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Abstract. In this paper, we propose MC3, an ensemble framework for
multi-class classification. MC3 is built on “consensus learning”, a novel
learning paradigm where each individual base classifier keeps on improv-
ing its classification by exploiting the outcomes obtained from other clas-
sifiers until a consensus is reached. Based on this idea, we propose two
algorithms, MC3-R and MC3-S that make different trade-offs between
quality and runtime. We conduct rigorous experiments comparing MC3-
R and MC3-S with 12 baseline classifiers on 13 different datasets. Our
algorithms perform as well or better than the best baseline classifier,
achieving on average, a 5.56% performance improvement. Moreover, un-
like existing baseline algorithms, our algorithms also improve the perfor-
mance of individual base classifiers up to 10%. (The code is available at
https://github.com/MC3-code.)
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1 Introduction
Suppose there are multiple experts sitting together. The moderator gives an
object (and its features) and asks the experts to predict its true class from a set
of predefined classes. In the first round, experts use their individual heuristics
to predict the true class. At the end of the round, every expert discloses her
prediction, and learns the predictions made by others. If the moderator does not
receive a consensus between the experts’ predictions, she allows another round
of predictions. In the next round, each expert uses the knowledge of others’
predictions, and may modify her heuristics to come up with some other class
for that object. Similarly at the end of the second round, the moderator again
checks for a consensus. The iteration continues until a consensus is achieved; and
finally the class obtained at the consensus is assigned to the object. This is the
underlying philosophy of our proposed ensemble classification framework MC3
(Multi-Class Consensus Classification). Experts are like base classifiers and the
final prediction is achieved via consensus.

The power of ensemble classification has been widely accepted by the ma-
chine learning community [17]. Existing ensemble classifiers such as Bagging [5],
Boosting [18] improve predictions of a base classifier by learning from mistakes.
In contrast, our ensemble algorithms support learning across multiple base clas-
sifiers in order to achieve consensus to not only achieve high prediction accuracy,
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but also to improve the performance of base classifiers individually. We propose
two versions of MC3: (i) MC3-R, a recursive version of MC3, (ii) MC3-S, a
two-stage single iterative version of MC3. Although MC3-R is computation-
ally more expensive, it produces better predictions than MC3-S (which slightly
trades off accuracy for lower runtime).

We conduct experiments on 13 datasets with different properties (w.r.t. size of
data and feature set, class distribution etc.). We compare MC3-R and MC3-S
with 12 (7 standalone and 5 ensemble) classifiers, and observe that our algorithms
are either as good as the best baseline or sometimes perform even better than
that, achieving an average of 5.56% higher accuracy than the best baseline.
Although the best baseline varies from one dataset to another, our algorithm is
a single algorithm that achieves the best performance across different datasets.
Additionally, the performance of individual base classifiers is improved up to
10%. We also suggest how to select the best parameters for our classifiers.

2 Related Work

Ensemble classification has been an active research area in machine learning (see
an exhaustive survey in [17]). Due to the abundance of literature in this area,
we restrict our discussion to recent work. Classical ensemble classifiers such as
Bagging [5], Boosting [18], Stacking [16], Random Forest [6] etc. [19] use reduced
versions of training samples to train ensemble classifiers. BPNNAdaBoost and
BPNN-Bagging [21] built on AdaBoost and Bagging are back-propagation neu-
ral network models for financial distress prediction. [20] used an Artificial Bee
Colony algorithm for selecting the optimal base classifier and meta configura-
tion in stacking. [9] proposed a classifier ensemble particularly for incomplete
datasets. [13] used Artificial Neural Networks with Levenberg-Marquardt back
propagation as base classifiers for the Rotation Forest ensemble. [10] combined
bagging and rank aggregation. [23] proposed an ensemble classification approach
based on supervised clustering for credit scoring. [12] designed a new ensemble
pruning method which highly reduces the complexity bagging.

