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Abstract
Atomic sections are a technique used to simplify the writing of
parallel programs. Actions performed during the execution of an
atomic section should not be visible to other components in the
program until after the section completes. Usually the atomicity
requirement is enforced through optimistic transactional memory.
However, transactional memories have the drawback that not every
action is allowed to occur inside of an atomic section. In particular,
I/O actions cannot be rolled back on most systems, and so they may
not appear within transactions.

This paper examines supporting atomic sections that can con-
tain arbitrary actions, using a combination of locks and transac-
tions. We present a system that infers a locking strategy, identifies
problematic atomic sections and creates a hybrid solution.

This paper presents the algorithm, argues the process is sound
and reports experimental results.

1. Introduction
The computing world is going parallel in a big way with the advent
of multi-core chips in most new consumer desktops and laptops.
However, current methods of writing parallel code are cumbersome
and difficult to get correct. This has led to a dearth in the number
of software developers that have the ability to create parallel code.
Easier techniques for creating safe concurrent programs are needed
to help drive the industry forward. The atomic section is one such
simplifying technique. An atomic section is a portion of code that
runs as if in isolation, neither affecting external actors, nor being
affected by them. Atomic sections can be created by grouping in-
teractions with shared variables into logical components. For ex-
ample, checking to see if a list contains elements and then remov-
ing an element would be a single logical component. By wrapping
those two actions in a atomic section, the developer is guaranteed
no other thread will modify the list between the actions.

One way of enforcing atomic sections is with exclusive locks.
Course grained locking is easy to implement, but it limits paral-
lelism. Fine grained locking increases parallelism but it introduces
issues like deadlock. Locking is also not composable.

Typically atomic sections are discussed as running optimisti-
cally with Transactional Memory (TM). A TM can be either hard-
ware or software based. These HTM and STM solutions are a good
way to implement atomic sections, but they fail when calls to a
non-revocable action are in an atomic section. A non-revocable ac-
tion is any action that once undertaken cannot be undone by the
TM. Examples can range from an ATM spitting out money to sim-
ply printing to a console. Because TMs cannot undo the results of
such actions, those actions are either forbidden or delayed until the
section completes. TMs also have the benefit of allowing as much
parallelism as fine grained locking and do not suffer from compos-
ability problems.

This paper presents a method of combining transactions with
locks to allow a high degree of concurrent execution, while allow-

ing arbitrary actions within an atomic block. Each atomic section
is categorized either as a non-revocable section, a revocable sec-
tion that can conflict with non-revocable sections, or a revocable
section that only conflicts with other revocable sections. Atomic-
ity of non-revocable sections is enforced by locks. All the other
sections’ atomicity is enforced by an STM and additional locks to
prevent conflicts with the non-revocable sections.

A static analysis based lock inference algorithm, LockPick, is
used to create a graph that indicates possible conflicts between sec-
tions. An additional analysis is performed on each atomic section
to determine if it is revocable or not. These results are combined in
LockSTM which performs a source-to-source translation to create
a hybrid lock/STM program.

LockPick and LockSTM are implemented as CIL [15] modules.
They act as source-to-source translators on C programs with atomic
annotations. They use a sound alias analysis to produce conserva-
tive but safe results.

LockPick and LockSTM were run on a variety of benchmarks
to show the effectiveness of the method. Experiments include a
micro-benchmark to show the concept works, an STM testing suite
(STAMP) and a real world web caching sever, memcached. The
analysis results show that given an appropriate application the
technique can show a large performance gain. However a major-
ity of examined applications did not show improvement. Perfor-
mance could be improved by a more precise analysis on interac-
tions between atomic sections. A larger improvement should occur
by using an STM implementation that allows memory allocation
within atomic sections. Despite the current limitations, the result is
promising and may lead to greater performance in the future.

2. Atomic Sections
An atomic section is a portion of code that runs as if in isolation. In
a single threaded application, this is always the case. For example,
take the function that swaps two integers shown in Figure 1. In the
single threaded program, the instructions on lines 3, 4 and 5 occur
in order, and no other actions can occur between them that would
violate atomicity of swap.

In multi-threaded programs this is not the case. If multiple
threads call swap at the same time and there is no synchronization
between threads, then it is possible for the threads to interact in
a way that violates sequential consistency. Sequential consistency
was first defined by Lamport [13] as “... the results of any execution
is the same as if the operations of all the processors were executed
in some sequential order, and the operations of each individual
processor appear in this sequence in the order specified by its
program.”

The following chart shows how the interleaved actions of two
threads could violate sequential consistency. Two sequential runs of
swap should result in both variables retaining their original values.
Instead, this interleaving causes the value of X to be overwritten.
This happens because thread 2 starts the swap before thread 1
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1. void swap()
2. {
3. int tmp = X;
4. X = Y;
5. Y = tmp;
6. }

Figure 1. swap function

finishes. Then thread 2 reads an updated value for X and an non-
updated Y.

Time Thread 1 Thread 2 X Y
0 swap() swap() 1 2
1 int tmp = X; 1 2
2 X = Y; 2 2
3 int tmp = X; 2 2
4 X = Y; 2 2
5 Y = tmp; 2 1
6 Y = tmp; 2 2

Different interleavings can produce all four different combina-
tions of X and Y. But by making swap atomic, all of the bad in-
terleavings will be prohibited and sequential consistency can be
achieved.

Enforcing the atomicity of swap() can be done pessimistically
by acquiring a mutual exclusion lock so only one thread can exe-
cute swap() at a time. Or, it can be enforced by a TM that opti-
mistically allows both threads to proceed. At each function return,
the TM detects if an atomicity violation has occurred. If there was
a violation, the effects of the section are undone and it is rerun until
it completes without violating atomicity. Violation detection is dis-
cussed in Section 2.3. Each approach has benefits and drawbacks.

