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Abstract

In this paper, we introduce an abstract representation for manipulation actions that is based
on the evolution of the spatial relations between involved objects. Object tracking in RGBD
streams enables straightforward and intuitive ways to model spatial relations in 3D space. Rea-
soning in 3D overcomes many of the limitations of similar previous approaches, while providing
significant flexibility in the desired level of abstraction. At each frame of a manipulation video,
we evaluate a number of spatial predicates for all object pairs and treat the resulting set of
sequences (Predicate Vector Sequences, PVS) as an action descriptor. As part of our repre-
sentation, we introduce a symmetric, time-normalized pairwise distance measure that relies on
finding an optimal object correspondence between two actions. We experimentally evaluate the
method on the classification of various manipulation actions in video, performed at different
speeds and timings and involving different objects. The results demonstrate that the proposed
representation is remarkably descriptive of the high-level manipulation semantics.

1 Introduction

Intelligent robots built for manipulation tasks need to learn how to manipulate. However, given
that there is an infinite number of ways to perform a certain manipulation action, such as for
example, making a peanut butter and jelly sandwich [1], the robot should be able to store and
organize compact representations effectively, rather than simply a large set of examples that are
hard to generalize. Various aspects and levels of representations of manipulation actions have been
studied, such as objects and tools [2, 3], manipulator trajectories [4, 5], actions and sub-actions
[6], object-wise touch relations [7], action consequences or goals [8], etc. In this work, we focus
on another crucial aspect of manipulation actions, which is the object-wise spatial relations in 3D
space and the correlation of their temporal evolution to the underlying manipulation semantics.

Why are spatial relations crucial for interpreting manipulations? First of all, while most prim-
itive spatial relations can be inferred directly from the perceptual input, their exploitation allows
for more complex types of reasoning about not only geometric, but also the underlying physical
relations between objects. For example, by perceiving that an apple is “ABOVE” a plate as well
as that these two “TOUCH”, we can infer that the plate is the supporting object. Secondly, at a
higher level, by grounding the spatial relations for the most commonly used prepositions in natural
language, we effectively establish a bridge from observation to language and then from language to
execution.

Additionally, a correct understanding of object-wise spatial relations for a given action is essen-
tial for a robot to perform the action successfully. For example, when a robot is asked to “Pour a



cup of coffee from the pitcher”, it not only needs to recognize “cup” and “pitcher” and generate a
sequence of trajectories to perform the “pour” action, but also needs to perform geometric precon-
dition checks on the 3D spatial relations between “pitcher” and “cup”: unless the “pitcher” tip is
“ABOVE” the “cup”, “pour” should not be triggered! In other words, a correct understanding of
spatial relations can provide the premise of an accurate execution.

Few work has touched upon object-wise spatial relations for manipulation actions, due to the
difficulties inherited from object tracking (inevitable occlusions, etc.). A joint segmentation and
tracking technique to reason about “touch” and “contain” relations from top-down 2D views is
used in [7]. The limitations of their approach come from reasoning in 2D. For example, their
system is not able to differentiate between spatial predicates “above” and “in”. Other approaches
on spatial reasoning [9] require additional equipment, such as motion capture suits, which makes
them impractical for more general purpose applications.

The goal of our work is to develop a system which equips the robot with a fundamental and
reliable understanding of 3D spatial relations. During both observing and executing manipulation
actions, a robot with our proposed capabilities will be able to understand and reproduce the
evolution of the spatial relations between involved objects with high accuracy. We also show that a
3D spatial relation based representation is highly descriptive of the underlying manipulation action
semantics.