The philosophy behind the existing methods is that base classifiers perform
well in different segments of the data and make mistakes in other segments. En-
semble methods combine predictions by balancing between quality and diversity.
However, the philosophy behind our ensemble classifiers is completely different –
we let each base classifier leverage the predictions made by other classifiers and
train itself iteratively to come to a consensus. At the end of the iterations, we
expect all the base classifiers to produce exactly the same prediction for an un-
known instance. This in turn not only provides a strong ensemble classification
in general, but also improves the performance of individual base classifiers.

Suppose we are given Str, a set of Mtr training instances taken from a domain
D. The ith entry of Str is represented by Sitr = (xi, yi), where xi ∈ Rd is a d-
dimensional feature vector1 and yi is the true class of Sitr chosen from a set L
(where l = |L| ≥ 2). We are also given Sts, a similar set of Mts test instances
taken from D; however the true classes of the instances Sjts = (xj , yj) ∈ Sts are

1 We use boldface lower case letters for vectors (e.g., x).
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unknown, i.e., yj = φ. It is also known that each unknown instance belongs to
only one class in L. The task is to predict the true class of each instance in Sts.
Ensemble Classification: Let CF = {CF1, ..., CFM} be a set of base classi-
fiers. Each base classifier CFj is trained on Str to predict a probability distri-
bution over possible classes for an unknown instance Si ∈ Sts, i.e., pj(Si) =
{pj(L1|Si), ..., pj(Ll|Si)}, based on which Lji is assigned to Si such that Lji =
arg maxk p

j(Lk|Si). The final class Li ∈ L of Si is obtained by feeding the output
classes/probabilities obtained from all the base classifiers into an ensemble func-
tion E(L1

i , ..., L
M
i ) or E(pj(Si), ...,p

M (Si)). The task is to design an appropriate
ensemble function to predict the final class of an unknown instance.

3 Multiclass Consensus Classification

We propose two ensemble classifiers. The first classifier, MC3-R is a recursive
multi-class consensus classifier that achieves consensus by recursively updating
each base classifier using the outcomes of other base classifiers. This classifier
turns out to be most accurate, although it suffers from high computational com-
plexity. The second classifier, MC3-S is a single iteration multi-class consensus
classifier that approximates consensus in one iteration. MC3-S is much faster
than MC3-R and is the closest competitor in terms of accuracy. In the rest of
the section, we will elaborate these classifiers.

3.1 MC3-R: Recursive MC3

MC3-R (pseudo-code in Algo. 1; see [1] for a schematic diagram) takes the
following inputs – training set STR, test set STS , a set of M base classifiers
{CF}Mi=1, a number of iterations Iter, a subset selection strategy SS that selects
a subset of the M base classifiers, a combination function W , and a consensus
function CONS. It consists of two fundamental steps – achieving consensus and
combining predictions of the base classifiers. MC3-R trains each base classifier
Iter times on the training set separately and selects the best parameter setting.
In each iteration, MC3-R achieves consensus after ι levels (the value of ι varies
across different iterations). Finally, MC3-R combines the outputs of all optimal
base classifiers using a weighted function W and predicts the final classes of STS .
Achieving Consensus: In Step 7 of Algo. 1, MC3-R invokes a getConsensus

function which starts by randomly dividing STR equally into STR1
and STR2

(Step 20). It then calls getMetaFeatures twice – in the first (resp. second) call
each CFi is trained on STR1 (resp. STR2) to predict STR2 (resp. STR1). The pre-
dictions of CFis then become meta-features for STR2 (resp. STR1) and they are
augmented with the original features to generate an expanded feature set SeTR2

(resp. SeTR1
). In Step 26, if MC3-R reaches consensus based on the consensus

function CONS (possible definitions are given in Section 4), it returns the fit-
ness error of individual classifiers which will further be used for best parameter
selection (Step 11); otherwise a subset of meta-features are selected using SS
(possible definitions are given in Section 4) and augmented with the original fea-
tures of STR to obtain an extended set SeTR (Step 40). The entire getConsensus
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Algorithm 1: MC3-R: Recursive MC3
Data: Training set STR, Test set STS , No. of iterations Iter, Set of M base classifiers

{CF}Mi=1, Subset selection function SS, a combination function W , Consensus
function CONS