Locking has the drawback that it limits possible concurrency.
Generating fine grained locking strategies can alleviate that issue,
but it can require a complex implementation which can introduce
other problems like deadlock. Locking also introduces composabil-
ity problems.

STMs have the benefit of maximum concurrency but they can
be slower than using locks. Because conflicts and roll backs may
occur at any frequency, execution times can vary widely. In ad-
dition, STMs cannot be used on an atomic section if the section
contains a non-revocable action. Because any section can be rolled
back with an STM, it is possible that the non-revocable section
could need to be undone. The external action cannot be undone,
so the STM method simply fails. Most STMs forbid non-revocable
actions within atomic sections. Others allow them, and when a roll-
back occurs the non-revocable action is run again each time. Re-
running the action is usually not desired because it is a change in
program behavior.

In this paper a non-revocable action can usually be thought of
as an interactive event with an actor outside the visible scope of the
STM. Examples could be a remote procedure call, or interaction
with a user. It could even be a call to an existing software library
that has unknown effects and therefore cannot be rolled back.

Atomic sections are not a cure all that solves every difficulty
existing with parallel programs. Atomic sections do not prevent
livelock or priority inversion, and they still rely on a programmer
correctly specifying them.

2.1 Atomicity Enforcement with Locks
There are multiple ways to enforce atomicity with locks. Figure 2
shows a running example that helps to explain the various methods
of enforcing atomicity. All six atomic sections are shown. A main

int x[100];
int y[100];
int z[100];

atomic void PromptForX(int i)
{
printf( "%d", x[i] );
scanf( "%d", x+i );

}

atomic void SwapXY(int i, int j)
{
int tmp = x[i];
x[i] = y[j];
y[j] = tmp;

}

atomic void SetY(int i, int v)
{ y[i] = v; }

atomic int GetY(int i)
{ return y[i]; }

atomic void SetZ(int i, int v)
{ z[i] = v; }

atomic int GetZ(int i)
{ return z[i]; }

Figure 2. Atomic Functions from a Sample Program

function spawning multiple threads that call the atomic functions
has been omitted for brevity.

The example has three shared arrays of integers. There are
four atomic functions that get and set values from the y and z
arrays. SwapXY is basically the same as the swap function above.
PromptForX displays the current value to the user and replaces it
with the value the user enters.

The simplest way to enforce atomicity with locks is to use a
single global mutex lock. At the beginning of each atomic section it
is acquired, then it is released at the end of the section. This solution
is guaranteed to be correct because only one atomic section can run
at a time. Therefore the sections cannot interact in any way that
would violate atomicity. The drawback to this method is it severely
limits concurrency. For example, GetY cannot run at the same time
as GetZ even though it would be perfectly safe for them to do so.
Using a single global lock is trivial to implement automatically.

At the other extreme, we could use one lock for each memory
location. In this example there are 300 shared memory locations,
one for each element of each shared array. For example, SwapXY
using per-memory location locks could appear as:

void SwapXY_atomic(int i, int j)
{
lock( x_locks[i] );
lock( y_locks[j] );
SwapXY(i,j);
unlock( y_locks[j] );
unlock( x_locks[i] );

}

This fine grained locking approach allows for maximum paral-
lelism, but it can cause additional problems. If there were a function
ClearX() that set every element in array x to be zero, it would need
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Figure 3. LockPick graph for Figure 2

to acquire 100 locks, set the variables to zero, then release the 100
locks. This can introduce a large time overhead and the additional
memory constraints of requiring a large number of locks.

Most programmers take a middle ground by grouping similar
memory locations together, then using one lock per group. One in-
termediary solution for the example would be a lock for each of the
three arrays. This step is often the source of bugs in programs when
programmers get confused which locks protect which locations.

2.2 LockPick
LockPick [16] is a system that uses a whole program static anal-
ysis technique to ensure synchronization of programmer specified
atomic sections. In short, it will derive a set of locks that soundly
enforce atomicity.

LockPick can be run in two modes, a slower but more accu-
rate context-sensitive mode and a less resource intensive but less
accurate context-insensitive mode. Both modes are safe, but the in-
sensitive mode is more likely to incorrectly alias memory locations.
This will result in a more constrictive locking strategy.

LockPick operates in four steps. First, an alias analysis is per-
formed to determine which memory locations can be associated
with each variable. Second, a shared variable analysis is performed
to identify which variables are accessed by multiple threads. Third,
a graph is constructed with the atomic sections as nodes. An edge
exists between two nodes if they access a common memory lo-
cation. Finally, the graph is searched for cliques. Each clique is
assigned a color that represents possible interference between its
nodes. Atomicity can be enforced by representing each color with
a mutex lock the transformed program.

Running LockPick on the example in Figure 2 generates the
graph shown in Figure 3. There are three colors A, B, and C. Each
color guards all of the memory locations in one of the arrays. All six
atomic functions are represented in the graph because they all ac-
cess shared locations. A connection between two nodes means they
share memory accesses and should not be executed together. The
dashed lines enclosing the cliques indicate which nodes belong to
each color. SwapSY has two colors: A and B. In complex programs,
sections can have many different colors. If a section contains ac-
cesses to shared variables, but does not conflict with any other sec-
tion, it will have its own color.