At the lower level of this work, we developed a system for RGBD object segmentation and
tracking that does not require additional markers on the objects and allows us to overcome diffi-
culties arising from 2D-only image reasoning. Taking in the point clouds for the tracked objects,
we adopted a straightforward yet intuitive way to model geometric relations for the most com-
monly used natural language spatial prepositions by partitioning the space around each object.
For a given object pair, our spatial relation predicates effectively capture the spatial distribution
of the first object with respect to the second. The temporal evolution of each such distribution
is encoded in a Predicate Vector Sequence (PVS). At a higher level, we a) propose a novel action
descriptor, which is merely a properly ordered set of PVSes for all involved object pairs, and b)
introduce its associated distance measure, which relies on finding an optimal, in terms of PVS simi-
larity, object correspondence between two given actions in this representation. Experiments on real
manipulation videos for various actions, performed with significant amounts of variation (e.g., dif-
ferent subjects, execution speeds, initial/final object placements, etc.), indicate that our proposed
abstract representation successfully captures the manipulation’s high-level semantic information,
while demonstrating high discriminative performance.

2 Related work

From the very beginning of robotics research, a great amount of work has been devoted to the study
of manipulation, due to its direct applications in intelligent manufacturing. With the recent devel-
opment of advanced robotic manipulators, work on robust and accurate manipulation techniques
has followed quickly. For example, [10] developed a method for the PR2 to fold towels, which
is based on multiple-view geometry and visual processes of grasp point detection. In [11], they
proposed learning object affordance models in multi-object manipulation tasks. Robots searching
for objects were investigated in [12], using reasoning about both perception and manipulation. [4]
and [5] developed manipulation and perception capabilities for their humanoid robot, ARMAR-III,
based on imitation learning for human environments. A good survey on humanoid dual arm manip-



ulation can be found in [13]. These works reached promising results on robotic manipulation, but
they focused on specific actions without allowing for generalization. Here, we suggest that the tem-
poral evolution of object-wise 3D spatial relations is a highly descriptive feature for manipulation
actions and thus can be potentially used for generalizing learned actions for robots.

Several recent works have studied spatial relations in the context of robot manipulation, ei-
ther explicitly or implicitly. From a purely recognition point of view, the prepositions proposed
in [14] can be directly used for training visual classifiers. Recently, [15] built a joint model of
prepositions and objects in order to parse natural language commands. The prepositional model
is learned following the method introduced in [16]. However, in general contexts, most common
spatial prepositions do not have ambiguous geometric meanings and can, in principle, be directly
modeled. Instead of grounding them via learning from large sets of annotated data, we directly
model spatial relations according to their clear geometric interpretation. In [7], they developed a
2D video segmentation and tracking system, through which they proposed a compact model for
manipulation actions based on the evolution of simple, 2D geometric relations between tracked
segments. Reasoning with only 2D segments enforces an unwanted and unnecessary type of ab-
straction in the representation due to the loss of geometric information. In this paper, instead, we
infer spatial relations between segmented point clouds in 3D space, which enables our system to
generate representations of controlled levels of abstraction and discriminative power.

3 Our approach

3.1 Overview of our method

A very brief description of the processing steps involved in our method is provided here and details
are discussed in the following subsections.

A schematic of our action descriptor extraction pipeline is given in Fig. 1. The input to our
algorithm is an RGBD video of a manipulation action. The objects of interest are segmented in
the first frame and tracked in 3D space throughout the rest of the sequence (Section 3.2). At
each time instant, we evaluate a predetermined set of pairwise spatial predicates for each pair of
tracked objects (Section 3.3), thus obtaining a sequence of spatial relation descriptors for every
object pair (Predicate Vector Sequence, PVS). This set of sequences, arranged in a predetermined
order, constitutes our proposed action descriptor (Section 3.4).
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Figure 1: Processing steps for our action descriptor extraction.

Subsequently, we define an appropriate pairwise distance function for this representation, which
relies on standard dynamic programming techniques for time series similarity evaluation. Distance
computation between two actions is reduced to finding an optimal, in a sense to be defined, object
correspondence between the actions (Section 3.5).

Assumptions. To simplify certain subtasks, we assume that the action takes place, at least
at the beginning, on a planar surface (e.g., on a table) on which all involved objects initially
lie. Furthermore, we assume that the depth sensor used to record the manipulation remains still



throughout the action duration (no ego-motion). Since our method mostly pertains to applications
of robots learning by watching humans or other robots and as long as objects remain visible in
order to be reliably tracked, we do not consider the latter to be too restrictive.

