistello, an overview of which can be found
in [5]. This program incorporated several advances over
its predecessors. Search is an important part of game
AI, and Logistello was able to search deeper than its op-
ponents by using ProbCut - an algorithm which prunes
subtrees which are probablistically irrelevant [6]. Logis-
tello’s creator, Michael Buro, also demonstrated that us-
ing logistic regression for model training achieved bet-
ter results than the quadratic disciminator used by Bill
[7]. Logistello finally eliminated hand tuned weights, as
all weights were trained using game data generated by
about 60000 matches between other expert level Reversi
computer players. As before, the boards were initially
scored using the game outcome. Given the large num-
bers of games, though, some boards may have multiple
successor boards present in the dataset; in that case their
scores are updated using the Minimax principle, giving a
more accurately scored training set.

Reversi AIs have evolved from using hand tuned
weights to learning weights with expert-level game data.
This has become the dominant approach to creating
a board position evaluator. An alternative method is
the use of self-play and reinforcement learning, which
has achieved some success in the past, most notably
in backgammon [8]. Reinforcement learning techniques
have been employed in many games, for a general review
see [9]. For Reversi in particular, a number of attempts
have been made [10–12] with varying levels of success.

IV. LEARNING A BOARD EVALUATOR WITH
MINIMAX

As discussed in the previous section, past attempts at
creating a strong Reversi (and other games) AI have ap-
proached the problem of board evaluation primarily as a
modeling challenge - identifying the useful features and
selecting the correct model. While this is undoubtedly
important, little attention has been paid to the data used
to train the models. The usual approach is to use prior
existing game data where the match outcome determines
the score of all board positions encountered in the game.
If both players played perfectly, this would be the cor-
rect approach - the score would be the actual Minimax
value and the model would learn to predict these values.
Both human and computer players are not perfect, how-
ever, and while the occasional mistake may act as noise

3

to be overcome by increased sampling, any collective flaw
in board evaluation by the players will be reproduced in
models which train on this data.

We propose an alternative method of model training
which uses the Minimax algorithm to propagate board
evaluations backwards from the endgame. We describe
here its application in Reversi, but it should be adaptable
to other games. It is a simple idea - we first generate a
set of boards with N stones by making moves randomly
from the starting configuration. These boards are then
scored using the Minimax algorithm (N should be chosen
sufficiently close to the endgame to make this practical)
and an N stone model is trained. Next we generate a
set of boards with N −M stones by again making ran-
dom moves. Scores for these boards are generated using
Minimax with a fixed depth of M , with leaf nodes scored
using the N stone model. In this way we generate models
for N , N −M , N − 2M , . . . stone boards.

In the limit of perfect models (i.e sufficiently com-
plex to perfectly capture the board evaluation) then this
method is clearly sound; given enough data, each model
would learn to predict the Minimax value exactly. This
is not the case when training on game data, any common
mistakes made by the players will also be learned by the
model. A different, less-used approach to model training
involves self-play and reinforcement learning. Like our
method, this one does not rely on potentially flawed game
data, however there are issues with fully exploring the
search space and converging to non-optimal minima[13].
Our Minimax method does not suffer from these draw-
backs; given a reasonably good model, we expect it will
outperform these other training methods.

V. EXPERIMENTAL SETUP

FIG. 2: 88 stone Reversi board

We explore various aspects of our Minimax training
method using the non-standard Reversi board shown in
Fig 2. The larger board helps ensure that our method
works for longer games, as well as demonstrating the
value of our method when dealing with games for which
no game data is available. For this board we decided to
use the following set of simple features:

• Parity - +1 if black/white is the active player and
the number of stones on the board is even/odd, -1
otherwise.

• Mobility - number of distinct legal moves a player
can make.

• Frontier - number of empty spaces adjacent to a
player’s stones.

• Flippable Pieces - sum of the number of flipped
stones resulting from each legal move of a player’s
opponent (some overcounting may occur).

• Board Features - player’s occupancy of unique
board spaces. The 88 stone reversi board has 2
mirror symmetries, and therefore only 22 board fea-
tures.