Result: Prediction of STS
1 P∗(i) = φ, 1 ≤ i ≤M // Stores the optimal parameters of the classifiers
2 A = φ // Stores the fitness error of the classifiers
3 j = 1
4 while j ≤ Iter do
5 ι = 1
6 Pιi = φ, 1 ≤ i ≤M
7 A=getConsensus (CF , STR, ι,j)
8 j + +

9 end
// Select best optimal parameters of base classifiers from multiple iterations

10 for (i = 1; i ≤M; i+ +) do

11 ĵ = argmax1≤j≤Iter A
i
j , where Aij ∈ A

12 for (k = 1; k ≤ ι; k + +) do

13 ĈF
k
i is constructed using Parameter∗(i, ĵ, k), where Parameter∗(i, ĵ, k) ∈ P∗(i)

14 end

15 end

16 Use ĈF
k
i (1 ≤ i ≤M) in k different levels (where 1 ≤ k ≤ ι) to predict the classes of STS

17 Combine the predictions of {ĈF i}Mi=1 using W to obtain final classes of STS
18 return Classes of STS
19 Procedure getConsensus(CF, STR, ι,j)
20 Divide STR equally into STR1

and STR2
randomly

// Obtain ιth level optimal classifiers

21 Parameter∗(i, j, ι) = 0, 1 ≤ i ≤M // Parameters of CFi at ιth level of jth iter.
22 SeTR2

, CF∗ι ← getMetaFeatures(CF, STR1
, STR2

)

23 SeTR1
, CF∗ι ← getMetaFeatures(CF, STR2

, STR1
)

24 Parameter∗(i, j, ι) = Parameters of CF∗ιi (j), 1 ≤ i ≤M
25 P∗(i) = P∗(i) ∪ Parameter∗(i, j, ι), 1 ≤ i ≤M
26 if CONS == True then

27 Errorij = Fitness error of CF∗i at the end of jth iteration

28 Aij = 1− Errorij
29 A = A ∪Aij
30 return A
31 end
32 else
33 S = SeTR1

∪ SeTR2

34 Use SS to select a subset of meta-features from S and augment it with the original
feature set of STR to get an expanded feature set SeTR

35 getConsensus(CF, SeTR, ι+ +)

36 end

37 Procedure getMetaFeatures(CF, Str, Sts)
38 K-fold cross-validation of each CFi on STr to get optimal classifier CF∗i
39 Use each CF∗i to predict the classes of Sts and treat them as meta-features
40 Augment the meta-features with the original features and create an expanded feature

set for Sts (call it Sets)
41 return Sets, CF

∗

is repeated recursively until the consensus is achieved (Step 35).
Combining predictions: Once consensus is achieved, the best parameters for
each classifier at each level are selected based on the fitness error in different
iterations (Step 13). The optimal classifiers are then used to predict the class
of Sts. Finally, the predictions of the classifiers are combined using W (possible
definitions are given in Section 4) to generate the final class of Sts (Step 17).
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3.2 MC3-S: Single Iteration MC3

MC3-S (pseudo-code in Algo. 2; see [1] for a schematic diagram) takes the same
inputs as MC3-R (except the consensus function CONS since it assumes that
consensus is achieved after two levels). MC3-S starts by randomly dividing STR
into two equal subsets STR1

and STR2
(Step 7). Each classifier CFi considers

STR1
and uses k-fold cross validation to obtain optimal parameter settings (we

refer to each such optimal classifier as CF ∗i ) (Step 8). Each CF ∗i is then used to
predict the classes of STR2

(Step 9).
In the next step, the classes of STR2

obtained from optimal classifiers CF∗
are used as meta-features of STR2

. We then select a subset of meta-features using
SS (Step 10) and augment them with the original features of STR2

to get an
expanded set SeTR2

(Step 11). Note that these optimal classifiers CF∗ will be used
later for generating new features. After this, we consider each original classifier
CFi and run k-fold cross-validation on SeTR2

. This step will produce another
optimal set of classifiers denoted by {CF∗∗}ni=1 (Step 12). This set of optimal
classifiers will be used later for final class prediction of unknown instances.