3.2 Point cloud tracking

The initialization of the tracking procedure involves fitting a plane to the workspace surface in the
first RGBD frame of the input sequence. This is done reliably using standard methods, i.e. least
squares fitting under RANSAC.

The points that lie a certain threshold distance above the plane are clustered based on which
connected component of their k&-NN graph they belong to. Assuming that the maximum distance
between points that belong to the same object is smaller than the minimum distance between points
of different objects, this procedure yields an effective segmentation of all the objects in the initial
frame.

Treating these initial segments (point clouds) as object models, we initiate one tracker for each
object and we perform rigid object tracking using a Particle Filtering algorithm that is implemented
in [17]. This results in a point cloud for each object, for each video frame. We denote this set
of point clouds at time index ¢t by T = {X},... ,vao}, where N, is the number of objects in the
action. In the following, we will use the terms Xf and “object i (at time t)”, for some i = 1,..., N,,
interchangeably. A sample output of our point cloud tracker for a two object manipulation recording
is depicted in Fig. 2.

Figure 2: Point cloud tracking for a Pour action. First row: RGB frames from input video. Second row:
workspace plane and point clouds for the two tracked objects.

We must note that tracking is not the primary objective of this study. The approach described
here is the one we used in our experiments (Section 4) and primarily serves as a showcase for
the feasibility of subsequent processing steps using readily available tools. We believe that any
reasonably performing point cloud tracking algorithm is adequate for our purposes, as spatial
relations can, in general, be quite insensitive to tracking accuracy.

3.3 Spatial relations

3.3.1 Relative spaces

Here, we describe a straightforward yet intuitive approach to modeling pairwise spatial relations
between objects, given their point clouds in 3D space. We begin by defining an auxiliary co-
ordinate frame, whose axes will straightforwardly determine the left/right, above/below and



front/behind directions. As mentioned previously, we assume a still camera (robot’s eyes) looking
at the planar surface where the manipulation takes place.

The auxiliary axes directions are calculated using general prior knowledge about the axis orien-
tations of our RGBD sensor world coordinate frame, in which the object point clouds are in known
positions, and the workspace normal vector that was estimated during the plane fitting step of
segmentation/tracking. Naturally, since the planar workspace (initially) supports all the objects
involved in the manipulation, we would want the above/below direction to be directly defined by
its normal vector n.

W

Figure 3: Coordinate frames.

Our sensor coordinate frame is drawn in Fig. 3(a). As we can see, the z-axis corresponds to
perceived depth, in roughly the front/behind direction, while the x and y axes point approximately
to the right and downwards, respectively. This frame can be rotated so that the new axes, u, v
and w, are aligned with the workspace and the aforementioned directions with respect to it (Fig.
3(b)). Axis v can be set to be parallel to n (e.g., pointing downwards). Axis w can then be defined
as the projection of the original z-axis to the orthogonal complement of v. Axis u is then uniquely
determined as being orthogonal to both v and w (e.g., so that the resulting frame is right-handed).
Let Z, y and Z be the unit length vectors that are codirectional with the sensor frame axes, n
be a unit length workspace normal and u, ©, w be the unit length vectors codirectional with the
“workspace-aligned” auxiliary frame axes. The above construction, with the axis directions chosen
as in Fig. 3(b), is captured by the following equations:

0 =sgn(y-n)n, (1)
W= (2—(0-2)0) /|2~ (0-2)0], (2)
=9 x b, (3)

where a-b is the dot product of vectors a and b, a xb is their cross product, sgn is the signum function
and ||z| is the Euclidean norm of x. Table 1 defines the 6 spatial relation defining directions in
terms of the auxiliary frame axes.