The colors are then translated into exclusive locks and inserted
into the code as shown in Figure 4. The colors are represented by

MutexLock A, B, C;

atomic void PromptForX(int i)
{
exclusive_lock( A );
printf( "%d", x[i] );
scanf( "%d", x+i );
unlock( A );

}

atomic void SwapXY(int i, int j)
{
exclusive_lock( A );
exclusive_lock( B );
int tmp = x[i];
x[i] = y[j];
y[j] = tmp;
unlock( B );
unlock( A );

}

atomic void SetY(int i, int v)
{
exclusive_lock( B );
y[i] = v;
unlock( B );

}

atomic int GetY(int i)
{
exclusive_lock( B );
int tmp = y[i];
unlock( B );
return tmp;

}

atomic void SetZ(int i, int v)
{
exclusive_lock( C );
z[i] = v;
unlock( C );

}

atomic int GetZ(int i)
{
exclusive_lock( C );
int tmp = z[i];
unlock( C );
return tmp;

}

Figure 4. LockPick generated code from Figure 2

global locks. At the beginning of each function, the required locks
are acquired, and they are released before the function returns. The
locks have a total ordering and are acquired in order so deadlock
cannot happen. Temporary local variables are created to correctly
propagate return values outside of the locked section, as shown in
GetY and GetZ.

2.3 Atomicity Enforcement with STM
Using an STM to protect the example code is much simpler than
the lock based solutions. No reasoning about relationships between
atomic sections is needed.
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An STM works by logging each memory read and write that
occurs in the atomic section. The writes optimistically happen
under the assumption that the sections will likely commit without
a problem. When a section attempts to complete, the STM looks
through the log and checks to see if there is a atomicity violation.
The violation check involves looking at the combination of the
reads and writes performed by all the atomic sections currently
executing. All of these must be examined because the STM has
no advance knowledge of possible interactions between atomic
sections.

If a violation is noticed, one of the two sections that conflicted
will be rolled back. Rolling back means every memory location
written to will have its original value restored and the computation
will be restarted. Some STMs have additional strategies to improve
performance, like reverting to a pessimistic approach if too many
rollbacks occur.

A partial STM transformation to Figure 2 is quite simple. How-
ever because STMs are an emerging technology there is no con-
sensus on syntax. When using the TL2 [4] STM, SwapXY would
become:

void SwapXY(int i, int j)
{

TM_BEGIN();
int tmp = TM_SHARED_READ(x[i]);
TM_SHARED_WRITE( x[i], TM_SHARED_READ(y[j]) );
TM_SHARED_WRITE( y[j], tmp );
TM_END();

}

Each read and write must be converted into a call to the STM so that
it can insert the appropriate logging and checks. For comparison,
the Intel STM prototype compiler [12] uses a new keyword and
automatically detects shared variables. The Intel transformation
would be:

void SwapXY(int i, int j)
{

__tm_atomic{
int tmp = x[i];
x[i] = y[j];
y[j] = tmp;

}
}

However, a full STM transformation cannot be performed on the
example. No STM can be properly used on PromptForX because
it contains a non-revocable action. It prompts the user for a new
value then stores the value back in the array. If the STM tried to
roll it back and re-prompt the user, the behavior of the program
would have been changed. Because a single atomic section cannot
be STMed, the traditional STM method cannot be used.

3. Combining Locks with STM
The example in Figure 2 provides a compelling case for wanting
to use both locks and transactions. The increased parallelism of the
STM is desired, but the program cannot be STMed.

Using locks on atomic sections that STMs cannot function on
and using the STM on the remaining sections should increase
performance. The difficulty arises when trying to ensure the locked
sections and STMed sections do not interfere with each other.
This paper does not attempt to use fine grained locking for the
solution, but rather proposes a solution that fulfills the following
three requirements.

1. Only one instance of PromptForX should be allowed to run at
a time.

2. PromptForX should not be allowed to run in parallel with
SwapXY.

3. Every other combination should be allowed.

Each atomic section can be identified as being one of three
types. Non-revocable sections are sections that contain any non-
revocable code. Hybrid sections contain only revocable code, but
could conflict with non-revocable sections because of shared mem-
ory accesses. Pure STM sections contain only revocable code and
cannot conflict with non-revocable sections.

First, a coloring is obtained from a LockPick analysis on the
program. Second, the non-revocable sections are located by exam-
ining their call graph and looking for calls to non-locally defined
code. This includes standard library calls such as printf() and
scanf().

By using the coloring atomic sections can be separated into the
hybrid and pure classes. Any section that shares a color with a non-
revocable section becomes hybrid. All of the remaining sections are
labeled as pure.

The pure STM sections are guarded by the STM only. The non-
revocable sections are guarded using mutually exclusive locking
for each of the colors that LockPick assigned. The hybrid sections
are guarded by both the LockPick assigned colors and the STM.

If mutex locks were used to enforce this arrangement, require-
ments one and two would be accomplished, but requirement three
would not be. Referring to the LockPick coloring in Figure 4, we
can see that PromptForX and SwapXY share the color A. The mutex
lock would forbid multiple copies of SwapXY from running concur-
rently. This can be fixed by using shared access locks.

Shared access locks are a locking construct that allows multiple
callers to acquire access at the same time (read mode) or allows
a single caller to acquire exclusive access (write mode). The most
common form of a shared access lock is the reader/writer lock.

Non-revocable sections will acquire exclusive access to a lock
for each color LockPick assigned to them. Hybrid sections will
acquire shared access to a lock for each color they share with a
non-revocable section.

Thus the final algorithm for using locks with an STM can be ex-
pressed fairly simply. NRC is the union of all the colors applied to
non-revocable sections. Lines 4 and 5 initialize this set. ColorsOf
is a function that returns the set of colors that LockPick derived for
the section. Non-revocable atomic sections are transformed at line
12. Hybrid and pure STM sections are transformed at line 14.