The above steps (Steps 7-16) are repeated Iter times, and the optimal param-
eter settings for CF∗ and CF∗∗ are stored into Parameter∗ and Parameter∗∗,
respectively. At the same time, the accuracies of CF∗∗ are stored in Accuracy.

Once Iter iterations are completed, we select the best parameter setting for

each CF ∗i and CF ∗∗i based on the values stored in Accuracy. We call ˆCF
∗

for

feature generation and ˆCF
∗∗

for class prediction (Step 17-20). Finally, on the

test set STS , the ˆCF
∗

classifiers are run to generate meta-features (Step 21),

and SS is used to select a subset of meta-features (Step 22). ˆCF
∗∗

are then
run to predict the classes (Step 23). The final class of each instance in STS is

generated by combining the outputs of ˆCF
∗∗

using W (Step 24).

4 Functions used in MC3-R and MC3-S
Here, we describe some possible definitions of the functions used in our classifiers.
• Meta-feature Generation: Experimental evidence from prior research [11,
22, 16] indicates that augmenting the confidence of base classifiers in predicting
class levels as meta-features is more useful than considering the predicted classes
directly. Ting and Witten [22] suggested using as meta-features, the probabilities
(often used as confidence values) predicted for each possible class by each base
classifier, i.e., pj(Si) = {pj(L1|Si), ..., pj(Ll|Si)}, where j = 1, . . . ,M and Lk ∈
L. We further extend them by augmenting two additional sets of meta-features
for each instance Si and each classifier CFj : (i) the probability distribution
multiplied by the maximum probability: p̂j(Si) = pj(Si) × max

1≤k≤l
pj(Lk|Si),

(ii) the entropies of the probability distributions: Ej(Si) = −
∑l
k=1 p

j(Lk|Si) ·
log2 p

j(Lk|Si). Therefore, the total number of meta-features for each instance
would become M(2l + 1).
• Subset Selection: Instead of considering all classifiers, we propose to use SS
to select a subset of classifiers for meta-feature generation. Our selection strate-
gies are based on two fundamental quantities – quality and diversity.
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Algorithm 2: MC3-S: Single Iteration MC3
Data: Training set STR, Test set STS , No. of iterations Iter, Set of M base classifiers

{CF}Mi=1, Subset selection function SS, a combination function W
Result: Prediction of STS

1 for (i = 1; i ≤M; i+ +) do
2 Parameter∗(i, j) = 0, 1 ≤ j ≤ Iter
3 Parameter∗∗(i, j) = 0, 1 ≤ j ≤ Iter
4 Accuracy(i, j) = 0, 1 ≤ j ≤ Iter
5 j = 1
6 while j ≤ Iter do
7 Divide STR equally into STR1

and STR2
randomly

8 K-fold cross-validation of each CFi on STR1
to get level-1 optimal classifier CF∗i

9 Use each CF∗i to predict the classes of STR2
and consider them as meta-features

10 Use SS to select a subset of features from the set of meta-features
11 Augment the selected subset of meta-features with the original features and create an

expanded feature set for STR2
(call it SeTR2

)

12 K-fold cross validation of each CFi on SeTR2
to get level-2 optimal classifier CF∗∗i

13 Parameter∗(i, j) = Parameters of CF∗i , 1 ≤ i ≤M
14 Parameter∗∗(i, j) = Parameters of CF∗∗i , 1 ≤ i ≤M
15 Accuracy(i, j) = Accuracy of CF∗∗i , 1 ≤ i ≤M
16 j = j + 1

// Best CF∗i (resp. CF∗∗i ) is used for feature generation (resp. final classification)

17 for (i = 1; i ≤M; i+ +) do

18 ĵ = argmax1≤j≤Iter Accuracy(i, j)

19 ĈF
∗
i is constructed using Parameter∗(i, ĵ)

20 ĈF
∗∗
i is constructed using Parameter∗∗(i, ĵ)

// Prediction on test set

21 Use each ĈF
∗
i to predict classes of STS and use them as meta-features

22 Use SS to select a subset of meta-features and augment it with the original feature set of
STS to get an expanded feature set SeTS

23 Predict the classes of SeTS using ĈF
∗∗
i

24 Combine the predictions of {ĈF∗∗i }
M
i=1 using W to obtain final classes of STS

25 return Classes of STS

(i) Quality (Q): We measure the quality of each base classifier in terms of
– Area under the ROC curve (AUC) (further used to measure the performance
of individual classifiers in Section 6).