For all features except parity, the features are first cal-
culated for the white player, then for the black player,
and the difference is reported as the result. As an ex-
ample, if the white player has stones on 2 of the corner
squares, the black player has a stone on 1 of the corner
squares, and the last corner is empty, then the board fea-
ture corresponding to the corner will have value 2−1 = 1.

We consider three different types of models which uti-
lize these nf = 26 features. When training on m boards,
we will have an m× (nf + 1) feature matrix D (a column
of ones is added to include an offset) and score vector y.
Our first model is a linear one, minimizing the objective
function:

f(w) =
1

2
(Dw − y)

2
. (3)

Our next model is logistic, with objective function:

f(w) = g(diag(sign(y))Dw) , (4)

g(z) =
∑
i

ln
(
1 + e−zi

)
.

The third model is a support vector machine, with ob-
jective function:

f(w) =
1

2

(
w2 − w2

0

)
+ h(diag(sign(y))Dw) , (5)

h(z) =
∑
i

max{1− zi, 0} ,

where w0 is the weight corresponding to the offset.
In addition to the choice of model, our Minimax

method contains two parameters: N - the number of
stones in the last model, and M - the gap between mod-
els. N is determined by the desired runtime, and should
be chosen as small as possible. For our implementation
we chose N = 78, 10 stones away from a full board.
This choice allowed us to generate and score thousands
of training examples with only a few minutes of runtime.
Choice of M is more dependent on the game - if the im-
portance of features changes quickly as a function of time,
M should be chosen small, otherwise a larger M is pre-
ferred. However, because our method uses Minimax with
a search depth of M in order to score training examples,
there is a practical limit to the size of M .

Once a set of models is learned, a game of Reversi can
be played in the standard way - by using Minimax with

4

some fixed search depth and scoring the leaf nodes by
using the models. Because we learn models in discrete
intervals, some decision must be made as to how to score
intermediate boards. We consider rounding up to the
nearest model, as well as linearly interpolating between
the two nearest models.

Given these various choices of models and parameters,
we select the best by competing the Reversi AIs against
each other. In order to generate different games, we make
random moves from the starting configuration until we
have 16 stones, then allow the AIs to take over. To en-
sure fairness, the board is then replayed with the colors
swapped. Because some starting positions may be very
unequal, we expect the win/loss ratio to be artificially
pulled towards 1

2 . With this setup, the average stone
differential may be a truer judge of quality.

VI. RESULTS

A. Training method

We begin with a comparison of the 3 different model
types - linear, logistic, and SVM - discussed in the pre-
vious section. 10000 boards with 78 stones are randomly
generated, then converted into feature matrix D, and
Minimax score vector y. A set of weights is learned for
each model - for the linear model, Eq (3) can be mini-
mized exactly, for the logistic model we use batch gradi-
ent descent, and for the SVM we apply an ADMM ap-
proach [14] to minimize the non-differentiable objective
function in Eq (5). Because the number of training sam-
ples was far greater than the number of features, we also
use the training data to compare the resultant weight
vectors. These are compared using two measures: the
standard deviation of the predicted score from the ac-
tual score:

σ =

√
1

N
(Dw − y)

2
, (6)

and the classification success rate:

p =
1

N

∑
i

1

2
(sign(yi(Dw)i) + 1) . (7)

Because the logistic and SVM models are classifiers, their
weight vectors must be rescaled in order to make σ a
meaningful comparison. We choose the scaling which
minimizes σ .

The results for the 78 stone models are shown in Ta-
ble I. We find that even with our limited feature set,
the models do a fairly good job. When asked to predict
whether a board is a winning or losing one, the models
get it right more than 80% of the time. For a score which
can vary anywhere in the range [−88, 88], a standard de-
viation of 13 is not bad, as we can see in Fig 3. Although
reassuring, these 78 stone results show little variability

and do not help in discriminating between the three dif-
ferent methods. In order to do that, we must train the
full set of models and evaluate the quality of the Reversi
gameplay.