1. Perform LockPick coloring algorithm
2.
3. NRC = ∅
4. foreach Non-revocable section S
5. NRC = NRC ∪ ColorsOf( S )
6. foreach C ∈ NRC
7. Create a SharedLock for C
8.
9. foreach Atomic Section S

10. C = ColorsOf( S ) ∩ NRC
11. if nonRevocable( S )
12. Protect S with exclusive access for C
13. else
14. Protect S with STM and shared access for C

This algorithm is referred to as LockSTM. The result of its
transformation on the example from Figure 2 is shown in Figure 5.
This transformation uses the Intel style STM notation. There are
two important things to notice about the transformation. First, in
SwapXY the lock is acquired outside of the transaction. This is
required because acquiring a lock would be a non-revocable action
for the STM.
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The second thing to notice is the lack of locks for the colors
B and C. They were eliminated in line 10 of the algorithm when
taking the intersection with the non-revocable colors. The use of
the NRC set is not strictly necessary, but is done for efficiency
reasons. If the step were not done, then the functions SetZ and
GetZ would acquire a shared lock for color C. But in the new source
code no function would ever attempt to acquire exclusive access to
the color C. If there is no exclusive access, the request for shared
access will never block. Therefore, the acquires do nothing except
cause overhead.

This color reduction ensures that pure STM sections will never
acquire any locks. It also means hybrid sections may acquire fewer
locks than they did under the LockPick solution.

As the following argument shows, the LockSTM algorithm pro-
duces a correctly synchronized program. The coloring that Lock-
Pick produces has been shown to be correct in its initial paper [16].
All the colors assigned to the non-revocable sections are retained
and are used to ensure safety on those sections. All of the remain-
ing sections have safely being enforced by the STM. Therefore ev-
ery atomic section is protected from interference by every other
section, and the resulting program is safe.

4. Implementation Details
LockPick and LockSTM are written as modules in the CIL frame-
work. They build off LockSmith [17]. LockPick and LockSTM
work as source-to-source translators producing C code that should
work with any compiler. The two modules are about 1,000 lines of
OCaml and make extensive use of the 12,000 lines in LockSmith.

The Intel icc compiler with prototype STM support [12] was
used for the STM transformation.

4.1 The Process
Conceptually the LockPick and LockSTM processes are quite sim-
ple, with four basic steps.

1. Identify and mark Atomic sections Atomic sections need to be
identified manually. If the original program was written with locks
and is assumed to be correctly synchronized, it may be a simple
matter of looking for lock acquires and releases. Adding atomic
sections in the design phase of an application is a good alternative
to trying to retrofit them into an already written program. In addi-
tion, atomic sections should not be nested. Nesting is discussed in
more depth in Section 4.2.

Instead of adding new syntactic constructs to the C language,
atomic sections are annotated with a gcc attribute. To make a
function atomic, the programmer should replace

void foo(...)

with

__attribute__ ((atomic)) void foo(...)

Currently, only functions can be marked as atomic. There is no
technical reason why atomic sections cannot be within a function.
However that choice was made for simplicity in implementation.
In cases where an atomic section is not already a function, the
developer must manually create one. In the experiments sections
of this paper, atomic sections that have been created this way
use the naming convention of foo 1 for the first atomic section
created from function foo. An alternative would be to coarsen the
atomic section to encompass the entire function. After the atomic
annotations have been inserted, all the source and header files are
merged into a single source file using the CIL merger.

2. Analyze shared memory locations The shared memory loca-
tions are identified and the LockPick algorithm described in Sec-
tion 2.2 is run to generate a set of colors for each atomic section.

SharedLock A;

atomic void PromptForX(int i)
{
exclusive_lock( A );
printf( "%d", x[i] );
scanf( "%d", x+i );
unlock( A );

}

atomic void SwapXY(int i, int j)
{
shared_lock( A );
__tm_atomic{

int tmp = x[i];
x[i] = y[j];
y[j] = tmp;

}
unlock( A );

}

atomic void SetY(int i, int v)
{
__tm_atomic{

y[i] = v;
}

}

atomic int GetY(int i)
{
int tmp;
__tm_atomic{

tmp = y[i];
}
return tmp;

}

atomic void SetZ(int i, int v)
{
__tm_atomic{

z[i] = v;
}

}

atomic int GetZ(int i)
{
int tmp;
__tm_atomic{

tmp = z[i];
}
return tmp;

}

Figure 5. LockSTM generated code from Figure 2
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The LockSTM version performs the additional algorithm described
in Section 3.

3. Transform code based on the analysis Each atomic section is
assigned a guard and a release action. The guard starts the atomic
section either by acquiring a lock or by calling the STM. The
release is the counterpart at the end of the section.

In LockPick, the guard is pthread mutex lock(c) and the re-
lease is pthread mutex unlock(c), where c is a color.The Lock-
STM transformation is slightly different because there are now
three types of atomic sections.

1. Non-revocable sections
Guard: pthread rwlock wrlock(c);

Release: pthread rwlock unlock(c);
2. Hybrid sections

Guard: pthread rwlock rdlock(c);
tm atomic{

Release: }
pthread rwlock unlock(c);

3. Pure STM sections
Guard: tm atomic{

Release: }
For each atomic function foo(), a wrapper function foo atomic()

is created. The wrapper is used to simplify cases where complex
functions may have return statements at arbitrary points. This is
necessary because each return statement requires a release before
it. Because the Intel STM uses a lexically scoped block to indicate
the start and end of a transaction, multiple releases do not work.

The wrapper acquires the guard, passes the arguments to the
original function, releases the guard and returns a value if needed.
All function calls to the old function are then replaced with calls to
the newly created wrapper instead.

Both versions create a global lock for each color used. LockPick
uses pthread mutex t and LockSTM uses pthread rwlock t.
For each section that has multiple colors, multiple locks are ac-
quired and released as needed. By having a total global ordering of
the locks and no nesting of atomic sections, deadlock is impossible.