(ii) Diversity (D): We measure the diversity between the predictions of base
classifiers in two ways: (i) NMI-based measure:Dnmi = 1− 1

M

∑
1≤i,j≤M NMI(yi,yj),

where Normalized Mutual Information (NMI) is a measure of similarity between
two results [15] (see [1] for the definition of NMI), (ii) Entropy-based measure:

DE = 1
|Str|

∑
s∈Str

1
M−M2

min{l(s), L − l(s)}, where l(s) =
∑M
i=1 δ(Yi(s), c(s)),

and δ(a, b) = 1, if a = b, 0 otherwise.
Greedy Strategy (G): Given the predictions of all base classifiers {yi}Mi=1 as
inputs, we select a subset by considering a trade-off between quality and diver-
sity, which can be viewed as a multi-objective optimization problem. We choose
a subset SCF that maximizes the objective function:

J = α
1

|SCF |

|SCF |∑
i=1

Q(yi) + (1− α)D (1)

The parameter α controls the trade-off between these two quantities. However,
selecting a proper subset is computationally expensive. Therefore, we adopt the
following greedy strategy. We start by adding the solution with highest quality
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and incrementally add solutions one at a time that maximizes J until local
maxima is reached. We set 0.5 as the default value of α. We also consider all
the features (ALL) and compare the performance of the classifiers with that of
greedy strategy (see Section 6, Tables 2(c) and 2(d)).
• Output Combination: In the final stage of our proposed classifiers (Step 17
in MC3-R and Step 24 in MC3-S), the outputs of the optimal base classifiers
are aggregated through a function W . We consider two definitions for W .
(i) Majority Voting (MV): For each test instance we assign the class that
the majority of base classifiers agree with. Tie breaking is resolved by assigning
that class on which the base classifiers have highest confidence.
(ii) Feature-Weighted Linear Combination (FWLC): As opposed to linear
stacking where each base classifier is given a weight, here we assign weights to
features. Simple linear stacking defines the weighted function as W (Lk|s) =∑M
i=1 wip

i(Lk|s), for each Lk ∈ L and s ∈ Str. FWLC instead models the
weight wi as a linear function of features (including d original and M(2l + 1)

meta-features), i.e., wi(s) =
∑d+M(2l+1)
j=1 vijfj(s) for learning weights vij ∈ R.

Then the weighted function yields the following objective function:

minv
∑
s∈Str

(

M∑
i=1

d+M(2l+1)∑
j=1

(vijfj(s)p
i(Lk|s))− 1)2 (2)

The prediction is subtracted from 1 because we assume that the actual class of
s is assigned the probability 1. We use linear regression to obtain the optimal
weight for each feature.
• Consensus Function: MC3-R uses CONS to reach a consensus among the
base classifiers. Ideally, all the classifiers should predict the same class for an
unknown instance at the end (complete consensus). However, in practice it may
not be possible, and therefore we stop MC3-R once it reaches a certain threshold
of consensus. Two possible definition of CONS are as follows:
(i) Binary Consensus (BIN): For each unknown instance, we check if all pairs
of classifiers agree with their predictions: 1

|Str|
1
M

∑
s∈Sts

∑
{CFi,CFj} δ(Yi(s), Yj(s)),

where δ(x, y) = 1, if x = y, 0, otherwise.
(ii) NMI-based Consensus (NMI): We measure the average similarity be-
tween the prediction of two base classifiers using NMI: 1

M

∑
{CFi,CFj}NMI(yi,yj).

The classifier stops once the difference between the values of the consensus
function for two consecutive levels falls below a certain threshold (we take it as
0.02). Later we will see in Figure 2(d) that MC3-R achieves consensus within
4-5 levels for most of the datasets.