Linear Logistic SVM

σ 13.430 13.470 13.473

p 82.86% 83.04% 83.03%

TABLE I: Comparison of 3 models using 78 stone training
data

FIG. 3: SVM model predicted score vs actual score.

Three full sets of models were constructed using our
Minimax training method with N = 78 and M = 4.
Each model was trained using a random set of 2000
boards which were scored using the results of the pre-
vious model. In this way, we learned a board evaluator
for 78, 74, 70, . . . , 6 stone boards. Given the small spac-
ing, we decided to evaluate intermediate stone boards by
rounding up to the nearest model. The linear, logistic,
and SVM models were then played against each other
many times to determine the best one. We report both
the win ratio, calculated as:

WR =
Wins + Draws/2

Games
, (8)

and the average stone differential (SD) between the two
opponents.

The results can be found in Table II. For each pair-
ing, we played out 4000 16-stone boards twice, swapping
colors the second time. Both sides used the same search
depth (ply) which we varied from 1 to 5. If this is a
valid test of model quality, we expect it to be largely in-
dependent of the search depth, and we find this to be
the case. Comparing our three different models, we find
that SVM outperforms the other two in both win ratio
and stone differential. Based on these results we use the
SVM classifier for all subsequent models discussed in this
paper.

5

Logistic vs Linear SVM vs Linear SVM vs Logistic

Ply WR SD Ply WR SD Ply WR SD

1 .526 2.8 1 .534 3.6 1 .507 0.7

2 .522 1.5 2 .544 3.4 2 .534 3.1

3 .523 1.3 3 .545 3.2 3 .529 2.2

4 .525 1.9 4 .567 5.5 4 .552 4.1

5 .523 1.2 5 .562 4.7 5 .536 2.4

TABLE II: Win ratio (WR) and average stone differential
(SD) for Reversi matches played with a (Ply) lookahead, us-
ing board evaluators trained using linear, logistic, and SVM
classifiers. The results are reported for the first player (left
of the vs). The error estimates for the WR and SD are .006
and .4 respectively.

B. Score propagation

As discussed earlier, in the limit of perfect models, our
Minimax method converges to the true Minimax value for
any board. For more realistic models, though, model im-
perfections will lead to errors in board evaluations. How
do these errors affect the training of subsequent mod-
els? We can explore this question experimentally near
the endgame. To do this, we first train an 83 stone model.
Two separate 78 stone models are then trained from the
same set of boards, one scored with depth-5 Minimax and
the 83 stone model, and the other scored using depth-10
Minimax and the actual endgame score. The first model
attempts to learn Minimax values through an intermedi-
ary model, the second represents the best possible perfor-
mance which could have been achieved. In Table III we
compare model predictions to the actual Minimax values
for both 78 stone models as well as for a simlar setup with
an intermediate 82 stone model and two 74 stone mod-
els. In both cases, the model-trained version falls short
of the ideal, but not by much. We find this unsurprising
as intermediate model imperfections can be treated as a
noise term in the board scoring. Because our training
data includes roughly 100 boards per feature, we expect
most of the noise to be averaged out. For the late game
models, this does appear to be the case, giving us confi-
dence that endgame scoring information can be usefully
propagated back to earlier boards.

78 stone models 76 stone models

Model-trained Ideal Model-trained Ideal

σ 14.08 13.62 σ 14.70 14.46

p 82.11% 82.27% p 81.59% 82.76%

TABLE III: Late game model comparison, one trained us-
ing an intermediate model, the other trained with the exact
Minimax values.

C. Model selection

An important parameter in our Minimax method is
M , the span between subsequent models. Small M al-
lows for a better temporal resolution, at the cost of an
increased number of models (presumably increasing the
noise in earlier board evaluations). We explore this trade-
off by comparing models with M = 4 , 6 , 8 , and 10. For
M = 4 , 6, the Minimax method from Section V is used
exactly as described. For larger M , however, the runtime
becomes impractical - the M = 4 models were trained in
minutes, theM = 6 models took several hours. For larger
M , we instead used an iterative, interpolating approach.
The N stone model is trained as before, using Minimax
and the endgame scores. An N −M stone model is then
initialized using the N stone weights. A set of N −M
stone boards are generated and scored using a depth-
M/2 Minimax search with terminal boards scored using
the average weight vector of the N and N − M stone
models (initially the same). A new N −M stone model
is learned from this data, and the whole process is re-
peated several times until the N −M weights converge.