4. Compile and run the transformed code The resulting Lock-
Pick C code can be compiled with any standard C compiler. The
resulting LockSTM code needs to be compiled with transaction
support turned on with the Intel STM compiler.

4.2 Nested Atomic Sections
Nested atomic sections bring up a few interesting issues. The first
is effect propagation. When one atomic section calls another, the
callee’s effects propagate upward to the caller during the analysis
phase. This causes the two sections to share a color. The caller will
acquire the locks for the shared colors in its guard acquire. Then the
callee will try to reacquire those same locks in its guard acquire. If
the atomic sections are being enforced by mutex locks, this would
cause a deadlock. A fix is to use reentrant locks. Similarly, if an
STM is being used to enforce atomicity, additional care has to be
taken to not start or commit an additional transaction from within
a transaction. A dynamic check could determine if nesting was
occurring, but we opted to forbid it for simplicity.

In the experiments of this paper, nesting was not an issue. There
were nested atomic sections, but a manual analysis showed that the
nested sections were always called from within other atomic sec-
tions. These occurred when the original program used two locks,
with one at a finer granularity. This meant that the atomic anno-
tation on the nested section was no longer needed. Discovering
nesting of this type would not normally occur when designing a
program with atomic sections, but it can occur when retro-fitting
atomic sections into an existing program.

Figure 6. Prime execution time vs number of cores

5. Experiments
We evaluated the LockPick and LockSTM methods on a variety
of applications. All of the timings were achieved by running each
application eleven times and averaging the results.

The experiments were performed on a 2.66 GHz quad core
Intel Xeon X5355 machine running Red Hat Enterprise Linux AS
release 4 update 6 with 4GB of memory. All tests were compiled
with the Intel 10.0.504 icc compiler with prototype STM support.
Optimization level 3 (-O3) was used when compiling.

5.1 Prime
Prime is a simple example that shows the performance improve-
ment possible for the LockSTM method given the right application.
Prime takes a large list of randomly generated numbers and deter-
mines which ones are prime. In the multi-threaded version, the in-
put list is partitioned equally between the threads. In addition, there
is a status thread that periodically polls the current prime count and
displays the result to the user.

Prime was written specifically to showcase the best possible
performance of the LockSTM method. The source code to prime
is in Appendix A.

LockPick ran in less than one second. Prime has two atomic
sections that share a single color. The computation atomic section
is revocable and the status atomic section is non-revocable. Fig-
ure 6 shows the performance of prime running in sequential mode
and the LockPick version with one to four cores. Because the two
sections share a single color, LockPick makes both sections mutu-
ally exclusive and sees no performance gain when increasing thread
count. The application cannot be purely STMed because of the non-
revocable section. As the figure shows, LockSTM is able to over-
come this and provide a good speedup. The LockSTM performance
gain is slightly below a perfect linear speedup.

5.2 STAMP
The Stanford Transactional Applications for Multi-Processing,
STAMP [2] is a benchmark suite intended for use in transactional
memory research. It consists of five applications with parallel and
serial implementations along with reference data sets.

STAMP was developed to offer researchers a set of non-trivial
applications that use coarse grained transactions to accomplish
tasks in parallel. All of the transactions can be fully rolled back
on a conflict detection. Therefore, it is not an ideal test case for
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LockPick LockSTM
Lines Analysis Atomic Shared Colors Non-Revocable Hybrid Pure STM Colors

of code Time (s) Sections Variables sections sections sections
bayes 9150 49.9 15 51 1 11 4 0 1
genome 5675 18.0 5 40 1 4 1 0 1
kmeans 2043 0.7 3 13 3 0 0 3 0
labyrinth 5224 7.2 3 42 2 2 0 1 1
vacation 6970 6.9 3 16 1 3 0 0 1

Figure 7. LockPick and LockSTM analysis on STAMP

combining locks with an STM for increased parallelism. However,
it is possible to modify the constraints slightly so it is an appro-
priate test case. The STAMP applications will work with any STM
that implements its interface. It supports function calls to locally
defined functions and provides STM-safe versions of malloc/free.
But by treating the memory allocation calls as external code, the
STAMP applications are transformed into a mixture of revokable
and non-revokable transactions.

The resulting mixture of revocable and non-revocable transac-
tions did not seem unreasonable given the observed results of the
memcached analysis in Section 5.3. Also the version of the Intel
compiler used for these experiments does not support memory al-
location in atomic sections.

Briefly, the applications are:

Bayes Bayesian networks are a way of representing probabilities
in a compact graph form. This program uses a hill-climbing strat-
egy to derive the network from a random data set.

Genome This program tries to reconstruct gene sequence given
multiple small fragments. It performs a sliding algorithm to match
gene segments using the Rabin-Karp string search algorithm.

Kmeans This program performs spatial clustering of random
points in an iterative fashion until a fix point clustering solution
is found.

Labyrinth This program is a simple maze solver that finds the
shortest path between entry and exit points.

Vacation This program is a travel reservation simulation where
multiple customers interact with multiple in-memory database ta-
bles.

5.2.1 STAMP analysis
Figure 7 shows the results of running the LockPick and LockSTM
versions of all five programs. The programs ranged from two to
nine thousand lines of code. Analysis times were fairly quick with
all programs finishing in under a minute. Analysis speed correlated
with the size and number of atomic sections. The STAMP tests are
simple enough that LockPick is able to run in the more accurate
context sensitive mode.

The number of atomic sections ranged from three to fifteen.
LockPick’s shared memory analysis discovered between 13-51 dif-
ferent shared memory locations in each program. When perform-
ing the coloring on these variables, LockPick reduced the amount
of colors from the shared variable count to the count in the colors
column.