5 Experimental Setup
Datasets: We perform our experiments on a collection of 13 datasets. These
datasets are highly diverse (in terms of size, class distribution, feature size) and
widely used. A summary of these datasets is shown in Table 1.
Base Classifiers: Seven (standalone) base classifiers are used in this study: (i)
DT: CART algorithm for decision tree with Gini coefficient, (ii) NB: Naive
Bayes algorithm with kernel density estimator, (iii) K-NN: K-nearest neighbor
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Table 1: The datasets (ordered by the size) and their properties: number of instances,
number of classes, number of features, probability of the majority class (MAJ), and
entropy of the class probability distribution (ENT). We further report the accuracy
(AUC) of our classifiers and the best baseline for different datasets. The best baseline
varies across datasets (see Section 6 for detailed discussion).

Properties of the dataset Accuracy (AUC)

Dataset # instances # classes # features MAJ ENT Best Baseline MC3-R MC3-S

B
in

a
ry

Titanic [2] 2200 2 3 0.68 0.90 0.66 (SVM) 0.67 0.66
Spambase [14] 4597 2 57 0.61 0.96 0.93 (RF) 0.95 0.95
Magic [14] 19020 2 11 0.64 0.93 0.55 (RF) 0.56 0.56
Creditcard [24] 30000 2 24 0.78 0.76 0.67 (BAG) 0.70 0.67
Adults [14] 45000 2 15 0.75 0.80 0.78 (SGD) 0.83 0.80
Diabetes [14] 100000 2 55 0.54 0.99 0.64 (RP) 0.65 0.65
Susy [3] 5000000 2 18 0.52 0.99 0.77 (BAG) 0.77 0.77

M
u
lt

ic
la

ss Iris [14] 150 3 4 0.33 1.58 0.97 (RP) 0.98 0.98
Image [14] 2310 7 19 0.14 2.78 0.98 (BAG) 0.98 0.98
Waveform [14] 5000 3 21 0.34 1.58 0.89 (STA) 0.91 0.90
Statlog [14] 6435 6 36 0.24 2.48 0.92 (RP) 0.95 0.94
Letter Recognition [14] 20000 26 16 0.04 4.69 0.49 (BOO) 0.54 0.50
Sensor [14] 58509 11 49 0.09 3.45 0.98 (BOO) 0.99 0.99

Table 2: Parameter selection for MC3-R and MC3-S on Creditcard and Waveform
datasets (see abbreviations in Section 4). The accuracies are reported in terms of AUC.

(a) MC3-R (Creditcard)
SS + CONS

G : Dnmi+BIN(NMI) G : DE+BIN(NMI) ALL+BIN(NMI)

W

FWLC 0.64 (0.63) 0.66 (0.65) 0.65 (0.65)
MV 0.65 (0.66) 0.67 (0.68) 0.66 (0.67)

(b) MC3-R (Waveform)
SS + CONS

G : Dnmi+BIN(NMI) G : DE+BIN(NMI) ALL+BIN(NMI)

W

FWLC 0.76 (0.79) 0.76 (0.78) 0.77 (0.78)
MV 0.88 (0.88) 0.86 (0.91) 0.89 (0.90)

(c) MC3-S (Creditcard)
SS

G : Dnmi G : DE ALL

W

FWLC 0.66 0.66 0.67
MV 0.67 0.70 0.68

(d) MC3-S (Waveform)
SS

G : Dnmi G : DE ALL

W

FWLC 0.56 0.56 0.76
MV 0.90 0.91 0.89

algorithm, (iv) LR: multinomial logistic regression, (v) SVM: Support Vector
Machine with linear kernel, (vi) LDA: supervised latent Dirichlet allocation
[7], (vii) SGD: stochastic gradient descent classifier [4]. We utilize standard grid
search for hyper-parameter optimization. These algorithms are further used later
as standalone baseline classifiers to compare with MC3-R and MC3-S.

Baseline Algorithms: We compare MC3-R and MC3-S with the standalone
classifiers mentioned earlier. We additionally compare them with 5 state-of-
the-art ensemble classifiers: (i) Linear Stacking (STA): stacking with multi-
response linear regression [16], (ii) Bagging (BAG): bootstrap aggregation method
[5], (iii) AdaBoost (BOO): Adaptive Boosting [18], (iv) Random Forest (RF):
random forest with Gini coefficient [6], and (v) RP: a recently proposed random
projection ensemble classifier [8]. Thus, in all, we compare our algorithms with
12 classifiers including sophisticated ensembles.