To infer spatial relations between objects, we will first build models for the regions of 3D space
relative to an object. For example, to reason about some object being on the right of object X at
some given time, we first explicitly model the space region on the right of X. We will consider 7
space regions with respect to a given object: one that will represent the object interior (for the in
relation) and 6 around the object, aligned to the directions of Table 1. We will represent all these
relative spaces of X as convex polyhedra and denote them as S,(X), for r € {in, left, right,



Direction left | right | front | behind | above | below

Reference N N N N N A
—U “+u —w —+w —v “+v
vector

Table 1: Spatial relation defining directions

front, behind, below, above}, so that, for example, Syignt(X) is the space region on the right of
X.

We model Sin(X) simply as the smallest bounding box (cuboid) of X that is aligned with the
u, v, w axes (Fig. 3(b) for the blue point cloud). The 6 “directional” relative spaces are built upon
this one, as indicated in Fig. 4(a). Consider a uvw-aligned cube, concentric to Si,(X), of edge
length significantly larger than the maximum worskspace dimension. Clearly, each face of Sin(X)
with the closest face of the surrounding cube that is parallel to it can uniquely define an hexahedron
that also has these two as faces. We will use these 6 hexahedra as models for our directional relative
spaces. In Fig. 4(b), we draw Srign¢(X), where X is represented by the blue point cloud.

Figure 4: Directional relative spaces.

A few remarks are in order. First, all relative spaces are represented as sets (conjunctions)
of linear constraints, so checking if a point lies in them is very easy. Second, one would expect
the directional relative spaces to be unbounded (e.g., polyhedral cones). They can be modeled
this way by simply dropping one of their defining linear constraints. Finally, while more elaborate
models can be considered for Sin(X), like the convex hull of X, the construction of Fig. 4(a) has
the nice property of partitioning the space around X. This will enable us to easily reason about
object relations in a probabilistic manner, in the sense that our (real-valued) relation predicates
will define the spatial distribution of an object relative to another. Clearly, this provides a more
flexible framework than modeling using binary-valued predicates, which can be simply inferred.



3.3.2 Spatial relation predicates

We are now ready to define our models for a set of basic pairwise spatial object relations. We
will model 7 of them (the inclusion relation and the 6 “directional” ones) directly based on their
respective relative space, and an additional one that is indicative of whether two objects are in
physical contact (touch). Let Rf = {in, left, right, front, behind, below, above, touch} be
our full set of spatial relations. We note that these primitive relations correspond to the spatial
prepositions most commonly used in natural language and can be used to model more complex
relations (e.g., we can reason about under based on below and touch). For each r € R, we will
define a pairwise predicate R, (X}, X]t) that indicates exactly whether X! is positioned relatively to
X; according to relation r. For example, Riest (Xf, th) indicates whether object ¢ is on the left of
object j at time t.

Let R® = R\ {touch} be the set of relations that can be defined by an explicit space region
with respect to X]t- (reference object). Instead of making hard decisions, i.e. using binary values, we
let the predicates R,(X{, X}), for r € R, assume real values in [0, 1] that represent the fraction of
X! that is positioned according to r with respect to th». A reasonable way to evaluate R, (X!, X;),
for 7 € R?, is then simply as the fraction of points of Xj that lie in the relative space S,(X?):

Rr(th>X]t) = ’th N ST(X;” / ’Xﬂ ) (4)

where by |A| we denote the cardinality of set A. Since S, (X ) for r € R*, are mutually disjoint by
construction, the predicates of (4) have the property:

> R(X] X)) = (5)

reRs

i.e. they define a distribution of the points of X! to the relative spaces of X;.