Before comparing the models against each other, we
must first decide how to score boards which fall between
two models. In Table IV we examine two methods: us-
ing the larger stone model, and linearly interpolating be-
tween the smaller and larger models. As before, simula-
tions are run using a search depth of 1−5; the full results
are given in the Appendix, we report here the median win
ratio and the median stone differential for each matchup.

Players WR SD

4(L) vs 4(I) .480 −1.2

6(L) vs 6(I) .484 −0.9

8(L) vs 8(I) .472 −1.8

10(L) vs 10(I) .469 −1.9

TABLE IV: Comparison of 2 different methods for scoring
intermediate boards (L - use larger stone model, I - interpolate
between the two). Results are reported for the (L) player.

In all cases, interpolation gave a better result, even
for models spaced only 4 stones apart. Therefore we use
interpolation for all subsequent results discussed in this
paper.

Finally, we examine the effect of M by competing the
different M models against one another. The full 1 − 5
ply results are given in the Appendix, the median values
are shown in Table V. For our 88 stone board, it appears
that larger M gives better results.

D. Minimax vs game data

Finally, we compare our method against the most com-
mon method of training a board evaluator - game data.
Since none exists for the 88 stone board, we switch to the

6

Win ratio Stone differential

M 4 6 8 10 M 4 6 8 10

4 - .514 .473 .478 4 - 1.5 -1.2 -2.3

6 .486 - .472 .467 6 -1.5 - -2.4 -3.3

8 .527 .528 - .488 8 1.2 2.4 - -1.7

10 .522 .533 .512 - 10 2.3 3.3 1.7 -

TABLE V: Round robin results. Scores are reported for the
player in the first column.

standard 8×8 , 64 stone board. Based off our previous 88
stone results, both model sets are trained using an SVM
classifier, and intermediate boards are scored using in-
terpolation. Both model sets use the same features, but
use different training data. The first model set is trained
using our Minimax method with N = 54 , M = 4, giving
rise to 54 , 50 , 46 . . . 6 stone models. The second model
set is trained using the WTHOR database - a collection
of top-level Reversi tournament matches [15]. For each of
the 54 , 50 , 46 . . . 6 stone boards we identify 2000 exam-
ples, scoring each with the stone differential at the end
of the match, and a corresponding model is trained. Be-
cause the 88 stone results showed a preference for larger
M , we duplicated this experiment for a set of models
spaced 10 stones apart. The Minimax and game data
models were then played against each other; the results
are shown in Table VI.

Players WR SD

4(M) vs 4(G) .574 5.4

10(M) vs 10(G) .575 5.8

TABLE VI: Comparison of 2 different methods for model
training (M - Minimax, G - game data). Results are reported
for the (M) player.

In addition to the head-to-head matches, we tested our
two programs against several other AIs. Because of the
relatively simple model used, we expect our AIs to play
at a strong, but not unbeatable level, and therefore two
opponents, Springfrog [16], and Webversi [17] were cho-
sen from among online, human-playable Reversi AIs. The
last opponent, WZebra [18], is a world-class program with
features similar to Logistello. For the first three matches,
we used the M = 4 models with a search depth of 8. Be-
cause WZebra was set to only use a 4-ply lookahead, for
a direct comparison we played a final match, restricting
our search depth to 4 as well. The scores of these matches
are given in Table VII.

VII. DISCUSSION

We have demonstrated that models trained using our
Minimax method can outperform models trained on
game data. In a series of Reversi games, our Minimax
models consistently outscored their game data trained

Springfrog Webversi WZebra WZebra

Minimax 57-6 52-10 37-27 20-44

Game data 48-16 31-33 29-35 15-49

TABLE VII: Match scores between our M = 4 Mini-
max/game data trained models and various opponents. Our
programs used an 8-ply lookahead for the first 3 matches, and
a 4-ply lookahead for the final one.