6 Experimental Results

In this section, we first present the parameter selection strategy for our clas-
sifiers. In the interest of space, we will only present the results of parameter
selection for Creditcard and Waveform (as representatives of binary and mul-
ticlass datasets respectively); however exceptions will be explicitly mentioned.
Following this, we will present the performance of all the algorithms for different
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datasets. The performance is reported after 10-fold cross validation. All exper-
iments were performed on a cluster of 64 Xeon 2.4GHz machines with 24GB
RAM running RedHat Linux.

Parameter Selection: Table 2 shows the performance of our classifiers for
different parameter combinations. For instance, the top left entry in Table 2(a)
indicates that the AUC value of MC3-R on the Creditcard dataset is 0.64 (resp.
0.63) with NMI-based greedy subset selection G : Dnmi and binary consensus
BIN (resp. NMI-based greedy subset selection G : Dnmi and NMI-based consen-
sus NMI). We observe that in general MC3-R and MC3-S perform the best
with majority voting (MV ) as W (exception including FWLC for the Magic
dataset), greedy strategy (G) with entropy-based diversity DE as SS (exception
including greedy Dnmi-based strategy for the Sensor dataset) and NMI-based
CONS. Moreover, for both the classifiers, we observe in Fig. 2(c) that the per-
formance does not change much with the number of iterations (Iter); therefore
we take Iter = 1 to speedup the classifier. The rest of the experiments are
conducted with these parameter settings for MC3-R and MC3-S.

Comparative Analysis: The performance of the classifiers is evaluated based
on two evaluation measures – AUC and F-score (see detailed experimental re-
sults in the Supplementary Materials [1]). For better visualization, we present
here the composite performance of all classifiers – for each evaluation measure
(AUC and F-score), we separately scale the scores of the competing classifiers so
that the best performing classifier has a score of 1. The composite performance
of a classifier is the sum of the 2 normalized scores. If a classifier outperforms
all others, then its composite performance is 2. Fig. 1 shows that our classifiers
outperform others, irrespective of the datasets. The composite performance of
MC3-R and MC3-S is 1.99 and 1.97 respectively, followed by RF (1.92), Bag-
ging (1.92), RP (1.87), DT (1.82), KNN (1.82), BOO (1.92), STA (1.81), LDA
(1.81), SVM (1.80), LR (1.80), NB (1.73) and SGD (1.55). The absolute perfor-
mance of each classifier averaged over all datasets as shown in the bottom table
of Fig. 1 indicates that MC3-R performs 3.89% (resp. 5.56%) better than the
best baseline in terms of AUC (resp. F-Score). For further comparison, the abso-
lute accuracy of MC3-R and MC3-S along with the bast baseline is presented
in Table 1. Interestingly, we observe in Table 1 that although the best baseline
tends to be competitive with our classifiers, there is no particular baseline which
is the best across all datasets. Therefore, one may choose our classifiers rather
than spending time deciding on which classifier to choose because our classifiers
are at least as good as any existing classifier irrespective of the dataset.

As expected, we observe in the bottom table of Fig. 1 that MC3-S is much
faster than MC3-R. Note that the runtime is reported after running base clas-
sifiers sequentially. We further measure overhead ratio of an ensemble algorithm
as the ratio between the total runtime of the ensemble algorithm and the total
runtime taken by the base algorithms used in the ensemble algorithm. We notice
that the overhead ratio of our algorithms is the minimum (around 1; while the
maximum is 714 for Bagging; see Supplementary Materials [1]). It essentially in-
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Fig. 1: (a) Composite performance of all the classifiers ((A)-(G): standalone, (H)-(L):
ensemble, (M)-(N): ours) on different datasets. (b) The results on Sensor dataset are
zoomed out separately. The order of classifiers on x-axis (i.e., labels on x-axis) in (a)
is same as that in (b) and is omitted for better visualization. The table below presents
the average accuracy of the classifiers over all the datasets, and the runtime on three
largest datasets (see [1] for the runtime of all the algorithms on other datasets).

dicates that the runtime of our algorithms is high due to the sequential execution
of the base algorithms, which can be parallelized easily.