The touch relation can be useful in capturing other, non-primitive spatial relations. For ex-
ample, by having models for both above and touch, one can express the on relation as their
“conjunction”. More expressive power is desirable, as it can translate to better discriminative
performance for our representation. We let our contactual predicate Reoucn(X/, X;) assume binary
values in {0, 1}. Whenever either of Rin (X[, X}) or Rin(X}, X}) is greater than zero, we can assume
that X! is touching X;f and, therefore, Ryoucn(X/, X;) = 1. If this were the defining condition for
Rioucn, incorporating the contactual predicate to our set of spatial relations would be redundant,
in the sense that we already model R;,. However, there are cases where both Rin(Xf ,X;) and
Rin(X;f, X!) are equal to zero, while X! is touching X;-. We may fail to detect this situation using
the above intersection test for various reasons. For example, the two objects could simply be ex-
tremely close to each other (touching), without part of one lying inside the other. The precision
of our sensor and the accuracy of our tracker can also cause the above condition to falsely fail. To
compensate for these situations, whenever both Ris(X{, X}) = 0 and Rin(X}, X}) = 0, in which
case X! and X]t are guaranteed to be linearly separable, we perform an addltlonal ‘proximity” test.
We train a linear binary SVM on X} U X ¢, with the class labels given by the object ownership for
each data point, and use the classn‘ier margln dm, as a measure of distance between X! and X ¢
If d,, falls below a preset threshold dr, we set Ryouen(X}, X t) = 1. Our complete model of the



contactual predicate is then given by:

1 if Rin (X}, X)) >0
or Rin(X;,Xf) >0

Rtouch(XfaX;): ord. <d
m T,

(6)
0 otherwise.

The value of dp depends, among other things, on point cloud precision related parameters (e.g.,
sensor and tracking errors) and was set to a few millimeters in our trials. We note that, of all
relations in R/, only touch is symmetric.

3.3.3 Spatial abstraction

At this point, we have defined our models for all relations r € Rf. Our goal is to define an
action representation using the temporal evolution of spatial object relations. However, tracking
all relations in R/ can yield a representation that is viewpoint-specific or unnecessarily execution-
specific. For example, disambiguating between left and right or front and behind or, actually,
any two of these is clearly dependent on the sensor viewpoint and might not be descriptive of the
actual manipulation semantics. As an example, consider a “stir the coffee” action that involves
a cup and a spoon. Picking up the spoon from the left of the cup, then stirring the coffee and
finally leaving the spoon on the right of the cup is expected to have the same high-level semantics
as picking up the spoon from the right of the cup, stirring and then leaving it in front of the cup.
For this reason, we combine the relations {left, right, front, behind} into one, which we can
simply name around, to obtain a desirable kind of spatial abstraction that, in most cases we can
think of, does not leave out information that is actually manipulation-specific. The new relation
can be viewed as the conjunction of the 4 ones it replaces and its predicate is given by:

Raround(th: X;) :Rleft (th7 X;) + Rright (Xlt’ X;)—i_
Rtront (Xfa X]t) + Rbehind(XZt’ X;)

This makes R® = {in, around, below, above, touch} the set of relations upon which we will build
our action descriptors.

3.4 Action descriptors

Let ®(i, ) be the |[R"|-dimensional vector of all relation predicates R.(X}, X}), r € R?, for object
i relative to object j at time ¢, arranged in a fixed relation order, e.g., (in, around, below, above,
touch), so that:

®'(i,5) = (Rin(X], X)), ..., Reouen(X/, X)), (7)

where 7,5 = 1,..., N, and i # j. Let ®(7,7) denote the sequence of the predicate vectors (7), for
t=1,...,T:

o(i,§) = (16, 4), ..., D7 (i, ) . 8)
The latter captures the temporal evolution of all spatial relations in R* of object ¢ with respect to
object j throughout the duration of the manipulation execution. We will call ®(i, j) a Predicate
Vector Sequence (PVS). PVSes constitute the building block of our action descriptors and can be
represented as |R%| x T' matrices.



Our proposed action descriptors will contain the PVSes for all object pairs in the manipulation.
As will become clear in the next subsection, comparing two action descriptors reduces to finding an
optimal correspondence between their involved objects, e.g., infer that object i1 in the first action
corresponds to object i9 in the second. To facilitate this matching task, we require our proposed
descriptors to possess two properties.