LockSTM identified each atomic section as one of the three cat-
egories: Non-Revocable, Hybrid and Pure STM. The colors column
in the LockSTM portion indicates how many colors were left after
the reduction step.

In bayes, LockPick derived a single color solution and assigned
that color to all atomic sections. The coloring graph would be
a complete graph with fifteen vertices. The single color caused

one global mutex lock to be used for all atomic sections. This
eliminated all parallelism between atomic sections just like in the
prime benchmark.

LockSTM was able to do more with bayes. Although it has
eleven non-revocable sections, it also has the most STMable sec-
tions with four. The single color remains and must be enforced
across all fifteen sections. As such, the STMable sections are locked
with shared locking. Parallelism should increase slightly because of
the locked STM sections.

Genome had the same LockPick result as bayes, with a single
color and no available parallelism. Its LockSTM results were simi-
lar to bayes with a small increase in possible parallelism due to the
single hybrid section.

Kmeans has more interesting lock inference results. Each of the
three atomic sections has disjoint memory accesses from the other
sections. LockPick assigned each section a unique color which
gives the possibility of a 3× increase in speed if all sections run
all the time.

Kmeans has only revocable sections, and therefore LockSTM
was able to eliminate all the colors and create a pure STM solution.
This is ideal for program performance, and shows the combination
lock and STM method is not always needed.

Labyrinth had a similar LockPick result as kmeans but with
two colors. One atomic section has its own color and the other
two share a color. The atomic section with its own color was
also the only revocable section. LockSTM eliminated the lock and
converted it to a pure STM section.

Vacation is the least interesting because the LockPick results
again show a single constraint across all atomic sections, but also
all sections are non-revocable so LockSTM can do no better.

Overall the STAMP applications are fairly simple. The memory
accesses were limited to the point where no atomic section had
more than one color. This is likely because they were written for
the express purpose of research. However, they do provide a broad
view of the types of applications that can occur with the variation
in LockSTM results.

5.2.2 STAMP performance
We benchmarked four version of each application. Figure 8 shows
the results. The four versions are the original sequential version on
one core, the LockPick and LockSTM versions on 1-4 cores and
with the reference STM based on TL2 [4]. This reference version
of the applications has all atomic sections STMed and should give
a baseline for how much performance is lost by the non-revocable
malloc assumption.

By looking down the single core column, the overhead of each
transformation method can be observed. Because there is only one
thread running, no locks will block and no transactions will be
rolled back for a conflict. For the LockPick version, this is the
cost of acquiring and releasing the locks without ever having to
wait to get the lock. The LockSTM and TL2 rows show how the
STM transformations can slow down code, even when there are no
rollbacks.
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Program 1 core 2 core 4 core
bayes 45.5
bayes LockPick 44.7 55.5 51.7
bayes LockSTM 44.8 51.7 52.4
bayes TL2 42.9 52.8 43.2
genome 5.8
genome LockPick 5.83 5.78 6.23
genome LockSTM 5.62 7.14 7.01
genome TL2 7.88 4.54 2.82
kmeans 16.3
kmeans LockPick 18.5 11 7.7
kmeans LockSTM 34.6 27.1 16.2
kmeans TL2 40.1 22.5 14.3
labyrinth 3.58
labyrinth LockPick 3.54 3.55 3.55
labyrinth LockSTM 3.58 3.6 3.63
labyrinth TL2 5.41 2.92 2.16
vacation 23.3
vacation LockPick 23.6 42.9 45.5
vacation LockSTM 23.5 45.6 46.7
vacation TL2 98.4 69.4 56.2

Figure 8. STAMP runtimes in seconds

Looking across the table at the two and four core results shows
whether each particular application increased or decreased in per-
formance when running in parallel.

Bayes For some reason performance increased slightly for the
non-sequential versions while running under a single core. This
could be due to different optimizations being performed on the
transformed code. Performance from increasing the number of
threads was poor all around. Both LockPick and LockSTM slowed
down due to lock contention when more then one core was used.
The full STM implementation also does not perform well with run
times not improving even with four cores. In conclusion, bayes
does not seem to parallelize well.

Genome The LockSTM version showed a slight increase in
speed over the sequential version. However the TL2 version had
a considerable slowdown. Because of the single color solution
LockPick performance was expected to be flat, perhaps slowing
a bit with more cores as penalties for lock contention started to
take effect. This behavior occurred as expected. LockSTM had
the possibility of a slight improvement over LockPick, but instead
performance dropped by about 20%. The full STM version scales
nicely with a 2.8× increase in speed over its own single core
version and a 2× increase over the sequential version. This shows
the program itself scales well, but the inferred coloring is too
restrictive to achieve good performance.

Kmeans The single core slowdown was large for this applica-
tion. The STM versions slowed down by more than a factor of two.
In contrast to the previous two applications, the LockPick results
allowed a lot of additional parallelism. With three mutex locks, the
best case speedup would be 3× if three sections were running the
whole time. With four cores it achieved a 2.4× increase over its
own single core performance.

Because LockSTM used no locks, kmeans gives a good view of
a direct comparison of the two STM implementations. While both
the Intel and the TL2 implementations show speed improvements,
TL2 shows slightly better results. However, the LockPick solution
outperformed both of them so this is not a compelling case for using
transactions on this application.

Labyrinth Single core performance was again almost flat with
TL2 showing a slowdown. The only version to show improvement
with more cores was also the TL2 version.

The atomic section that had its own color and was converted
to a pure STM function turned out to have almost no effect on
performance. It is a 32 line piece of code that checks to see if
a queue contains objects and removes an object if it does. The
majority of the work is performed in the other two sections. The
is the main reason that LockPick and LockSTM demonstrated no
performance gain.