We further study other aspects of the classifiers:

(i)Dependency on the feature size: We consider Spambase2 having highest
number of features (57) and drop 5 features at a time based on descending
order of importance3 and plot AUC in Fig. 2(a). We observe that our algorithms
consistently perform well despite dropping features – MC3-R almost remains
invariant up to 12 features. The reason might be that our classifiers produce
additional meta-features to separate instances well in the feature space. This
suggests that our classifiers add high value for datasets with a small number of
original features.
(ii)Dependency on the size of the training set: We consider Creditcard2

and decrease the training size from 75% to 50% (with 5% interval) of the entire
dataset. Training set is selected randomly, and for each training size, the average
AUC is reported in Fig. 2(b) after repeating it 20 times. We observe that our
classifiers are less affected by the training size. Therefore, one may choose our
classifiers when the training size is small.
(iii)Dependency on the number of iterations: In both MC3-R and MC3-
S, we choose the best parameter setting of the base classifiers after running them
Iter times. Fig. 2(c) shows that the overall performance does not vary much with
an increase in Iter. Therefore, we choose Iter = 1 to make the classifiers fast.
(iv)Convergence of MC3-R: MC3-R takes ι levels to achieve consensus.
Table 2 shows that NMI-based consensus is more effective than binary consensus.
Although there is no theoretical guarantee of achieving consensus since the base
classifiers are treated as a black box, we empirically observe that for all the

2 The patterns are exactly the same for the other datasets.
3 We separately measure the importance of each feature by dropping it in isolation

and calculate the decrease in accuracy (more decrease implies more relevance).
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Fig. 2: Performance (normalized) of each classifier for (a) different number of features
and (b) different training size. The lines corresponding to MC3-S and MC3-R are
significantly different (McNemar’s, p < 0.005) from other lines. (c) Performance of our
classifiers after considering different number of iterations (Iter). (d) Normalized NMI-
based consensus of MC3-R) over different levels of iterations for different datasets. (e)
Decrease in performance of our classifiers after dropping each base classifier in isolation.
(f) Performance improvement of each base classifier due to our ensemble classifiers.

datasets MC3-R converges after a certain level. Figure 2(d) shows that for
small datasets (e.g., Iris) consensus is achieved much faster (within 2-3 levels)
than large datasets (e.g., Creditcard, Susy) for which MC3-R usually takes 7-8
levels of iterations (on average 4-5 levels for most of the datasets).
(v)Dependency on the base classifiers: For each dataset, we drop each
base classifier in isolation and measure the change in performance of MC3-R
and MC3-S. Fig. 2(e) shows that LDA affects the performance the most. As
mentioned in the comparative analysis, LDA seems to be the best standalone
classifier. This may imply that incorporating strong classifiers into the base set
may have a bigger impact than incorporating the weak classifiers.

(vi)Improvement of individual base classifiers: As opposed to traditional
ensemble classifiers, our classifiers improve individual base classifiers separately
once consensus is reached. Fig. 2(f) shows the percentage improvement of base
classifiers after incorporating meta-features generated by our classifiers. We ob-
serve that the improvement is significantly high, ranging up to 10% in some
cases. Interestingly, our classifiers are able to gear up the performance of strong
base classifiers (such as LDA, LR, SVM) as well.

7 Conclusion

In this paper, we have advanced the paradigm of ensemble classification by
providing a new notion of “consensus learning”. We have shown that there is
no existing classifier which always performs the best across different datasets.
Our classifiers are at the top, performing as well or better than the best existing
classifier (baseline and ensembles) across all 13 datasets we considered. The
rigorous study of 13 different datasets and the comparative analysis with 12
baseline classifiers allows us to assert that achieving consensus not only provides
a better way of designing ensemble classifiers, but also enhances the accuracy of
individual base classifiers by a significant level (up to 10%).
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