The first has to do with the fact that the spatial relations we consider are not symmetric. A
simple solution to fully capture the temporally evolving spatial relations between objects ¢ and j,
where none of the objects acts as a reference point, is to include both ®(i,5) and ®(j,7) in our
descriptor, for i,5 = 1,..., N, and ¢ # j. This might seem redundant, but, given our predicate
models, there is generally no way to exactly infer ®¢(4,7) from ®'(i,j) (e.g., due to different object
dimensions). Our descriptor will then consist of N, = N,(NN, — 1) PVSes, as many as the ordered
object pairs.

Finally, we need to be able to identify which (ordered) object pair a PVS refers to, i.e. associate
every PVS in our representation with a tuple (¢, j) of object indices. We opted to do this implicitly,
by introducing a reverse indexing function and encoding the mapping information in the order in
which the PVSes are stored. Any bijective function I, from {1,..., N, }, the set of PVS indices,
onto {(¢,7) | 4,7 =1,...,N, A i # j}, the set of ordered object index pairs, is a valid choice as an
indexing function. Our proposed action descriptors are then ordered sets of the form:

A:((I)l,..~,(I)NT), (9)

where, for k = 1,...,N,, &, = ®(i,j) and (¢,5) = In,(k). Function Iy, can be embedded in
the descriptor extraction process. Utilizing the knowledge of the PVS ordering it induces will
significantly simplify the formulation of establishing an object correspondence between two actions
in the following subsection.

3.5 Distance measure

To complete our proposed representation, we now introduce an appropriate distance function d on
the descriptors we defined above. If A! and A? are two action descriptors, we design d(A', A2) to be
a symmetric function that gives a time-normalized distance between the two actions. Additionally,
we allow comparisons between manipulations that involve different numbers of objects. This will
enable us to reason about the similarity between an action and a subset (in terms of the objects it
involves) of another action. In the following, for & = 1,2, let N* be the number of PVSes in A*
and N¥ be the number of objects in manipulation A*, so that N¥(N¥ — 1) = NF.

At the core of our action distance evaluation lies the comparison between PVSes. Each PVS is
a time series of |R%|-dimensional feature vectors that captures the temporal evolution of all spatial
relations between an ordered object pair. Different action executions have different durations and
may also differ significantly in speed during the course of manipulation: e.g., certain subtasks may
be performed at different speeds in different executions of semantically identical manipulations.
To compensate for timing differences, we use the Dynamic Time Warping (DTW) [18] algorithm
to calculate time-normalized, pairwise PVS distances. We consider the symmetric form of the
algorithm in [18], with no slope constraint or adjustment window restriction.

Let @il and @22 be PVSes in A' and A2, respectively, where r! = 1,..., Nl and r? = 1,... N2
We form the N} x N2 matrix C' = (¢,1,2) of all time-normalized distances between some PVS in
Al and some PVS in A2, where:

iz = DTW(®L,, @%). (10)

rly



In the following, we will calculate d(A', A?) as the total cost of an optimal correspondence of PVSes
between A' and A%, where the cost of assigning @}d to @32 is given by c,1,2.

One could simply seek a minimum cost matching of PVSes between two action descriptors
by solving the assignment combinatorial problem, with the assignment costs given in C' (e.g., by
means of the Hungarian algorithm [19]). This would yield an optimal cost PVS correspondence
between the two actions. However, it is clear that the latter does not necessarily translate to a
valid object correspondence. Instead, we directly seek an object correspondence between A' and
A? that induces a minimum cost PVS correspondence. The object correspondence between A' and
A? can be represented as an N} x N2 binary-valued assignment matrix X = (z;;), where z;; = 1
if and only if object i in A, i = 1,..., N}, is matched to object j in A%, j = 1,...,N2. We
require that every row and every column of X has at most one nonzero entry and that the sum
of all entries in X is equal to min(N}, N2). This ensures that X defines an one-to-one mapping
from the objects in the action involving the fewest objects to the objects in the other action. An
object assignment X is then evaluated in terms of the PVS correspondence it defines. We denote
the latter by Yy = (y,1,2), where y,1,2 = 1 if and only if PVS r! in A' is mapped to 72 in A2
The N! x N2 matrix Yy has the same structure as X, with min(N}, N?) nonzero entries. The
cost of assignment X, in terms of its induced PVS assignment Yy, is then given by the sum of all
individual PVS assignment costs:

N} N2

J(Y; Z Z Cr1p2Yply 2. (11)

rl=1r2=1

According to our descriptor definition in the previous subsection the PVS with index ! in A refers
to the ordered object pair (of,03) = Ini(r') and, similarly, r* in A? refers to (03,03) = In2(r?)
(superscripts indicate action). Clearly, Yy1,2 is nonzero if and only if object o} in A! is ass1gned to
0? in A% and o} in A' is assigned to o3 in A%:

Yrir2 = Toplp2Lo1 02 (12)
Using the above, we can rewrite and optimize (11) in terms of the object assignment variables z;;,
fori=1,...,N}and j=1,..., N2

N} N?
Minimize Z Z Cr1p28o1 20 o1 52
X 2
rl=1r2=1
where (o1,03) = In1(r'), (0f,03) = In2(r?)

subject to Zjlewgl i=1,...,N}
N} .
Siwy <1, j=1,...,N?
N} N2 .
D i1 Do T = min(Nj, N7)
xije{o,l}, ie{l,...,N}}
jef1,...,N%}

The above defines a binary quadratic program.
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The minimum value of J(X), over all possible object assignments, directly defines the distance
between actions A' and A?%:
d(A', A?) = min(J(X)). (13)

We note that d(A!, A%) is symmetric and, as it relies on DTW, gives a time-normalized measure of
action dissimilarity.

4 Experiments

4.1 Data description

All our experiments were performed on a set of 21 RGBD sequences of manipulation action execu-
tions. All actions involve 2 objects and are partitioned in 4 distinct semantic classes:

e Pour: water poured from a pitcher into a bowl (8 executions).

e Transfer: small object placed inside a larger container (6 executions).

e Stack: a book placed on top of another (2 executions).

e Stir: bowl content stirred using a ladle (5 executions, one of them performed by our robot).

Executions within each semantic class were performed by various individuals and with various
initial and final positions of the manipulated objects. For example, in some instances of Stir, the
ladle was initially picked from the left of the bowl and was finally placed on its left, in others, it
was picked from the right and then placed on the left, etc.

Naturally, there were significant timing differences across instances of the same semantic class
(different durations and execution speeds at each action phase). In particular, we also included
a robot execution for an instance of Stir (Fig. 5, bottom rows) that took roughly 4 times the
average human execution duration to complete and demonstrated disproportionately long “idle”
phases throughout the manipulation.

Our robot platform is a standard Baxter humanoid with parallel grippers. To generate trajec-
tories, we used predefined dynamic movement primitives [20]. The trajectory start and end points
were given from the point cloud segmentation and transferred onto the robot via a standard inverse
kinematics procedure. We also used visual servoing to ensure a firm grasp of the tool.

4.2 Spatial relations evaluation

We begin with a quick evaluation of the performance of our spatial relation models. To establish
our ground truth, we sampled 3 time instances from each execution sequence. To evaluate a rich
enough set of spatial relations, we sampled at roughly the beginning, the middle and the end of
each manipulation. For each sample frame, we picked one of the objects to act as reference (say
X1) and picked the relation r € R® = {in, left, right, front, behind, below, above} that best
described the position of the second object, Xo, relative to X;. For testing, we calculated the
spatial predicates R, (X2, X1), for all r € R® for all 60 annotated frames and labeled each according
to the relation of maximum predicate value. This gave a classification error rate of 3/63 ~ 4.8%.
However, 2 of the errors were due to tracking issues and not the spatial predicates per se: in
both Stack executions, significant part of the book at the bottom overlapped the top one (the
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Figure 5: Spatial relations evolution: ladle relative to bowl for two instances of Stir.

tracked point clouds were barely distinguishable), so in dominated above. The third error was
from a Stir instance (during stirring), where we decided in with a ground truth of above (second
largest predicate). Overall, we believe that, up to severe tracking inaccuracy, our spatial relation
estimation is very reliable.