FIG. 4: Similarity comparison between (M) Minimax trained
models and (G) game data trained models.

opponents by a 5 stone margin. This trend held against
other opponents as well, with the Minimax trained model
achieving better results. As stated in Section IV, we
believe this is due to flaws in human gameplay and we
suspect that most of our gains come in the middle and
early game stages, where the optimal gameplay is un-
clear. Some evidence for this is found in Fig 4, where
we plot the dot product of normalized weight vectors
as a function of the number of stones. For the 2 Min-
imax models, one with a spacing of 4, the other with a
spacing of 10, we see that despite being trained on dif-
ferent boards and with different spacing, the two model
sets appear to be learning very similar weight vectors
throughout the game. The game data model, on the
other hand, appears to find a similar set of weights near
the end of the game, but this similarity diminishes in
the early stages; by the 16 stone model, the two weight
vectors are nearly othogonal! Based off of the overall per-
formance, it seems likely that our Minimax method does
a better job of learning the early game models.

One of the main advantages to our Minimax method
is its independence from expert knowledge. All board
evaluations are drawn (indirectly) from endgame scor-
ing, rather than relying on potentially imperfect infor-
mation. Not only does this appear to be more accurate,
it also allows for the quick generation of robust com-
puter players for uncommon game variants (such as our
88 stone board) as well as completely new games. How-
ever, expert knowledge is still useful for the generation
of quality models and features, a foundation upon which

7

our method relies. A poor set of features may affect the
Minimax trained models more significantly than game-
trained models, as board evaluation mistakes can be com-
pounded. Conversely, though, any model improvements
should lead to a larger overall improvement for the Min-
imax trained player as opposed to the game data trained
player.

Although the results reported here validate our Mini-
max method, we believe there is still room for improve-
ment. One such improvement would be in the gener-
ation of training boards. Currently these are created
by making random moves from the initial starting po-
sition. We believe a better method would be to use a
previously learned set of models to play from a random
starting configuration. This way the training boards will
be drawn from a probability distribution similar to one
the AI might face in a competition, and the models will
be more accurate for this subset of boards. For Reversi,
an example of how this might improve things would be
the feature corresponding to the corner square. This is a
powerful square, as it can’t be flipped, and can be used to
make other stones stable as well. In a set of boards gen-
erated from random moves, however, possession of the
corner will not seem as significant, as its advantage will
often be squandered through senseless, random moves.
A simple model will not be able to differentiate between
a corner square possession used well and a corner square
possession used poorly, and therefore the overall impor-
tance of the corner will be supressed. A set of boards
played by a trained Reversi AI, on the other hand, will
generally use the corners well, making this feature more
significant. We have elected not to make this improve-
ment for runtime reasons. Many training examples are
required for our method, using a Reversi AI with a non-
trivial search depth to generate these would require sev-
eral days of computation. It is doable, however, and it
would be interesting to see how much of an improvement
this would deliver.

VIII. CONCLUSION

We have introduced a new method for training board
evaluation models. Rather than game data or self-play,
we use endgame scoring and the Minimax algorithm
along with a series of models which propagate informa-
tion about the endgame backwards to earlier game stages.
It is a simple approach with only one tunable parameter:
M , the separation between adjacent models. When ap-
plied to our relatively simple Reversi model, we found
that the best results were given by using an SVM clas-
sifier, as well as evaluating intermediate board positions
using linear interpolation. Large M seemed to be pre-
ferred in this case; presumably any feature variation on
smaller timescales was less important than the gains pro-
duced by learning fewer models. Finally we trained both
Minimax and game data based models on the standard
8× 8 Reversi board and played the resulting AIs against

each other. Although game data training is the standard
approach, our Minimax model outperformed the game
data model by a substantial 5 stone margin, demonstrat-
ing the potential of this new approach.

8

APPENDIX A: REVERSI GAME RESULTS

Reversi game results were generated by playing 4000 randomly generated 16 stone boards. Players switch colors
and replay boards for a total of 8000 games. Scores are reported for the first player (left of the vs). Standard error
estimation using the variance suggest the WR measurements reported here are accurate to within .006 and SD within
0.4.