Vacation The single core slowdown for TL2 was dramatic with
this version taking four times as long as the sequential version.
The TL2 version does improve, but not very well. A single color
and no STMable sections result in very poor performance with this
benchmark for the LockPick and LockSTM versions.

In conclusion, the STAMP benchmarks did not prove a com-
pelling case for mixing locks and STMs for increased performance.
In addition, the large slowdowns caused by TL2 do not provide a
compelling case for using an STM either.

5.3 Memcached
Memcached [5] is a high performance in memory object caching
system intended for use in dynamic web based application. Its
primary purpose is to hold commonly used objects in memory to
alleviate load caused by repeated queries to a database.

Memcached was developed for LiveJournal to handle 20 mil-
lion accesses per day and is currently used by many other large
dynamic web sites such as Slashdot and Wikipedia. It achieves
parallelism both through multiple running processes and multiple
threads running in each process. The experiments here focus on a
single process while varying the number of running threads. The
source to version 1.2.5, released on March 4th, 2008, is approxi-
mately 16,700 lines of C code.

Data races are guarded against with five mutex locks, with
an additional lock used to coordinate initialization. The code is
not broken down into atomic sections, but rather acquires and
releases the locks as needed. I manually located atomic sections
by examining where locks were acquired. Typically these started at
the original lock acquire and ended at the release. However, there
were some cases where this caused atomic sections to be called
from within other atomic sections. Which as discussed above is
not allowed in LockPick or LockSTM. To fix the nesting issue, the
granularity of some of the sections was coarsened. Or if the section
was called only from within atomic sections, the atomic annotation
was removed. The result was 39 atomic sections.

Because of the size of the application, LockPick ran out of
memory when performing a context sensitive analysis. Thus we ran
a context insensitive analysis instead, which took only eleven sec-
onds. LockPick located 87 shared memory locations that were ac-
cessed from within atomic sections and derived an 18 lock solution.
Figure 9 shows each atomic section along with the assigned col-
ors. All of the atomic sections had from 1-5 colors, except for two;
stats reset and process stat 1. These two functions cleared
and displayed the statistics that other atomic sections gathered.

LockPick derived a solution with many more locks than the
authors used because it was able to differentiate between each
statistic gathered and derive a solution that allowed simultaneous
execution when different stats were being updated. However it was
able to reduce the total number of locks from the initial allocation
of one for each of the 87 shared memory locations.

A majority of processing time is spent in the mt ∗ sections. Most
of these share the colors A and E, while many of the other con-
straints, {B, D, F, G, H, I, J, K, L, M, N, O, P, Q}, are linked to statistics
gathering. Color C guards access to a work queue.

The LockSTM transformation analysis was also performed on
memcached. Of the 39 atomic sections, 23 made calls to non-
revocable code. Of the remaining 16 STMable sections, 13 were
hybrid sections and three were pure STM sections. The color C
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was only assigned to the pure STM sections and was therefore
eliminated in the LockSTM version reducing the number of locks
from 18 to 17.

The locked STM sections primarily had to do with statistics and,
as such were relatively short. The non-revocable sections made
calls to malloc/free, printf, strcpy, memset, perror and other vari-
ants. Some of these could likely be made revocable by using an
STM that can allocate memory and by replacing some standard
library calls with locally written equivalents. Further experimen-
tation should be able to determine if a performance gain could be
achieved this way.

We benchmarked memcached with the memslap [1] testing tool
from Tangent Software. Figure 10 shows the results from the three
versions of enforcing atomicity while varying from 1-4 threads
of execution. The LockPick inferred locks were slightly slower
when using a single core which was expected because of the ad-
ditional locking. When running with two cores, the LockPick ver-
sion gained about a two percent performance advantage. However
since execution times varied by up to a half second, this small of a
variance is not statistically significant. The LockSTM version had
additional overhead on a single core and lagged behind the others
in dual core test too.

In all versions of memcached, the performance flatlined after
two threads. This primarily has to do with the benchmarking setup.
Memcached is designed to be a very light-weight process, so much
so that the client for the benchmark takes as much CPU time to
execute as the server does. Because testing was done on a single
machine, only two cores worth of CPU time were left for the server.
Increasing the server to four threads caused the operating system to
only run two threads at time while adding the overhead of context
switching. Performance suffered slightly as expected.

Attempts to run the client software on another machine in the
same network resulted in so much latency that execution times
were increased by a factor of ten. With the increased latency it
was not possible to load on the server to greater than one and
varying the number of threads had no effect on performance. In
a real memcached deployment, it is normal and suggested that the
server and client run on the same machine. Therefore, we feel this
is acceptable behavior.

Experimentation indicated that the slowdown with the modified
versions may have been due to the additional locking caused by the
statistics gathering. The code was refactored to remove the atomic
sections that statistics gathering caused. Instead, the original calls
to lock and unlock were left in even if those occurred from within
another atomic section. The new version has 26 atomic sections for
which LockPick derived a four lock solution. Five of these remain-
ing atomic sections can be safely STMed. Figure 10 has the per-
formance results of this method. With the statistics lock reinserted,
single threaded performance for both LockPick and LockSTM is
approximately equal to the original locking scheme. The two core
LockSTM performance increased to within two percent of the orig-
inal as well.

What this shows is although LockPick was able to derive a
solution that allowed more parallelism, this did not translate into
increased speed. The additional locks mainly increased overhead
and offered no noticeable benefit. This is not an unexpected result
because memcached is supposed to be a highly optimized program
to start with.

A more interesting future experiment would be to use an STM
that can treat more of the atomic sections as revocable.