In Fig. 5, we depict part of the temporal evolution of the spatial predicate vector of the
ladle relative to the bowl for two executions of Stir (samples from the corresponding PVS for all
relations in Rf): one performed by a human and one by our robot. From the figure, we can see
that our system can reliably track the temporal evolution of spatial relations in both observation
and execution scenarios.

4.3 Action classification

To evaluate the discriminative performance of our proposed representation, we begin by forming
the matrix D = (d;;) of all pairwise distances for our N, = 21 manipulation executions, where
dij = d(A", A7), for i,j = 1,...,N,. We depict the values of D in Fig. 6. As expected, D is
symmetric with zero diagonal. Manipulation executions of the same semantic class were grouped
together to consecutive indices (e.g., 1-8 for Pour, 9-14 for Transfer, 15-16 for Stack and 17-21 for
Stir). Given this, the evident block-diagonal structure of low distance values in D (blue regions)
suggests that the proposed representation can be quite useful in classification tasks.

To confirm this intuitive observation, we considered a clustering scenario by applying the Affin-
ity Propagation algorithm [21] on our data. Affinity Propagation is an unsupervised clustering
algorithm that does not assume prior knowledge of the number of classes. Instead, the resulting
number of clusters depends on a set of real-valued “preference” parameters, one for each data point,
that express how likely the point is to be chosen as a class “exemplar” (cluster centroid). A common
choice [21] is to use the same preference value for all points, equal to the median of all pairwise
similarities. A similarity measure between actions A* and A7, for i,j = 1,..., N, is directly given
by s;; = —d;j. Clustering using this scheme resulted in 4 clusters that correctly corresponded to
our 4 semantic classes and there were no classification errors. In Fig. 7, we plot a 2-dimensional
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embedding of the action descriptors for all executions, where we use the same color for all data
points of the same cluster and mark the cluster centroids.

4.4 Discussion

Both the empirically observed structure of matrix D (Fig. 6) and the outcome of our simple
clustering experiment, which detected the correct number of clusters and resulted in an error-free
classification of all our manipulation executions, suggest that our proposed abstract representation
is indeed descriptive of the actual high-level manipulation semantics.

It is worth noting that the descriptor for the robot stirring scenario is correctly classified as
a Stir instance (Fig. 7). This empirically shows that, even when the specific trajectories and
movements are quite different, e.g., between human trials and robot executions, our descriptor
comparison procedure and, thus, our PVS-based representation, are relatively invariant. Thus,
our learned manipulation representations from observation could be used to serve as additional
constraints for robot control policies.

5 Conclusions and future work

In this paper, we first introduced our direct take on grounding spatial relations through point cloud
segmentation and tracking. Then, we proposed a novel compact representation, based on PVSes,
to capture the geometric object interactions during the course of a manipulation. Experiments
conducted on both human and robot executions validate that 1) our system is able to reliably track
spatial relations; 2) our proposed abstract representation is indeed descriptive of the underlying
high-level manipulation semantics.

In this work, the matching of the spatial-relation sequence representations is done at once on
whole sequences. Currently, we are investigating the possibility to extend the matching algorithm
into an online one. An online action matching algorithm is needed if we want a fast system that
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observes actions to be able to predict during their execution. Also, in this work we only discussed
one aspect of manipulation actions, the object-wise spatial relations. A full action model would be a
multi-layer combination of spatial relations and many other aspects, such as movement trajectories,
objects, goals, etc. Another possible application of our system is to generate natural language
descriptions of manipulation actions observed or executed by the robot. This could possibly lead
to better human-robot collaboration.
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