4(L) vs 4(I) 6(L) vs 6(I) 8(L) vs 8(I) 10(L) vs 10(I)

Ply WR SD Ply WR SD Ply WR SD Ply WR SD

1 .487 -1.2 1 .473 -2.0 1 .466 -2.5 1 .463 -2.8

2 .485 -0.9 2 .474 -1.9 2 .463 -2.8 2 .462 -2.8

3 .479 -1.4 3 .484 -0.9 3 .472 -1.8 3 .469 -1.9

4 .480 -1.2 4 .490 -0.4 4 .481 -1.0 4 .479 -0.7

5 .479 -1.0 5 .498 0.9 5 .486 -0.1 5 .498 0.9

TABLE VIII: Interpolation results

4 vs 6 4 vs 8 4 vs 10 6 vs 8 6 vs 10 8 vs 10

Ply WR SD Ply WR SD Ply WR SD Ply WR SD Ply WR SD Ply WR SD

1 .514 1.5 1 .470 -2.0 1 .486 -1.3 1 .479 -2.4 1 .472 -3.2 1 .498 -0.6

2 .498 -0.2 2 .469 -2.0 2 .457 -4.2 2 .472 -1.9 2 .466 -3.3 2 .483 -1.9

3 .500 0.1 3 .491 0.3 3 .473 -2.4 3 .506 0.5 3 .487 -1.6 3 .483 -1.9

4 .522 2.3 4 .473 -1.2 4 .478 -2.3 4 .461 -3.2 4 .450 -5.1 4 .488 -1.7

5 .522 2.0 5 .483 -0.9 5 .481 -1.6 5 .460 -3.0 5 .467 -3.3 5 .493 -1.2

TABLE IX: 88 stone round robin results

4(M) vs 4(G) 10(M) vs 10(G)

Ply WR SD Ply WR SD

1 .574 5.4 1 .562 4.7

2 .537 3.2 2 .563 4.5

3 .570 5.7 3 .575 5.8

4 .580 5.7 4 .590 6.1

5 .592 6.8 5 .612 7.6

TABLE X: 64 stone results

9

[1] D. E. Knuth and R. W. Moore, Artificial Intelligence 6, 293 (1975).
[2] P. Rosenbloom, Artificial Intelligence 19, 279 (1982).
[3] K.-F. Lee and S. Mahajan (1986).
[4] K.-F. Lee and S. Mahajan, Artificial Intelligence 36, 1 (1988).
[5] M. Buro, in 19th Annual Conference Gesellschaft für Klassifikation eV (Citeseer, 1995), pp. 1–3.
[6] M. Buro, in ICCA Journal (Citeseer, 1995).
[7] M. Buro, Journal of Artificial Intelligence Research pp. 373–382 (1995).
[8] G. Tesauro, Communications of the ACM 38, 58 (1995).
[9] I. Ghory, Department of Computer Science, University of Bristol, Tech. Rep (2004).

[10] A. Leouski, Learning of position evaluation in the game of othello (Department of Computer Science, 1995).
[11] J.-F. Isabelle, Ph.D. thesis (1995).
[12] T. Yoshioka and S. Ishii, IEICE TRANSACTIONS on Information and Systems 82, 1618 (1999).
[13] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming (Athena Scientific, 1996), 1st ed., ISBN 1886529108.
[14] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Found. Trends Mach. Learn. 3, 1 (2011), ISSN 1935-8237, URL

http://dx.doi.org/10.1561/2200000016.
[15] F. F. of Othello, Wthor database (2015), online; accessed 19-May-2015, URL http://www.ffothello.org/informatique/

la-base-wthor.
[16] Springfrog.com, Springfrog (2015), online; accessed 26-May-2015, URL http://www.springfrog.com/games/reversi.
[17] F. LaRosa, Webversi (2015), online; accessed 26-May-2015, URL http://webversi.com.
[18] G. Andersson, Wzebra (2015), online; accessed 26-May-2015, URL http://radagast.se/othello.