Overall, this experiment showed that it is possible and reason-
able to extract additional performance from real world applications.
This needs to be done carefully so as to not generate excessive over-
head like with the statistics. It also shows that in a complex ap-
plication there are usually multiple atomic sections that can easily

Atomic Section Colors Not Hybrid Pure
Revoc STM

cqi new 1 C X
cqi new 2 C X
cqi free C X
conn new 1 B X
conn new 2 K, Q X
conn close 1 Q X
complete nread 1 G X
process get cmd 1 L X
process get cmd 2 M X
process get cmd 3 N X
try read udp 1 O X
try read network 1 O X
transmit 1 P X
drive machine 1 O X
mt conn from fl A X
mt item unlink A, E, F X
mt conn add to fl A X
mt run deferred dels A, E, F X
mt item alloc A, E, F, H X
mt item get notedel A, E, F X
mt item link A, E, J X
mt item remove A, F X
mt item replace A, E, F, J X
mt item update A X
mt defer delete A, F, I X
mt add delta A, E, F, H, J X
mt store item A, E, F, H, J X
mt item flush expired A, E, F X
mt item cachedump A, I X
mt item stats A X
mt item stats sizes A X
mt assoc mv next bkt A, E X
mt slabs stats F X
stats prefix rec get D, E X
stats prefix rec delete D, E X
stats prefix rec set D, E X
stats prefix dump D X
stats reset D, G, H, J, X

K, L, M, N
O, P

process stat 1 B, G, H, I, X
J, K, L, M,
N, O, P, Q

Figure 9. Memcached atomic sections and constraints

be STMed. The types of external calls in memcached were mostly
memory related, so memcached could easily be combined with an-
other STM to improve the portion of STMed sections.

6. Related Work
There have been previous efforts to control access to shared mem-
ory via locking and atomic sections [16, 14, 11]. There have also
been efforts to use software transactions to manage atomic sec-
tions [7, 8, 9] but there are relatively few that have attempted to
use both locks and an STM concurrently[22, 19] and those use dif-
ferent techniques than presented here.

Transactions have been in use for quite some time [10, 21],
and have been implemented in both hardware and software. STMs
typically operate by logging each read and write to memory within
an atomic section. Upon completion of the section, a commit is
attempted. The log is scanned and if any conflicts are discovered,
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Figure 10. Memcached execution time vs number of cores

the writes of the transaction are rolled back and the transaction is
re-run. A common extension to this is the conditional critical region
(CCR) where the atomic section is not run until a precondition is
met [7, 18]. CCRs can improve performance and can be useful to
developers when structuring atomic sections.

STMs are usually implemented in a run-time environment [20]
like the Java Virtual Machine or the OCaml run-time system. Oper-
ating at this level affords many opportunities for optimization [18].
In a lower level language like C, using a virtual machine is not op-
timal. To compensate for not having a run-time, calls to an external
STM library are usually used. Developers must either make sure
that they have correctly identified all the locations at which calls to
the STM are needed, or they can use an automatic translation tool.

The most common solution to dealing with I/O or other code
that results in external actions, is to forbid them from appear-
ing within an atomic section. Harris suggests buffering I/O with
a pre-registered operation that is executed outside of the atomic
section [6]. Ringenburg and Grossman suggest that external calls
which modify only local state can be safely executed. Additionally,
external rollback and commit code should be written to compen-
sate for other external calls [18]. However, this assumption relies
on not interrupting external calls and the run-time environment be-
ing single threaded. Neither of these assumptions exist in a pure C
environment.

Using locks to enforce the STAMP benchmarks has been exam-
ined as well [3]. While their approach focuses only on pessimistic
locking, it uses read/write locks to enforce exclusion based on
whether or not a particular atomic section reads or writes a shared
location. In addition, they discovered fewer atomic sections in the
bayes application. This difference can be attributed to a different
set of #defines that enable and disable different portions of the pro-
gram.

7. Conclusion
This paper presented a new way of combining pessimistic locks
with optimistic transactions. This should allow increased paral-
lelism in programs that would otherwise be restricted to using lock-
ing. The technique is practical and can be applied to C programs.
However, its benefit is limited to a narrow class of applications and

is hampered by current STM implementations. It does hold promise
for the future as many atomic sections do perform actions that are
not currently revocable. For significant progress to be made, either
STMs will need to become more robust at revoking actions or the
techniques in this paper will need to be refined. The optimal solu-
tion will likely be a combination of both.
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A. Prime Source

int* data;
int primeCount;

// returns the smallest factor of p, or 0 is p is prime
// return values are in the range 0...sqrt(MAX_INT)
int isprime(int p)
{

if(p <= 3)
return 0;

if(p % 2 == 0)
return 2;

int i;
for (i = 3; (i*i) <= p; i += 2)
if (p % i == 0)

return i;
return 0;

}

__attribute__((atomic)) void findFactor(int i)

{
int f = isprime(i);
if(f == 0){

++primeCount;
}

}

void* primeThread(void* arg)
{
int id = (int)arg;
long numThread = global_params[PARAM_THREAD];
long size = (1 << global_params[PARAM_SIZE]);

int mySize = size/numThread;
int myOffset = id * mySize;

int i;
for(i=0; i<mySize; ++i){

findFactor(data[i+myOffset]);
}
return 0;

}

__attribute__((atomic)) void printPrimeCount()
{

printf("PrimeCount: %7d\n",primeCount);
}

void* statusThread(void* arg)
{
while(1){

sleep(1);
printPrimeCount();

}
}

int main(int argc, char* const argv[])
{
...
primeCount = 0;

pthread_create(&status_thread,NULL,statusThread,NULL);
for(i=0; i<numThread; ++i){

pthread_create(threads+i,NULL,primeThread,(void*)i);
}
for(i=0; i<numThread; ++i){

pthread_join(threads[i],NULL);
}

printf("Done ");
printPrimeCount();

return 0;
}
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